
VHDL Modeling of an Artificial Neural Network for Classification of
Power Quality Disturbance

FLORENCE CHOONG, F. MOHD-YASIN, M.S. SULAIMAN, M.I. REAZ
Faculty of Engineering
Multimedia University

63100 Cyberjaya Selangor
MALAYSIA

Abstract: - This paper describes the design and modeling of an artificial neural network (ANN) classifier using
VHDL. This classifier is targeted primarily to classify the six different types of power quality disturbance. The
high level architecture comprises of a control unit and a neural network datapath. The control unit is further divided
into five interconnected sub modules: bus master, ram, pseudo random number generator, error calculator and
trainer. Univariate randomly optimized Neural Network (uronn) algorithm is employed to model the neural
network. Proper simulation is carried out to verify the functionality of the individual modules and the system. In
addition, the algorithm was also implemented in Matlab and C as comparison with the hardware implementation in
VHDL. Comparisons, verification and analysis made validate the advantage of this approach. Currently, the
classification average accuracy is 77.53%. The classifier also has the potential of being extended to classify other
kinds of power quality disturbances.

Key-Words: - Artificial neural network, power quality, VHDL, FPGA, classification, modeling

1. Introduction
Power quality is defined as any deviation from a
perfect sinusoidal waveform that can result in failure
or misoperation of equipment [1]. In a power system,
faults, dynamic operations or non-linear loads often
cause various types of power quality disturbances such
as voltage sags, voltage swells, switching transients,
interruption and fluctuation [2]. Power quality
disturbance waveform recognition is often
troublesome because it involves a broad range of
disturbance categories or classes, and therefore the
decision boundaries of disturbance features may
overlap [3].
 Artificial Neural Networks attempt to recreate the
behavior of a biological brain in logic to solve
complex problems [4]. They consist of nodes
(neurons) in which inputs are multiplied by pre-trained
weights and are summed together to produce overall
outputs. Artificial Neural Networks can be used to
solve complex problems with a comparatively small
amount of effort. It has been effectively applied in
power system applications with great appreciation

[2,5,6,7] and has been used in various segments of
industry to solve several problems including power
quality [8,9]. For a partial list of ANN applications in
electric power industry, the reader is referred to [10].
 There are a few works that had been done in this
area. In one of the work, the neural network is
designed for high-speed processing which can provide
selective real-time detection and classification of
faults. The method involves utilizing both supervised
and unsupervised neural network training. The training
involved two different training samples, one with a
reduced number and the other a large number of
samples simulated using the Electromagnetic Transient
Program (EMTP) [11]. The second work proposes a
recognition scheme performed in the wavelet domain
using a set of multiple neural networks. Wavelet
transform coefficients are used as inputs to the neural
network. Since multiple neural networks are utilized,
the outcome of the network is then integrated using a
decision making scheme [3]. Another work employs
an ANN-based methodology using a time-delay neural
network (TDNN) for the classification of disturbance
waveforms. The TDNN exhibits a translation-shift

invariance property. The standard back-propagation is
applied to each time-shifted network to obtain the
error derivatives for each unit in the network. The
TDNN extracts temporal relationships from the input
data in the classification process [7].
 However, the classification methods employed in
the works mentioned above are based mainly on
software implementation. Software simulations are
useful for investigating the capabilities of neural
network models and creating new algorithms; but
hardware implementations remain essential for taking
full advantage of the inherent parallelism of neural
network and provide an increase in speed and
performance. For example, Field Programmable Gate
Array (FPGA), an application-specific integrated
circuit does provide a speed-up of several orders of
magnitude compared to software simulation [12]. This
will allow all of the neural network calculations to be
done directly and in parallel. This will contribute a
significant increase in performance compared to a
neural network implemented in software where the
many internal neural network calculations must be
compiled into multiple individual commands for a
processor to complete sequentially.
 ANN developed in software has several drawbacks.
A limiting factor is that the size of neural network is
limited by the size of the system that runs the
compiled neural network code on. A processor that has
a small cache or that is slow may not be able to handle
a large amount of data to be used to model a system or
be able to train on a data from a system in a reasonable
amount of time.
 With hardware, the memory storage for the neural
network is large and dedicated to the neural network
and not dependent on a processor. FPGA
implementation greatly reduces the size, offers a
higher reliability, improved security, higher
performance, higher accuracy and also the ability to
add on features easily. Instead of using conventional
programming languages such as C, Matlab or Java, the
new method models the design of a neural network in
Very High Speed Integrated Circuits Hardware
Description Language or VHDL. This is a hardware
independent language, which supports a design to be
modified easily to suit research requirement.
 Some useful features of the new approach are listed
below:
1) Artificial Neural Network is used for its pattern
recognition capabilities. However, its ability to
perform well is greatly influenced by the weight

adaptation algorithm. Thus a unique algorithm,
Univariate randomly optimized Neural Network
(uronn) was chosen for implementation. This will
provide significant increase in the accuracy of the
classification.
2) The use of Carry-save-adder (CSA) as the multiplier
component in each neuron provides a speed-up in the
overall computation and thus reduces training time.
3) The VHDL model provides a systematic approach
for hardware realization, facilitating the rapid
prototyping of neural network for power system
applications.
4) The method owns the potential of being extended to
classify other kinds of disturbances.
 This paper is organized as follows: the algorithm is
described in section 2, section 3 describes the
individual modules that make up the system, section 4
is dedicated to presenting the results and discussions,
and finally, section 5 presents the conclusion and
future works.

2. Design Overview
 The algorithm chosen for implementation was the
Univariate randomly optimized Neural Network
(uronn) [4]. This algorithm is robust for comparing
training speeds between software and hardware.
 Besides that, this algorithm is a very advantageous
approach in the implementation of a neural network
trainer because less calculation needs to be performed
in each epoch because this algorithm searches for the
weights that best fit the neural network by randomly
changing them in order to minimize error. Thus the
calculation to determine the rate of change of error to
rate of change of weights as in equation (1) can be
eliminated.

dW
dE

W
ErrorSlope =
∆

∆
=

 (1)
 In addition, this algorithm utilizes 8-bit signed
integers as values for weights and inputs instead of 32-
bit floating points values. Arithmetic operation using
floating-point operands is significantly more complex
than signed integer operands [4].
 The network is trained using a training data set that
consists of input/output pair. The inputs are the sample
values of power quality disturbances that are generated
using PSCAD and MATLAB software. The classes
include transients, sag, swell, interruption, fluctuation
and perfect wave. Simulated samples of each class are

preprocessed using Matlab wavelet transform toolbox.
This will generate approximate and detailed
coefficients of the original signal as represented in
equations (2) and (3) respectively:

cAi(n) = Σk f(n)*hd(-k+2n) (2)
cDi(n) = Σk f(n)*gd(-k+2n) (3)

The 8-bit output classifies the type of power quality
disturbance.

3. The Developed Approach
 The high-level design consists of two key
components: the control unit and the neural network
datapath, that is interconnected and interact with one
another as shown in Figure 1.

 Fig. 1. High-level system design

3.1 Neural Network
 This module is one of the important modules as it
performs the classification task. It consists of neurons
and their connections into a network. A neural network
consists of simple processing elements known as
neurons. The input of a neuron is usually an input
column-vector x = [x (1),…..,x(p)]T of a preprocessed
signal. The nth element of the input vector, x(n), is
connected to a neuron k by a weight factor m(k,n). The
weight factor then forms a weight vector for neuron k,
mk = [m(k,1),….,m(k,p)]. The output of the neuron is
simply a linear combination of the input vector x with
the weight vector mk, as shown in equation (4):

uk = mxT = Σ m(k,i)x(i) for i from 1 to P (4)

 The Neuron architecture is modeled using the
Carry-Save-Adder prototype as its multiplier
component for its high speed and regular structure.
The datapath contains three neurons, two for the
hidden layer and one for the output layer, and are
connected in a traditional feed-forward architecture.
For this implementation input neurons were not
considered, as their purpose is to merely distribute the
inputs among the neurons at the hidden layer. Thus, in
the design the inputs come directly from the data bus
into the neurons at the hidden layer.

3.2 Control Unit
 The control unit is used to control the neural
network. It consists of five sub modules modeled in a
top-down design approach [14] as described below:

3.2.1 Trainer
 This module basically utilizes state machines
governing control signals for the neural network. Results

 Ack
 Done

 Data_in

 Addr sel cmd Inputs

3.2.2 Bus Master
 This component is designed to get and set the
weights and to activate the neural network during
operational mode. The data bus controller controls the
transfer of data through the neural network, and
supplies the network with new random weights as well
as the inputs. The datapath entity is instantiated for
each neuron. Subsequently, each neuron will have a
unique identifier corresponding to the number in
which it was instantiated. A comparator uses this
identifier to ensure that the value being passed in on
the address bus lines matches the identifier of the
neuron. If a match is detected, then it sets the equal
signal to high, and the logic gates for the neuron is
used. Along with the address bus and the data bus,
there exists a command bus and select bus. The
command bus provides the neuron with one of four
commands utilizing 2 bits, which also act as inputs to
the combinational logic. “00” is to read the weights of
the neurons, i.e. send to the datapath, “01” is to writes
weights of the neurons, i.e. take from datapath and
store, “10” is idle and “11” is to begin forward
calculation The select bus tells the neuron which
weight it is dealing with. The combinational logic
determines from the bus inputs which weight is being
used and what operation is to perform. The bi-
directional 8-bit data bus exists to provide the weight
storage units with their values during storage and to
take the values from the storage units when reading.

Control Unit

Neural Network

The address bus is used to inform the neural network
which neuron it should be performing a read or write
operation.

3.2.3 Error calculator
 Error calculator keeps a count of how many times
the network misclassifies input data and uses this to
tell the control unit whether a new weight should be
kept or discarded. This module compares the output
evaluated by the neural network from the inputs
provided with the current weights, and compares it to
the expected target output. If the evaluated output is
closer to the target value, the current random weight
being tested replaces the previous weight value.
 Let tk be the k-th target or desired output and Zk be
the k-th computed output with k=1,…….K and w
represents all the weight in the network. The training
error is calculated using equation (5):

 (5)
where N = number of pattern and K = no of outputs

3.2.4 Pseudo random number generator
 The random number generator generates the random
weights used by the neural ne ork. It employs the
linear feedback shift register (L
the input sequence (initialization
(tap sequence), and the outp
mechanism for generating a se
The register consists of a series
an initialization vector that is,
key. A clock regulates the behav
at each clocking instant, the con
register are shifted right by o
exclusive-or of a subset of the
in the leftmost cell [15]. The f
relationship between the input a
input sequence of length n be
feedback is thus a linear funct
defined by equation (6):

f(s) = ∑
−

=

1

0

n

i
iisc

where co, c1, …, cn are constant coefficients. The
output of the LFSR is determined by the initial values
s0, s1, …, sn-1 and the linear recursion relationship as
shown in equation (7) and (8):

sk+n = (), k ≥ 0 (7) ∑
−

=
+

1

0

n

i
kiisc

or equivalently,

∑
=

+

n

i
kii sc

0
 = 0, k ≥ 0 (8)

where cn = 1 by definition [15].
Figure 2 [15] shows a sample LFSR of a generic
length n.

NK

tZ
Error

N

n

K

k
knkn∑∑

= =

−
= 1 1

2)(

Fig. 2. Linear feedback shift register

3.2.5 RAM interface
 This module handles the storage of the training data
tw
FSR) that consists of
 vector), the feedback
ut. An LFSR is a

quence of binary bits.
of cells that are set by
most often, the secret
ior of the register and

tents of the cells of the
ne position, and the

cell contents is placed
eedback gives a linear
nd the output. Let the

 (s0, s1, …, sn-1). The
ion f (s0, s1, …, sn-1)

 (6)

into RAM. It also recalls the training data set for the
control unit for subsequent training epochs. The values
are stored as 32-bit binary.

4. Results and Discussion

4.1 Software Implementations
 To see the effectiveness of this algorithm, it was
implemented in Matlab and C. Table 1 summarizes the
results obtained.
 Both methods showed to be slower and have lower
average classification result. However this experiment
was performed for statistical use only, and to have a
comparison point for the neural training that is being
implemented. This is an ideal study case to compare
speed on software-developed systems and hardware
description based systems.

Table 1 - Comparison on the speed of software
developed algorithms for experimentation

 Matlab C
Number of
iterations

Correct
Classification
(%)

Correct
Classification
(%)

1000 65.1% 60.4
2000 71.4% 69.15

4.2 VHDL Simulation and Results
 The classification experiments were done with
power quality disturbance signals simulated using
MatLab and PSCAD. The results of a 6-class
classification are shown in Table 2.

Table 2: Neural network performance on the test data (C-class, 1-
transient, 2-voltage sag, 3-voltage swell, 4-interruption,5-
fluctuation, 6-normal, Correct-percentage of correct identification,
mi-percentage of mistake identification to class i)

C Correct M1 M2 M3 M4 M5 M6

1 65 - 4.6 7.5 - 20.1 2.8

2 77.6 4.4 - - 4.7 13.3 -

3 72.5 9.4 - - 5.4 12.7 3.7

4 89.5 3.9 - - - 6.6 4.2

5 70.1 11.5 7.9 10.5 - - -

 Wavelet transform using Matlab were then
performed on each sample disturbance to generate the
detail and approximate coefficients. The coefficients
will be the inputs to the neural network. A total of 300
examples (50 examples per class) were used to test the
classification method. The starting time, duration and
distortion magnitude are generated randomly. This
makes the testing results more reliable because none of
these are fixed for real power system disturbance
events. Testbenches were used to perform extensive
testing on each individual component. Performance on
the test set reached an average of 77.53% agreement.
 Figure 3 shows a sample simulation result from
classifying an input/output pair. At the rising edge of
the clock signal, In1 (approximate coefficient) and In2
(detail coefficient) will be taken in as the inputs and
will be multiplied by the weights, We1 and We2
respectively. These values will be processed by the
datapath to perform the classification. The active high
Done signal indicates that the classification task is
complete and the final result on the result register that
reflects the type of power disturbance. For

classification purpose, each disturbance type is
assigned a fixed output. In the sample simulation in
Figure 3, an output of “00” on the result register
represents a sag disturbance and “FF” represents
transient.

Fig. 3 Sample simulation result

 The average percentage of accuracy achieved is
77.53%. When comparing with similar works in this
area, the percentage of this method is lower. However,
an increase in the accuracy is expected by increasing
the number of training samples for the future works. In
[7], a feedforward, time-delay, and modified time-
delay neural network are three different
implementations that were investigated: Classification
accuracy obtained is 72%, 57% and 93% respectively.
As for [11], classification accuracy within the range of
52% and 92% is obtained. These works were based on
software implementations. Fast digital computers with
mega/giga potential may be used but there still exist
problems and limitations for which they will never be
fast enough compared to hardware platforms. This
method offers the flexibility in terms of speed and
design cycle time. The use of VHDL helps in speeding
the execution process and designs can be developed
and tested efficiently and in a shorter design cycle
time. These important characteristics are needed in
most of the digital components today.

5. Conclusions and Future Work
 The objective of this project was to develop a
VHDL model of an artificial neural network aimed at
classifying power quality disturbances. The initial
work involved determining the functions of the system
and designing modules to perform these functions. The

functionality and timing behavior of the modules were
successfully verified. The model was also
implemented with Matlab and C programs for
comparison with VHDL implementation.
 At present, the amount of training data set used for
testing are small and the data were generated from a
program in PSCAD and MATLAB. The next step is to
use the real training data set obtained from power
utility companies to increase the algorithm
generalization capability and produce more accurate
result. Further research will then be carried out for
hardware implementation using FPGA. This could
take advantage of the high speeds achievable using
hardware, and as a result would be a beneficial and
economic investment for designs requiring artificial
Neural Networks.

References:
[1] Min Wang: “Automatic Recognition of Power

Quality Disturbances”, APT Centre, MSEE Thesis
Presentation, August 9, 2001.

[2] Mladen Kezunovic, Yuan Liao: “A Novel
Software Implementation Concept for Power
Quality Study”, IEEE Transactions on Power
Delivery, Vol. 17, No. 2, April 2002, pp. 544-549.

[3] Surya Santoso: “Power Quality Disturbance
Waveform Recognition Using Wavelet-Based
Neural Classifier – Part 1: Theoretical
Foundation’, IEEE Transaction on Power
Delivery, Vol. 15, No. 1, January 2000, pp. 222-
228.

[4] Looney, Carl: “Pattern Recognition Using Neural
Networks: Theory and Algorithms for Engineers
and Scientists”, Oxford University press, New
York, 1997, Chapters 3, 4 and 6.

[5] David L. Lubkeman, Chris D. Fallon, A. A.
Girgis. “Unsupervised Learning Strategies For The
Detection and Classification of Transient
Phenomena on Electric Power Distribution
Systems”, Proceedings of the First International
Forum on Applications of Neural Networks to
Power Systems, pp. 107-111.

[6] C. J. Kim, B. D. Russell, “Classification of Faults
and Switching Events by Inductive Reasoning and
Expert System Methodology”, IEEE Transactions
on Power Delivery, Vol. 4, No. 3, July 1999, pp.
1631-1637.

[7] A.K. Ghosh, David L. Lubkeman. “The
Classification of Power System Disturbance

Waveforms Using A Neural Network Approach”,
IEEE Transactions on Power Delivery, Vol. 10,
No. 1, January 1995, pp. 109-115.

[8] S. Haykin, “Neural Networks – A Comprehensive
Foundation”, New York: IEEE Press and
Macmillian, 1995, Chapters 2 and 3.

[9] L. Fausett, Fundamentals of Neural Networks,
New Jersey: Prentice-Hall, 1994, Chapters 4 and
6.

[10] M. Kezunovic and I. Rikalo, “Detect and Classify
Faults Using Neural Nets,” IEEE Computer
Applications in Power, Vol. 9, No. 4, 1996, pp.
42-47.

[11] M. Kezunovic, Igor Rikalo, D.J. Sobajic. “High-
Speed Fault Detection and Classification with
Neural Nets”, Electric Power Systems Research,
No 34, February 1995, pp. 109-116.

[12] S. Hauck, “The Roles of FPGAs in
Reprogrammable Systems” Proceedings of the
IEEE, 86(4), April 1998, pp. 615-638.

[13] Taewhan Kirn, William Jao, Steve Tijiang:
“Arithmetic Optimization using Carry-Save-
Adders’, World Wide Web URL at
http://www.sigda.org/Archives/ProceedingArchive
s/Dac/Dac98/papers/1998/dac98/pdffiles/26_2.pdf

[14] Stefan Sjoholm, Lennart Lindh: “VHDL for
Designers”, Prentice Hall, 1997, pp. 261-263.

[15] “Linear Feedback Shift Registers”, World Wide
World Wide Web URL at
http://www.math.cudenver.edu/~wcherowi/courses
/m5410/m5410fsr.html, pp 1 – 8, 09 January 2002.

	Introduction
	Design Overview
	The Developed Approach
	Neural Network
	Control Unit
	Trainer
	Bus Master
	Error calculator
	Pseudo random number generator
	RAM interface

	Results and Discussion
	Software Implementations
	VHDL Simulation and Results

	Conclusions and Future Work
	References:

