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Abstract: - Independent Component Analysis (ICA) is an emerging field of fundamental research with a
wide range of applications such as remote sensing, data communications, speech processing and medical
diagnosis. It is motivated by practical scenarios that involve multisources and multisensors. The key
objective of ICA is to retrieve the source signals without resorting to any a priori information about the
source signals and the transmission channel. ICA using second-order statistics and high-order statistics
based techniques and the corresponding algorithms will be presented to perform the blind separation of
stationary or cyclostationary sources. In the last part of the paper, a case study with real data having as
subject dams displacements monitoring will be presented.
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1 Independent Component Analysis

1.1 Problem Formulation

Independent Component Analysis (ICA) is a sta-
tistical and computational technique, that can
be seen as an extension to Principal Component
Analysis (PCA) and Factor Analysis (FA), [1].
ICA is a much more powerful technique, capa-
ble of finding the underlying factors or sources
when these classic methods fail completely. The
data analysed by ICA could originate from many
different kinds of application fields, including digi-
tal images, economic indicators and psychometric
measurements.

The simple ICA model assumes the existence of
n independent signals si(t),... ,sp(t) and the
observation of as many mixtures z1(t),...,z,(t),
these mixtures being linear and instantaneous, i.e.

zi(t) = Z aijs;(t) (1)

for each ¢ = 1,n. This is compactly represented
by the mixing equation

x(t) = As(?) 2)

where s(t) = [51(t),...,s,(t)]T is an n x 1 column
vector collecting the source signals, vector x(t)
similary collects the n observed signals and the
square n X n ’mixing matrix” A contains the
mixture coefficients. The ICA problem consists
in recovering the source vector s(t) using only
the observed data x(t), the assumption of inde-
pendence between the entries of the input vector
s(t) and possible some a priori information about
the probability distribution of the inputs. It can
be formulated as the computation of an n x n
”separating matrix” B whose output §(t)

s(t) = Bx(t) (3)

is an estimate of the vector s(t) of the source
signals (see Fig. 1).

ICA is closely related to the method Blind Source
Separation (BSS) or blind signal separation. A
"source” means here an original signal, i.e. inde-
pendent component. ”Blind” means that we no



Fig. 1. Mixing and separating. Unobserved sig-
nals: s; observations: x; estimated source sig-
nals: §

very little, if anything, on the mixing matrix, and
make little assumptions on the source signals. ICA
is one method, perhaps the most widely used, for
performing blind source separation.

In many applications, it would be more realistic
to assume that there is some noise in the measure-
ments, which would mean adding a noise term in
the model:

1.2 Identificability of the ICA model

The identificability of the noise-free ICA model
has been treated in [2]. By imposing the follow-
ing fundamental restrictions (in addition to the
basic assumption of statistical independence), the
identifiability of the model can be assured:

(1) All the independent components s; with the
possible exception of one component, must
be non-Gaussian.

(2) The number of the observed linear mixtures
m must be at least as large as the number of
independent components n, i.e. m > n.

(3) The matrix A must be of full column rank.

For some algorithm classes these assumtions are
not necessary. Usually, it is also assumed that x
and s are centered. If x and s are interpreted
as stochastic processes instead of simply random
variables, additional restrictions are necessary.
At the minimum, one has to assume that the
stochastic processes are stationary in the strict
sense. Some restriction of ergodicity with respect
to the quantities estimated are also necessary.

In the ICA model of eq. (2), it is easy to see that
the following ambiguities will hold:

(1) We cannot determine the variances (energies)
of the independent components. The reason
is that, both s and A being unknown, any
scalar multiplier in one of the sources s;
could always be cancelled by dividing the
corresponding column a; in A by the same

scalar. As a consequence we may quite as
well fix the magnitudes of the independent
components; as they are random variables,
the most natural way to do this is to assume
that each has unit variance: E[s?] = 1. Then
the matrix A will be adapted in the ICA
solution methods to take into account this
restriction.

(2) We cannot determine the order of the in-
dependent components. The reason is that,
again both s and A being unknown, we can
freely change the order of the terms in the
sum (1), and call any of the independent
components the first one.

1.3 Algorithms for ICA

Independent Component Analysis is mainly per-
formed using the information on signal statistics.
When the signals are temporal coherent, it is pos-
sible to solve the problem using only the second-
order statistics. In this case the first assumption
for the identificability of the ICA model, concern-
ing Gaussian distribution of the sources, is not
imposed.

If the signals are temporal white or have identical
normalized spectral densities, without any infor-
mation on a priori source distributions, the solu-
tion will need using of high-order statistics for the
received signals. We underline that in the case of
source signals temporal white and Gaussian, the
blind source separation problem has not solution.

If the source signal distributions are known, the
problem could be solved by maximum likelihood
method. In this case, the second assumption for
the identificability of the ICA model, concerning
the number of independent components, is not
imposed.

In the next two sections we present two ap-
proaches: the first supposes the signals temporal
coherent and exploits the second-order statistics
using intercovariance matrix of observations, and
the second supposes the signals white temporal
and exploits high-order statistics, using non-linear
functions.

2 ICA Using Second-Order Statistics

2.1 Second-Order Statistics

The first step of the ICA procedure [3], consists
of prewhitening the signal part y(¢) of the obser-



vation. This is done via a whitening matrix W,
i.e. a n x m matrix (we consider n sources and m
mixtures) such that Wy (#) is spatially white. The
whiteness condition is

I, =WR,W" = WAATWT (5)

where I,, denotes the n x n identity matrix. Equa-
tions (5) implies that WA is a unitary matrix: for
any whitening matrix W, it then exists a unitary
matrix U such that WA = U. As a consequence,
matrix A can be factored as

A =W#U = W#[uy, ..., u,] (6)

where # denotes the pseudoinverse and U is
unitary. The use of second-order information - in
the form of an estimate of R, which is used to
solve for W in (5) - reduces the determination of
the m X n mixing matrix A to the determination
of a unitary n xn matrix U. The whitened process
X (t) = Wx(t) still obeys a linear model:

xu(t) & Wx(t) = W(As(t) +n(t)) = (7)
= Us(t) + Wn(t)

The signal part of the whitened process now is a
unitary mixture of the source signals. Note that
all the information contained in the covariance is
‘exhausted’ after the whitening, in the sense that
changing U in (7) to any other unitary matrix
leaves unchanged the covariance of x,,(t).

2.2 Whitening Matrix Computation

This step is implemented via eigendecomposition
of the sample covariance matrix R, (0). We con-
sider here that the noise covariance is of the form
R, (0) = 0°I,. The whitening procedure is the
following;:

(1) Estimate the covariance matrix R, (0) using
T samples of the observations:

(2) Perform the eigendecomposition of the R, (0)
covariance matrix

R,(0) = HAH” (9)
where

H= [hh 7hm]

and
A =diag[A, ..., \n]

with A\; > A; for i < j. The number of sources
can be estimated starting from the spectrum
A, [4].

(3) Estimate noise variance 62 as the average of
the m — n smallest eigenvalues of A

1 m
0° = nE A (10)

(4) Compute the whitening matrix W as:
W=AHT (11)
where
A =diag[(M — 62)7V2, . (O —
and
H =[hy,...,h,)

This resulted matrix is used to obtain the whitened
process

Xo(t) = Wx(t), t=1,...,T (12)

2.3 Intercovariance Matrix Estimation

Starting from the whitened process x,(t), K in-
tercovarince matrices of this process are com-
puted:

T
Ry(k) = = > xu)xu(t— k)T (13)

where 1 > k > K. The resulted matrices are of n x
n dimension, and the computation effort does not
depend of number of sensors, m. The value of K
will be selected to realize a trade off between the
statistic efficiency and computation effort. The
value of the delays used in computation depends
also on the length of the signal correlations. If we
have a priori information on spectral density of
sources, the value of K can be optimal chosen.

2.4 Joint Diagonalization

Let R, = {R,(k)|]l < k < K} be a set of
K matrices with common size n x n. A joint
diagonalizer of the set R, is defined as a unitary
maximizer of the criterion

K
CcU) € Y |diag(UTR, (U)*  (14)
k=1



where |diag(-)| is the norm of the vector build from
the diagonal of the matrix argument. The problem
is solved by a generalization of Jacobi technique

[5], [6], [7].

2.5 Mixing Matrix and Source Signals Es-
timation

Let U = [iy,...,0,] be the unitary matrix
resulted by joint diagonalization. If the objective
of the blind identification is source separation, a
brute estimation of these can be computed by:

§(t) = UT %, (1) (15)

To estimate the mixing matrix need to inverse the
effect of whitening, and the mixing matrix can be
estimated by

A= WHO (16)

To obtain at the output of the separator a max-
imum signal/noise ratio the source signals are
estimated by

5(t) = ATR,(0) " x(t) (17)

2.6 The Algorithm

The general scheme of the SOBI algorithm (Sec-
ond Order Blind Identification) can now be de-
scribed by the following steps:

Step 1. Form the sample covariance R, (0) and
compute the whitening matrix W

Step 2. Whitening the data provided by the
sensors:

Xo(t) = Wx(t), t=1,...,T
Step 3. Estimate K intercovariance matrices

R (k) of X,(t) for different time delay k =
1,...,.K

Step 4. Jointly diagonalize the set of intercovari-
ace matrices in a base U = [, ..., 0]

Step 5. Estimate the mixing matrix with
A =W*U
Step 6. Estimate the source signals by
§(t) = A*R,(0) 'x(t)

Note that at the second step of the algorithm
the observation dimension is reduced to n, the

source number. It results that the intercovariance
matrices estimation is performed in a space of
reduced dimension.

3 ICA Using High-Order Statistics

In the basic approach to solve ICA problem, the
temporal structure of the received signals is in
fact omitted and s(t) and x(t) are regarded as
realizations of random vectors s and x. We seek
the solution of the form (3).

The problem for solving the separating matrix B
is somewhat simplified if we consider only one of
the source signals at a time. From equation (3) it
follows:

$i=b/x (18)

(2

with b! the i-th row of B.

The problem is further simplified by performing
a prewhitening of the data x: the observed vector
x is firstly linearly transformed to another vector
whose elements are mutually uncorrelated and all
have unit variance. It can be shown that after this
step, B will be an orthogonal matrix.

A recent review of various information theoretic
contrast functions for solving B, like mutual infor-
mation, negentropy, maximum entropy, and info-
max, as well as the maximum likelihood approach
is given in [8].

As an example of contrast functions, consider the
case of maximizing the kurtosis E{3}} —3[E{3%}]?
of the estimated signals §;. Because we assumed
that the estimated signals have unit variance, this
reduces to maximizing the fourth moment E{3}}.
Its gradient with respect to b; is 4E{(b!x)*x}. In
a gradient learning type rule, the row bl of the
separating B would be sought using a version of
this gradient, in which the expectation is dropped
and the gradient is computed separately for each
input vector x. In addition, a normalization term
would be needed that keeps the norm of b;, equal
to one - remember that the matrix B would be
orthogonal due to the prewhitening of the data x.

A much more efficient algorithm is the following
fixed point iteration, [9]:

(1) Take a random initial vector b(0) of norm 1.
Let £ = 1.

(2) Let b(k) = E{x(b(k — 1)Tx)?} — 3b(k — 1).
The expectation can be estimated using a

large sample of x vectors.
(3) Divide b(k) by its norm.



(4) If [b(k)Tb(k—1)| is not close enough to 1, let
k =k + 1 and go back to step 2. Otherwise,
output the vector b(k).

The final vector b(k) given by the algorithm
equals the transpose of one of the rows of the
(orthogonal) separating matrix B.

To estimate n independent components, we run
this algorithm n times. To ensure that we estimate
each time a different independent component, we
use the deflation algorithm that adds a simple
orthogonalizing projection inside the loop. Recall
that the rows of the separating matrix B are
orthogonal because of the prewhitening. Thus we
can estimate the independent components one by
one by projecting the current solution b(k) on
the space orthogonal to the rows of the separating
matrix B previously found.

This algorithm, with the whitening and several
extensions, is implemented in Matlab in the Fas-
tICA package which is a public domain package.
A remarkable property of the FastICA algorithm
is that a very small number of iterations seems
to be enough to obtain the maximal accuracy
allowed by the sample data. This is due to the
cubic convergence of the algorithm.

Another algorithm intensively used in practice
is JADE (Joint Approximate Diagonalization of
Eigen-matrices), [10]. It is a typically batch algo-
rithm using tensorial techniques as eigenmatrix
decomposition. The algorithm is quite compli-
cated, requiring sophisticated matrix manipula-
tion.

4 Case Study - Dams Displacement
Monitoring

One of the main objectives for dams displacements
monitoring is to detect any abnormal behaviour
alteration as early as possible. Any change in a
dam response to some loads may be due to a
structural deterioration culminating with the dam
collapse. A change detected in real time can be
decisive for the possible strengthening works.

Experience presented in [11], [12], [13] shows that
the values of gross measurements recorded for
dams point out the superposition of the following
main three components: time, hydrostatic load,
and temperature (see Fig. 2).

The time or irreversible component corresponds
to the evolution in time of the dam behaviour. It
can be amortized (strengthened) or amplified (de-

Noise
Temp. Seasonal
H, comp.
Level H Hydrostatic @ Measu-
- 2 comp. \Z /Tements
Time Irrev.
= H; com‘f).

Fig. 2. Arch dam physical model
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Fig. 3. Displacements for x axis at different levels

teriorated). The reversible hydrostatic component
corresponds to the hydrostatic pressure effect of
the lake level, while the reversible seasonal compo-
nent depends on the distribution of temperatures
and precipitation.

The objective of the application was to separate
the components (sources) mentioned above start-
ing from the displacements of the dam, without a
priori knowledge of the generator phenomena or of
the propagation environment, and by using only of
the raw displacement measures. The application
was dedicated to Vidraru dam, Romania, for a
period of 1200 days.

The evolution of the dam displacements for x
and y directions are given in Fig. 3 and Fig. 4,
respectively, at different levels.

For these displacements, when SOBI algorithm
has been used, resulted 3 independent sources
which can be assimilated with the hydrostatic
pressure component (lake level), seasonal compo-
nent (temperature) and irreversible component.
These are represented together with the lake level
and temperature in Fig. 4. It can be noted that
there are strong similarities between the esti-
mated sources, representing seasonal and hydro-
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Fig. 5. Lake level, estimated source 1, tempera-
ture, estimated source 2 and source 3 assim-
ilated with the irreversible component

static components, and temperature and lake level
evolutions. The irreversible component, last repre-
sented, does not create special problems concern-
ing dam safety.

The results represent only a preliminary analysis
of the dam under study. More experiments and
data analysis by different methods are necessary
for a complete investigation of the dam behaviour.

5 Conclusions

The paper presented some methods and algo-
rithms for independent component analysis based
on second-order statistics and high-order statis-
tics, to perform the blind separation of stationary
or cyclostationary sources. The SOBI (Second Or-
der Blind Identification) algorithm is described in
detail and it is applied in an application having
as subject displacements monitoring of an instru-
mented dam.
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