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Abstract: In this paper we discuss several variants of the acceleration technique known as Iterated Defect Correc-
tion (IDeC) for the numerical solution of initial value problems for ODEs. A first approximation, computed by
a low order basic method, is iteratively improved to obtain higher order solutions. We propose new versions of
the IDeC algorithm with maximal achievable (super-)convergence order twice as high as in the classical setting.
Moreover, if the basic numerical method is designed for a special type of ODE only, as it is the case for many
geometric integrators, the idea of classical IDeC is not applicable in a straightforward way. Our approach enables
the application of the defect correction principle in such cases as well.
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1 Introduction
We consider initial value problems

z′(t) = f(t, z(t)), z(t0) = z0, (1)

to be solved on the interval [t0, tend]. Let y(t) de-
note the exact solution to (1). We assume that a
first approximate solution z

[0]
Γ = (z0, . . . , zN ) is ob-

tained by some discretization method on a grid Γ :=
(t0, . . . , tN ). For the time being, we consider the
backward Euler scheme (BEUL), where z

[0]
Γ is com-

puted from

zk − zk−1

tk − tk−1
= f(tk, zk), k = 1, . . . , N. (2)

The technique of defect correction described here was
first proposed by Zadunaisky in [8] in the context of
Runge-Kutta schemes, see also Stetter [7] for a gen-
eral formalism. We first give the basic ideas behind
this approach. A more detailed specification of algo-
rithmic components is given in Section 2.

Zadunaisky’s original intention was to design an effi-
cient and reliable global error estimate. To this end,
a given numerical approximation z

[0]
Γ is interpolated

by a polynomial function p[0](t). This enables us to
compute the defect, i.e. the residual of p[0](t) w.r.t.
the given ODE, and to define a so-called neighboring
problem to (1). Here the defect is added as an inho-
mogeneity such that the exact solution is simply p[0].

This provides an estimate for the global 1 error of z
[0]
Γ

by means of applying the given scheme to the neigh-
boring problem. Soon it became clear that the proce-
dure can be iterated by considering the new approxi-
mation resulting from the computed error estimate and
applying the same device again. The resulting method
is called Iterated Defect Correction (IDeC), and it has
been successfully applied to various classes of differ-
ential equations.

The purpose of the present paper is to demonstrate
that, while the strategy per se is evident and plausible,
the particular choice of the involved algorithmic com-
ponents may be quite subtle. In particular, the way of
evaluating the defect within an IDeC iteration is often
crucial for success or failure of the method and for its
convergence behavior. As will be demonstrated below,
IDeC should in fact be considered as a rich family of
iterative methods, each with its particular advantages.
These include variable stepsizes, superconvergence ef-
fects, and suitability for geometric integration.

2 Classical IDeC
Let us now describe the technical details of the classi-
cal IDeC procedure. Using the polynomial p[0](t) of
degree ≤ N which interpolates the values of z

[0]
Γ we

define the auxiliary neighboring problem

z′(t) = f(t, z(t)) + d[0](t), z(t0) = z0, (3)
1This approach enables also the estimation of local errors.



where d[0](t) denotes the defect w.r.t. (1),

d[0](t) :=
d

dt
p[0](t) − f(t, p[0](t)). (4)

We now solve (3) using the same numerical method
as before to obtain an approximation p

[0]
Γ for the exact

solution p[0](t) of (3). Note that for (3) the global er-
ror p

[0]
Γ −RΓp[0] is known.2 We expect this error to be

a good estimate for the unknown error z
[0]
Γ − RΓy for

the original problem (1), such that

z
[1]
Γ := z

[0]
Γ − (p

[0]
Γ − RΓp[0]) (5)

yields an improved numerical solution of (1).3 Now,
these values are used to define a new interpolating
polynomial p[1](t) by requiring p[1](tk) = z

[1]
k . Again,

p[1](t) defines a neighboring problem analogous to (3),
and the numerical solution of this neighboring prob-
lem serves to obtain the second improved solution
z
[2]
Γ := z

[0]
Γ − (p

[1]
Γ − RΓp[1]). This procedure can

be continued iteratively in an obvious manner, yield-
ing a sequence z

[0]
Γ , z

[1]
Γ , z

[2]
Γ , . . . of approximations for

RΓy, which are recursively computed from

z
[ν]
Γ := z

[0]
Γ − (p

[ν−1]
Γ − RΓp[ν−1]) (6)

for ν = 1, 2, . . .. Note that each z
[ν]
Γ also provides

an estimate for the error of z
[ν−1]
Γ via z

[ν−1]
Γ − z

[ν]
Γ ≈

z
[ν−1]
Γ − RΓy.

In practice one does not use one interpolating polyno-
mial for the whole interval [t0, tend]. Instead, piece-
wise functions composed of polynomials of (moder-
ate) degree m are used to specify the neighboring
problem. Thus we choose the grid Γ = (t0, . . . , tN )
such that N = N1m for some integer N1, and
split the integration interval into subintervals Ji :=
[tim, t(i+1)m]. The interpolants p[ν](t) are continu-

ous piecewise polynomial functions, p[ν](t) = p
[ν]
i (t),

t ∈ Ji, where p
[ν]
i (t) are polynomials of degree ≤ m.

Now, for sufficiently smooth data functions f(t, z) it
can be shown that the approximations z

[ν]
Γ satisfy

z
[ν]
k − y(tk) = O(hν+1), ν = 0, . . . , m − 1, (7)

if the backward Euler scheme (2) is carried out on a
piecewise equidistant grid Γ, where ti,j − ti,j−1 =
hi := (ti,m − ti,0)/m for i = 0, . . . , N1 − 1 and

j = 1, . . . , m. For convenience, here and in the sequel
we use double indexing ti,j := tim+j for grid points
and similarly for grid functions ζΓ = (ζ0, . . . , ζN ). h

denotes the maximal stepsize of Γ,

h := max
k=1,...,N

(tk − tk−1). (8)

Note that further iterations do not improve the conver-
gence order: For ν ≥ m only z

[ν]
k − y(tk) = O(hm)

holds in general. To discuss this convergence behavior
we write the global error in the form

z
[ν]
k − y(tk) = (z

[ν]
k − z∗k) + (z∗k − y(tk)), (9)

where z∗Γ = (z∗0 , . . . , z
∗

N ) denotes the fixed point of
the iteration z

[ν]
Γ 7→ z

[ν+1]
Γ , such that the global error

is represented as the sum of the iteration error z
[ν]
k −z∗k

and the global error z∗k − y(tk) of the fixed point. The
fixed point z∗Γ is easily characterized by the property
that the defect vanishes at certain grid points, i.e., the
fixed point is a certain collocation solution of (1). In-
deed, let p∗(t) denote the continuous piecewise poly-
nomial function defined by p∗(t0) = p∗0(t0) = z0 and
p∗(t) = p∗i (t) for t ∈ Ji, where p∗i (t) are polynomials
of degree ≤ m satisfying the collocation equations

d

dt
p∗i (ti,j) = f(ti,j , p

∗

i (ti,j)), j = 1, . . . , m. (10)

The defect d∗(t) := d
dt

p∗(t) − f(t, p∗(t)) vanishes
at all points ti,j where the right-hand side of the ac-
cording neighboring problem is evaluated in course of
the backward Euler method. Thus, a defect correction
step starting from z∗Γ := RΓp∗ maps z∗Γ onto itself,
and therefore z∗Γ is indeed a fixed point of the defect
correction iteration z

[ν]
Γ 7→ z

[ν+1]
Γ .

¿From [3, Proposition 2] it follows that the sequence
z
[0]
Γ , z

[1]
Γ , z

[2]
Γ , . . . actually converges to z∗Γ with conver-

gence rate O(h) such that (cf. (9))

z
[ν]
k − y(tk) = O(hν+1) + O(hp) = O(hmin(ν+1,p)),

(11)
where p denotes the order of the fixed point. Note that
the assumption of a piecewise equidistant grid Γ is es-
sential in the proof of this proposition. For such a grid
the order of the fixed point is p = m for all k.

On the other hand, for a grid

ti,j = ti,0 + (ti,m − ti,0)cj , j = 1, . . . , m (12)
2Here, RΓ denotes the restriction operator [t0, tend] → Γ.
3For the construction of efficient error estimates for collocation schemes based on the idea of defect correction see [1].



N1 BEUL IDeC 1 IDeC 2 IDeC 3 IDeC 4 RadauIIa
2 5.61·10−2 1.35·10−2 1.73·10−2 8.20·10−5 4.37·10−3 2.29·10−6

4 2.84·10−2 5.38·10−3 9.38·10−3 8.89·10−4 2.41·10−3 7.27·10−8

8 1.43·10−2 2.32·10−3 4.85·10−3 6.97·10−4 1.23·10−3 2.31·10−9

16 7.17·10−3 1.06·10−3 2.47·10−3 4.16·10−4 6.14·10−4 7.29·10−10

2
4

0.98 1.33 0.88 −3.44 0.86 4.97

8
0.99 1.21 0.95 0.35 0.97 4.98

16
0.99 1.12 0.98 0.74 1.00 4.99

Table 1: Classical IDeC based on RadauIIa nodes (degree m = 3) for the problem z ′(t) = −(z(t) − sin(t) −
2) + cos(t), z(0) = 2, with exact solution z(t) = sin(t) + 2. Global error and observed order are displayed at
tend = 3.0. N1 denotes the number of subintervals Ji ⊂ [0, tend] each having the same length tend/N1.

based on RadauIIa nodes 0 < c1 < . . . < cm = 1, su-
perconvergence z∗i,m − y(ti,m) = O(h2m−1) holds for
the fixed point z∗Γ at the endpoints ti,m of the subin-
tervals Ji. This means that in case of fixed point
convergence with convergence rate O(h) we would
have p = 2m − 1 in (11) at these points. Unfortu-
nately, we do not observe this convergence rate for
such nonequidistant grids. Convergence, if present at
all, occurs at a much slower rate, as demonstrated in
Table 1.

3 Modified IDeC
In the following sections we consider certain modifi-
cations of the IDeC procedure, which eventually will
enable rapid fixed point convergence to arbitrary (in-
cluding superconvergent) collocation solutions. The
common idea behind these modifications will be to use
some kind of splitting for the numerical solution of the
respective neighboring problems, which are all of the
generic form

z′(t) = f(t, z(t)) + d(t), z(t0) = z0. (13)

Here, we split the time-dependent vector field into its
components f(t, z) and d(t). We denote the numeri-
cal flow of f(t, z) by Φt,h, such that one step (t, zk) 7→
(t + h, zk+1) with step size h of the basic scheme ap-
plied to (1) can be written as zk+1 = Φt,h(zk). The
numerical flow ∆t,h of the other component d(t) is
given by a suitable quadrature rule,

∆t,h(z) ≈ z +

∫ t+h

t

d(τ)dτ. (14)

A method Ψt,h for the numerical solution of (13) is
then given by a splitting scheme, i.e., Ψt,h is a com-

position of the numerical flows Φt,h and ∆t,h, cf. [4,
Section II.5].

Note that also the classical version of IDeC described
in Section 2 can be interpreted within this framework,
namely if we use Lie-Trotter splitting [4],

Ψt,h = Φt,h ◦ ∆t,h, (15)

where ∆t,h is defined by the simple quadrature rule

∆t,h(z) = z + hd(t + h). (16)

4 Defect Quadrature (IQDeC)
For our first modification of classical IDeC, we re-
tain the splitting scheme (15) but replace the simple
quadrature rule (16) by

∆t,h(z) = z +

∫ t+h

t

D(τ)dτ, (17)

where D(t) = Di(t) for t ∈ Ji is the piecewise poly-
nomial interpolant of degree ≤ m− 1 of d(t), defined
by Di(ti,j) = d(ti,j), j = 1, . . . , m. If the grid Γ is
given by (12) with arbitrary nodes 0 < c1 < . . . <
cm = 1, then

∫ ti,j

ti,j−1

Di(τ)dτ = hi,j

m∑
`=1

αj,` d(ti,`)

= zi,j − zi,j−1 − hi,j

m∑
`=1

αj,`f(ti,`, zi,`)

holds with hi,j = ti,j − ti,j−1 and well-defined coef-
ficients αj,` independent of i. Here, the latter iden-
tity easily follows, if the function d(t) is given by



N1 BEUL IQDeC 1 IQDeC 2 IQDeC 3 IQDeC 4 IQDeC 5 Gauss
2 4.83·10−2 1.46·10−5 9.53·10−5 7.53·10−6 3.27·10−7 4.99·10−8 6.25·10−8

4 2.44·10−2 1.64·10−6 1.27·10−5 5.13·10−7 1.25·10−8 7.06·10−10 9.30·10−10

8 1.22·10−2 1.09·10−6 1.64·10−6 3.34·10−8 4.30·10−10 1.06·10−11 1.43·10−11

16 6.13·10−3 3.60·10−7 2.08·10−7 2.14·10−9 1.40·10−11 1.63·10−13 2.23·10−13

2
4

0.99 3.15 2.91 3.88 4.71 6.14 6.07

8
0.99 0.59 2.95 3.94 4.87 6.06 6.02

16
1.00 1.60 2.98 3.97 4.94 6.02 6.00

Table 2: Modified IQDeC based on Gauss nodes (m = 3). Problem data as in Table 1.

d(t) = p′(t)−f(t, p(t)), where p(t) = pi(t) for t ∈ Ji

is the piecewise interpolant of degree ≤ m of some
grid function zΓ. The equations defining the numeri-
cal solution pΓ of the neighboring problems (13) now
read

pi,j − pi,j−1

hi,j

= f(ti,j , pi,j) + di,j (18)

with

di,j =
1

hi,j

∫ ti,j

ti,j−1

Di(τ)dτ

=
zi,j − zi,j−1

hi,j

−

m∑
`=1

αj,`f(ti,`, zi,`), (19)

which explains the term “IDeC with defect quadra-
ture” (IQDeC) for this variant of classical IDeC.4

For sufficiently smooth f(t, z), convergence towards
the fixed point z∗Γ with convergence rate O(h) can be
shown for the IQDeC-iterates z

[ν]
Γ , which ensures the

validity of (11) for this IDeC variant, cf. [3, Proposi-
tion 1]. Note that this result holds for arbitrary nodes
0 < c1 < . . . < cm = 1 in (12). In particular, for
RadauIIa nodes cj we now have

z
[ν]
i,m − y(ti,m) = O(hmin(ν+1,2m−1)), (20)

i.e., superconvergence at the points ti,m.

5 Modified IQDeC
Despite superconvergence, IQDeC is not completely
satisfactory for the following reasons:

(i) The nodes cj are arbitrary with the restriction
that cm = 1 must hold. This excludes the usage
of e.g. Gauss nodes.

(ii) For stiff problems the implicit equations (2) and
(18) are usually solved by (some variant of)
Newton’s method. To minimize the computa-
tional effort in the involved linear algebra, it is
desirable to reuse the LU-decomposition of the
respective Jacobians as far as possible. But this
is only possible as long as the stepsize does not
change.

To find a remedy for both drawbacks, we note that it
is not necessary that the interpolation points for the
definition of D(t) in (17) are identical to the points
ti,j ∈ Γ. Instead, we now introduce a second grid
Γ̃ = (t̃i,j) by

t̃i,j = ti,0 + (ti,m − ti,0)c̃j , j = 1, . . . , m (21)

for arbitrary nodes 0 < c̃1 < . . . < c̃m ≤ 1, and let
Di(t) be defined by Di(t̃i,j) = d(t̃i,j), j = 1, . . . , m.
The original grid Γ, on which the basic scheme oper-
ates, is assumed to be piecewise equidistant, exactly
as in the case of the classical IDeC procedure.

For this new IDeC variant the fixed point z∗Γ is given
by RΓp∗, where now p∗(t) is the piecewise collocation
polynomial corresponding to the collocation points
t̃i,j ∈ Γ̃. Again, convergence towards the fixed point
z∗Γ with convergence rate O(h) can be shown for the it-
erates z

[ν]
Γ by a straightforward adaptation of the proof

of [3, Proposition 1]. In particular, for Gauss nodes c̃j

in (21) we have

z
[ν]
i,m − y(ti,m) = O(hmin(ν+1,2m)), (22)

i.e., superconvergence at the points ti,m. This is illus-
trated by a numerical example in Table 2.

4For the idea to replace the pointwise evaluation of the defect by locally integrated values (19) see [2].



6 Defect Interpolation (IPDeC)
Let us consider a slight variant of the modified IQDeC
procedure from Section 5. Namely, we do not inte-
grate the interpolated defect D(t) exactly for the defi-
nition of ∆t,h as in (17), but apply the quadrature rule
(16) to D(t),

∆t,h(z) = z + hD(t + h). (23)

This IDeC variant can be characterized by the fact that
now the basic scheme is not applied to the neighboring
problems (13) as is the case for classical IDeC, but to

z′(t) = f(t, z(t)) + D(t), z(t0) = z0, (24)

where the defect d(t) has been replaced by its inter-
polant D(t). Hence, we call this IDeC variant “IDeC
with defect interpolation” (IPDeC).

The convergence behavior of the IPDeC procedure is
very similar to that of the modified IQDeC procedure,
cf. [3, Proposition 2].

7 Splitting Defect Correction
(ISDeC)

In this section we generalize the splitting approach
from Section 3 in two respects:

(i) We consider other basic methods Φt,h instead of
the backward Euler method, namely methods of
higher order, and geometric integrators, which
are suited for problems (1) with special struc-
ture.

(ii) We replace Lie-Trotter splitting (15) for the nu-
merical solution of the neighboring problems
(13) by other schemes, e.g. by Strang splitting,

Ψt,h = ∆
t+ h

2
, h
2

◦ Φt,h ◦ ∆
t, h

2

. (25)

Throughout this section, the numerical flow ∆t,h for
the component d(t) of (13) is defined as in Section 5,

∆t,h(z) = z +

∫ t+h

t

D(τ)dτ, (26)

where D(t) is the piecewise polynomial of degree
≤ m − 1 which interpolates d(t) at the points t̃i,j , cf.
(21). This choice of ∆t,h ensures that the fixed point
z∗Γ of the IDeC iteration is given by z∗Γ = RΓp∗, where

p∗(t) is the collocation solution corresponding to the
grid (21).

7.1 Schild’s Method

In [6] an IDeC variant was analyzed which can be re-
formulated such as to fit into the context of the present
discussion. The basic method Φt,h is the implicit
trapezoidal rule, which can be written as

Φt,h = φ
t+ h

2
, h
2

◦ φ∗

t, h
2

, (27)

where φ∗ and φ are the forward and backward Euler
methods, respectively. Splitting for the neighboring
problems (13) is realized as

Ψt,h = φ
t+ h

2
, h
2

◦ ∆t,h ◦ φ∗

t, h
2

. (28)

In [6] it has been demonstrated that the usage of Gauss
nodes c̃j in (21) leads to a convergence rate O(h2) for
this IDeC variant. Consequently,

z
[ν]
i,m − y(ti,m) = O(hmin(2ν+2,2m)) (29)

holds for the global errors of the iterates z
[ν]
Γ at the

points ti,m.

7.2 Geometric Integrators

In the context of geometric integration [4] it is com-
mon to study ODEs of special structure. For exam-
ple, consider a system of two autonomous ODEs of
the special form5

y′ = f(z), z′ = g(y). (30)

An explicit 2nd order method Φt,h for (30) is given by
the Störmer-Verlet scheme

zk+ 1

2

= zk +
h

2
g(yk),

yk+1 = yk + hf(zk+ 1

2

), (31)

zk+1 = zk+ 1

2

+
h

2
g(yk+1).

Note that now the original IDeC idea cannot be ap-
plied in a straightforward way, because the nonau-
tonomous neighboring problems (13) are not of the
form (30). On the other hand, the splitting idea us-
ing Strang splitting (25) and ∆t,h given by (26) is
evidently applicable. By means of numerical exper-
iments, it is demonstrated in [5] that this IDeC variant

5A Hamiltonian system p′ = −Hq(p, q), q′ = Hp(p, q) is of this special form if the Hamiltonian function H(p, q) can be written as
H(p, q) = V (p) + U(q).



N1 Störmer ISDeC 1 ISDeC 2 ISDeC 3 ISDeC 4 ISDeC 5 Gauss
100 4.97·10−2 1.80·10−3 1.49·10−4 2.93·10−6 4.38·10−8 3.84·10−10 1.82·10−15

200 1.24·10−2 1.12·10−4 2.40·10−6 1.18·10−8 4.46·10−11 9.84·10−14 3.93·10−18

400 3.10·10−3 7.03·10−6 3.78·10−8 4.66·10−11 4.40·10−14 2.43·10−17 1.12·10−21

800 7.76·10−4 4.39·10−7 5.91·10−10 1.83·10−13 4.31·10−17 5.96·10−21 2.84·10−25

100
200

2.00 4.00 5.96 7.95 9.94 11.93 8.85

400
2.00 4.00 5.99 7.99 9.99 11.98 11.78

800
2.00 4.00 6.00 8.00 10.00 12.00 11.95

Table 3: ISDeC based on Störmer-Verlet (31), Strang splitting (25), and Gauss nodes (m = 6) for the Kepler
problem [4, Section I.2.2]. Global error and observed order are displayed at tend = 2π.

again leads to a fixed point convergence rate O(h2),
if a Gauss grid Γ̃ is used. Consequently, superconver-
gence as in (29) can be observed. This is illustrated by
a numerical example in Table 3.

In the context of geometric integration it is often desir-
able that certain invariants of the original ODE are pre-
served by the numerical solution as well. For example,
the Störmer-Verlet scheme (31) preserves quadratic in-
variants of the form Q(y, z) = yT Dz with some ma-
trix D, cf. [4, Section IV.2.2]. Unfortunately, these in-
variants are not exactly preserved by the iterates z

[ν]
Γ

in general. But as they are preserved by the fixed
point z∗Γ corresponding to a Gauss collocation method,
it makes sense to continue the IDeC iteration beyond
ν ≥ m, because then these invariants are preserved
by z

[ν]
Γ up to terms of the order of the iteration error

z
[ν]
Γ − z∗Γ which is O(h2ν+2), in contrast to the global

error which is only O(h2m).

8 Conclusion
Whereas the convergence order of the classical ver-
sion of IDeC is restricted to O(hm), we have demon-
strated in this paper how to overcome this restriction.
We have presented modifications of the algorithm for
which superconvergence order up to O(h2m) is ob-
tained. All these modifications were based on the
idea to solve the respective neighboring problems by
a splitting scheme, which leads to alternative ways of
evaluating the defect compared to classical IDeC. De-
fect quadrature and defect interpolation are techniques
which can be effectively applied in this context.

The splitting approach can also be successfully
adapted to even more general situations, cf. [5].
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