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Abstract: - This paper describes the design and modeling of an artificial neural network (ANN) classifier using 
VHDL. This classifier is targeted primarily to classify the six different types of power quality disturbance.  The 
high level architecture comprises of a control unit and a neural network datapath. The control unit is further divided 
into five interconnected sub modules: bus master, ram, pseudo random number generator, error calculator and 
trainer.  Univariate randomly optimized Neural Network (uronn) algorithm is employed to model the neural 
network.   Proper simulation is carried out to verify the functionality of the individual modules and the system. In 
addition, the algorithm was also implemented in Matlab and C as comparison with the hardware implementation in 
VHDL. Comparisons, verification and analysis made validate the advantage of this approach. Currently, the 
classification average accuracy is 77.53%.  The classifier also has the potential of being extended to classify other 
kinds of power quality disturbances. 
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1. Introduction 
Power quality is defined as any deviation from a 
perfect sinusoidal waveform that can result in failure 
or misoperation of equipment [1]. In a power system, 
faults, dynamic operations or non-linear loads often 
cause various types of power quality disturbances such 
as voltage sags, voltage swells, switching transients, 
interruption and fluctuation [2]. Power quality 
disturbance waveform recognition is often 
troublesome because it involves a broad range of 
disturbance categories or classes, and therefore the 
decision boundaries of disturbance features may 
overlap [3].      
    Artificial Neural Networks attempt to recreate the 
behavior of a biological brain in logic to solve 
complex problems [4]. They consist of nodes 
(neurons) in which inputs are multiplied by pre-trained 
weights and are summed together to produce overall 
outputs. Artificial Neural Networks can be used to 
solve complex problems with a comparatively small 
amount of effort. It has been effectively applied in 
power system applications with great appreciation 

[2,5,6,7] and has been used in various segments of 
industry to solve several problems including power 
quality [8,9]. For a partial list of ANN applications in 
electric power industry, the reader is referred to [10].  
    There are a few works that had been done in this 
area. In one of the work, the neural network is 
designed for high-speed processing which can provide 
selective real-time detection and classification of 
faults. The method involves utilizing both supervised 
and unsupervised neural network training. The training 
involved two different training samples, one with a 
reduced number and the other a large number of 
samples simulated using the Electromagnetic Transient 
Program (EMTP) [11]. The second work proposes a 
recognition scheme performed in the wavelet domain 
using a set of multiple neural networks. Wavelet 
transform coefficients are used as inputs to the neural 
network. Since multiple neural networks are utilized, 
the outcome of the network is then integrated using a 
decision making scheme [3]. Another work employs 
an ANN-based methodology using a time-delay neural 
network (TDNN) for the classification of disturbance 
waveforms. The TDNN exhibits a translation-shift 



invariance property. The standard back-propagation is 
applied to each time-shifted network to obtain the 
error derivatives for each unit in the network. The 
TDNN extracts temporal relationships from the input 
data in the classification process [7]. 
    However, the classification methods employed in 
the works mentioned above are based mainly on 
software implementation. Software simulations are 
useful for investigating the capabilities of neural 
network models and creating new algorithms; but 
hardware implementations remain essential for taking 
full advantage of the inherent parallelism of neural 
network and provide an increase in speed and 
performance. For example, Field Programmable Gate 
Array (FPGA), an application-specific integrated 
circuit does provide a speed-up of several orders of 
magnitude compared to software simulation [12]. This 
will allow all of the neural network calculations to be 
done directly and in parallel. This will contribute a 
significant increase in performance compared to a 
neural network implemented in software where the 
many internal neural network calculations must be 
compiled into multiple individual commands for a 
processor to complete sequentially. 
    ANN developed in software has several drawbacks. 
A limiting factor is that the size of neural network is 
limited by the size of the system that runs the 
compiled neural network code on. A processor that has 
a small cache or that is slow may not be able to handle 
a large amount of data to be used to model a system or 
be able to train on a data from a system in a reasonable 
amount of time.  
    With hardware, the memory storage for the neural 
network is large and dedicated to the neural network 
and not dependent on a processor. FPGA 
implementation greatly reduces the size, offers a 
higher reliability, improved security, higher 
performance, higher accuracy and also the ability to 
add on features easily. Instead of using conventional 
programming languages such as C, Matlab or Java, the 
new method models the design of a neural network in 
Very High Speed Integrated Circuits Hardware 
Description Language or VHDL. This is a hardware 
independent language, which supports a design to be 
modified easily to suit research requirement.  
    Some useful features of the new approach are listed 
below: 
1) Artificial Neural Network is used for its pattern 
recognition capabilities. However, its ability to 
perform well is greatly influenced by the weight 

adaptation algorithm. Thus a unique algorithm, 
Univariate randomly optimized Neural Network 
(uronn) was chosen for implementation. This will 
provide significant increase in the accuracy of the 
classification.  
2) The use of Carry-save-adder (CSA) as the multiplier 
component in each neuron provides a speed-up in the 
overall computation and thus reduces training time. 
3) The VHDL model provides a systematic approach 
for hardware realization, facilitating the rapid 
prototyping of neural network for power system 
applications. 
4) The method owns the potential of being extended to 
classify other kinds of disturbances. 
    This paper is organized as follows: the algorithm is 
described in section 2, section 3 describes the 
individual modules that make up the system, section 4 
is dedicated to presenting the results and discussions, 
and finally, section 5 presents the conclusion and 
future works. 
 
 
2. Design Overview  
    The algorithm chosen for implementation was the 
Univariate randomly optimized Neural Network 
(uronn) [4]. This algorithm is robust for comparing 
training speeds between software and hardware.             
    Besides that, this algorithm is a very advantageous 
approach in the implementation of a neural network 
trainer because less calculation needs to be performed 
in each epoch because this algorithm searches for the 
weights that best fit the neural network by randomly 
changing them in order to minimize error. Thus the 
calculation to determine the rate of change of error to 
rate of change of weights as in equation (1) can be 
eliminated.  
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    In addition, this algorithm utilizes 8-bit signed 
integers as values for weights and inputs instead of 32-
bit floating points values. Arithmetic operation using 
floating-point operands is significantly more complex 
than signed integer operands [4].  
    The network is trained using a training data set that   
consists of input/output pair. The inputs are the sample 
values of power quality disturbances that are generated 
using PSCAD and MATLAB software. The classes 
include transients, sag, swell, interruption, fluctuation 
and perfect wave. Simulated samples of each class are 



preprocessed using Matlab wavelet transform toolbox. 
This will generate approximate and detailed 
coefficients of the original signal as represented in 
equations (2) and (3) respectively: 
 
cAi(n) = Σk f(n)*hd(-k+2n)                                     (2) 
cDi(n) = Σk  f(n)*gd(-k+2n)                                    (3) 
 
The 8-bit output classifies the type of power quality 
disturbance. 
 
 
3. The Developed Approach 
    The high-level design consists of two key 
components: the control unit and the neural network 
datapath, that is interconnected and interact with one 
another as shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

   Fig. 1. High-level system design 

3.1 Neural Network 
    This module is one of the important modules as it 
performs the classification task. It consists of neurons 
and their connections into a network. A neural network 
consists of simple processing elements known as 
neurons. The input of a neuron is usually an input 
column-vector x = [x (1),…..,x(p)]T of a preprocessed 
signal. The nth element of the input vector, x(n), is 
connected to a neuron k by a weight factor m(k,n). The 
weight factor then forms a weight vector for neuron k, 
mk = [m(k,1),….,m(k,p)]. The output of the neuron is 
simply a linear combination of the input vector x with 
the weight vector mk, as shown in equation (4):  
 
uk = mxT = Σ m(k,i)x(i)  for i from 1 to P                 (4) 
     

    The Neuron architecture is modeled using the 
Carry-Save-Adder prototype as its multiplier 
component for its high speed and regular structure. 
The datapath contains three neurons, two for the 
hidden layer and one for the output layer, and are 
connected in a traditional feed-forward architecture. 
For this implementation input neurons were not 
considered, as their purpose is to merely distribute the 
inputs among the neurons at the hidden layer. Thus, in 
the design the inputs come directly from the data bus 
into the neurons at the hidden layer. 
 
3.2 Control Unit 
    The control unit is used to control the neural 
network. It consists of five sub modules modeled in a 
top-down design approach [14] as described below:  
 
3.2.1 Trainer 
    This module basically utilizes state machines 
governing control signals for the neural network.               Results 
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3.2.2 Bus Master 
    This component is designed to get and set the 
weights and to activate the neural network during 
operational mode. The data bus controller controls the 
transfer of data through the neural network, and 
supplies the network with new random weights as well 
as the inputs. The datapath entity is instantiated for 
each neuron. Subsequently, each neuron will have a 
unique identifier corresponding to the number in 
which it was instantiated. A comparator uses this 
identifier to ensure that the value being passed in on 
the address bus lines matches the identifier of the 
neuron. If a match is detected, then it sets the equal 
signal to high, and the logic gates for the neuron is 
used. Along with the address bus and the data bus, 
there exists a command bus and select bus. The 
command bus provides the neuron with one of four 
commands utilizing 2 bits, which also act as inputs to 
the combinational logic. “00” is to read the weights of 
the neurons, i.e. send to the datapath, “01” is to writes 
weights of the neurons, i.e. take from datapath and 
store, “10” is idle and “11” is to begin forward 
calculation The select bus tells the neuron which 
weight it is dealing with. The combinational logic 
determines from the bus inputs which weight is being 
used and what operation is to perform. The bi-
directional 8-bit data bus exists to provide the weight 
storage units with their values during storage and to 
take the values from the storage units when reading. 

 
Control Unit 

 

Neural Network 



The address bus is used to inform the neural network 
which neuron it should be performing a read or write 
operation. 
 
3.2.3 Error calculator 
    Error calculator keeps a count of how many times 
the network misclassifies input data and uses this to 
tell the control unit whether a new weight should be 
kept or discarded. This module compares the output 
evaluated by the neural network from the inputs 
provided with the current weights, and compares it to 
the expected target output. If the evaluated output is 
closer to the target value, the current random weight 
being tested replaces the previous weight value. 
    Let tk be the k-th target or desired output and Zk be 
the k-th computed output with k=1,…….K and w 
represents all the weight in the network. The training 
error is calculated using equation (5): 
 

                                                                                   (5) 
where N = number of pattern and K = no of outputs 
 
3.2.4 Pseudo random number generator 
    The random number generator generates the random 
weights used by the neural ne ork. It employs the 
linear feedback shift register (L
the input sequence (initialization
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where co, c1, …, cn are constant coefficients.  The 
output of the LFSR is determined by the initial values 
s0, s1, …, sn-1 and the linear recursion relationship as 
shown in equation (7) and (8): 
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or equivalently, 
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where cn = 1 by definition [15]. 
Figure 2 [15] shows a sample LFSR of a generic 
length n. 
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Fig. 2. Linear feedback shift register 
 

3.2.5 RAM interface 
    This module handles the storage of the training data 
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into RAM. It also recalls the training data set for the 
control unit for subsequent training epochs. The values 
are stored as 32-bit binary.  
 
 
4. Results and Discussion 
 

4.1 Software Implementations 
    To see the effectiveness of this algorithm, it was 
implemented in Matlab and C. Table 1 summarizes the 
results obtained. 
    Both methods showed to be slower and have lower 
average classification result. However this experiment 
was performed for statistical use only, and to have a 
comparison point for the neural training that is being 
implemented. This is an ideal study case to compare 
speed on software-developed systems and hardware 
description based systems.  
 



Table 1 - Comparison on the speed of software 
developed algorithms for experimentation 

 Matlab C 
Number of 
iterations 

Correct 
Classification 
(%) 

Correct 
Classification 
(%) 

1000 65.1% 60.4 
2000 71.4% 69.15 

 
4.2 VHDL Simulation and Results 
    The classification experiments were done with 
power quality disturbance signals simulated using 
MatLab and PSCAD. The results of a 6-class 
classification are shown in Table 2.  
 
Table 2: Neural network performance on the test data  (C-class, 1-
transient,  2-voltage sag,  3-voltage swell,   4-interruption,5-
fluctuation, 6-normal, Correct-percentage of correct identification, 
mi-percentage of mistake identification to class i) 
 

C Correct M1 M2 M3 M4 M5 M6 

1 65 - 4.6 7.5 - 20.1 2.8 

2 77.6 4.4 - - 4.7 13.3 - 

3 72.5 9.4 - - 5.4 12.7 3.7 

4 89.5 3.9 - - - 6.6 4.2 

5 70.1 11.5 7.9 10.5 - - - 

 
    Wavelet transform using Matlab were then 
performed on each sample disturbance to generate the 
detail and approximate coefficients. The coefficients 
will be the inputs to the neural network. A total of 300 
examples (50 examples per class) were used to test the 
classification method. The starting time, duration and 
distortion magnitude are generated randomly. This 
makes the testing results more reliable because none of 
these are fixed for real power system disturbance 
events. Testbenches were used to perform extensive 
testing on each individual component. Performance on 
the test set reached an average of 77.53% agreement.  
    Figure 3 shows a sample simulation result from 
classifying an input/output pair. At the rising edge of 
the clock signal, In1 (approximate coefficient) and In2 
(detail coefficient) will be taken in as the inputs and  
will be multiplied by the weights, We1 and We2 
respectively. These values will be processed by the 
datapath to perform the classification. The active high 
Done signal indicates that the classification task is 
complete and the final result on the result register that 
reflects the type of power disturbance. For 

classification purpose, each disturbance type is 
assigned a fixed output. In the sample simulation in 
Figure 3, an output of “00” on the result register 
represents a sag disturbance and “FF” represents 
transient.  
     

 

Fig. 3 Sample simulation result 

    The average percentage of accuracy achieved is 
77.53%. When comparing with similar works in this 
area, the percentage of this method is lower. However, 
an increase in the accuracy is expected by increasing 
the number of training samples for the future works. In 
[7], a feedforward, time-delay, and modified time-
delay neural network are three different 
implementations that were investigated: Classification 
accuracy obtained is 72%, 57% and 93% respectively. 
As for [11], classification accuracy within the range of 
52% and 92% is obtained. These works were based on 
software implementations. Fast digital computers with 
mega/giga potential may be used but there still exist 
problems and limitations for which they will never be 
fast enough compared to hardware platforms. This 
method offers the flexibility in terms of speed and 
design cycle time. The use of VHDL helps in speeding 
the execution process and designs can be developed 
and tested efficiently and in a shorter design cycle 
time. These important characteristics are needed in 
most of the digital components today. 
  
 

5. Conclusions and Future Work 
    The objective of this project was to develop a 
VHDL model of an artificial neural network aimed at 
classifying power quality disturbances. The initial 
work involved determining the functions of the system 
and designing modules to perform these functions. The 



functionality and timing behavior of the modules were 
successfully verified. The model was also 
implemented with Matlab and C programs for 
comparison with VHDL implementation.  
    At present, the amount of training data set used for 
testing are small and the data were generated from a 
program in PSCAD and MATLAB. The next step is to 
use the real training data set obtained from power 
utility companies to increase the algorithm 
generalization capability and produce more accurate 
result. Further research will then be carried out for 
hardware implementation using FPGA. This could 
take advantage of the high speeds achievable using 
hardware, and as a result would be a beneficial and 
economic investment for designs requiring artificial 
Neural Networks. 
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