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Abstract: It is very important to improve the quality of surface meshes for numerical simulations, solid mesh 
generation, and computer graphics applications. Optimizing the form of the mesh elements it is necessary to 
preserve new nodes of the mesh as close as possible to a surface approximated by the initial mesh.  This paper 
proposes a novel technique in which both of the requirements to mesh improvement are implemented. In the 
method presented here the new location of each node is found using values of principal curvatures in this node. 
Such procedure allows preserving new mesh very close to the initial surface while improving element quality. 
The method has been successfully tested on triangular meshes both for analytical surfaces (sphere, ellipsoid, 
paraboloid) and for arbitrary surfaces with great number of points. Comparison of the deviation of the mesh 
optimized by our method and by Laplacian smoothing from the original analytical surfaces shows advantage of 
the proposed method.  
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1. Introduction 
 
It is well known that mesh quality is critical for 
accuracy and efficiency in the numerical solutions 
to PDE-based applications [1]. For generation of 
good quality solid meshes it is also necessary to 
have good quality mesh. There are two main ways 
for mesh optimization: modification of the mesh 
topology by inserting/deleting mesh nodes or edge 
flipping [2, 3] and node movement methods, 
commonly called mesh smoothing. A number of 
smoothing techniques have been developed ranging 
from simple Laplacian smoothing [4] to more 
sophisticated algorithms. Among them there are 
physically-based methods [5, 6] where nodes are 
moved under the influence of some forces so that 
the shape of incident elements is improved.  Instead 

of local mesh optimization by moving each node on 
the basis of some geometric characteristics (as is 
done in Laplacian smoothing and in the physically-
based methods) the optimization-based techniques 
allow improving all initial mesh. In these 
techniques so called cost function of angle [7] is 
optimized, an aspect ratio [8] or distortion metrics 
[9, 10] can be used.   
It is necessary to note that the procedures for the 
denoising of the initial mesh are often called 
smoothing too. Quite a lot of work has been done 
around the subject, see [11] by Belyaev and Ohtake 
and references therein. In this paper we do not 
focus our attention on the problem of mesh 
denoising. Further we suppose that there are initial 
meshes without any noise.  



Good shape of mesh elements is not only the 
criteria of mesh quality. It is also important to 
preserve the new nodes as close as possible to the 
smooth surface approximated by the initial mesh. 
Preservation of the nodes closed to original surface 
allows keeping important discrete surface 
characteristics such as normals and curvatures. 
Conservation these surface characteristics prevents 
drastic changes in forces such as surface tension. 
For large deformation of free boundaries in metal 
forming and interfaces in multi-material gas 
dynamics it is critical to keep deviation these 
characteristics for the optimized mesh from 
characteristics for the initial mesh as small as 
possible.  
The problem of mesh optimization with 
preservation of the discrete surface characteristics 
has been investigated Garimella et. al [12]. In their 
method the nodes are repositioned in a series of 
local parametric spaces derived from individual 
mesh elements. When the repositioned nodes are 
mapped back to the real space, each node lays on 
the corresponding mesh element. 
Note, however, that new nodes lie on the initial 
mesh but not on the surface approximated by this 
mesh. As a simple example consider a mesh on the 
sphere. The nodes of this mesh lie on the sphere. 
Applying algorithm described above we will get 
new nodes situating on the initial mesh, but they 
will not belong to the original sphere. Therefore 
obtained mesh will not be discrete approximation 
of the concerned sphere.  
Thus, we can formulate the problem of mesh 
improvement in the following way. A triangular 
mesh which serves as a representation (discrete 
approximation) of a smooth surface is given. It is 
necessary to improve mesh element quality in such 
a way that new nodes keep situated on the 
approximated smooth surface.  
In this paper we propose a novel technique called 
Curvature Based Mesh Improvement (CBMI) 
which effectively solves the formulated problem.  
The new position of each node is found using 
principal curvatures calculated for each node. Such 
procedure allows keeping vertices of the new mesh 
very close to approximated smooth surface. For 
analytical surfaces quantitative measures are 
presented to prove that the deviation of the new 
nodes from the approximated smooth surface is 
small.  
The rest of the paper is organized as follows. In 
section 3 curvature estimation is described. CBMI 
algorithm is presented in section 4. Section 5 
describes the results of a testing CBMI algorithm 
for meshes on the different surfaces. The paper 
concludes in section 6 with an overview of the 
algorithm and discussions of the future work.  

 
2. Curvature estimation 

 
This section describes how to calculate the 
principal curvatures in each node of the initial 
mesh. Since surface curvature calculation is based 
on the second order derivatives, it is common to 
use quadratic polynomials to approximate the 
surface locally. The presented work uses functions 
of the form ),( yxfz =  (Monge form). The quadric 
of this form is fitted to the nodes in a local 
coordinate system ),,( zyx  whose z  axis is along a 
normal at the concerned vertex and whose origin is 
at that vertex. In the simplest cases it is performed a 
least squares fit of the quadric 22 cybxyaxz ++= . 
Addition linear terms in the quadric allows 
increasing accuracy of curvature estimation. It is 
also possible to use a full quadric in which the 
addition of the constant term allows the surface do 
not pass through the concerned vertex. The quadric 
is therefore given by: 

.),( 22 feydxcybxyaxyxfz +++++==  
There are a number other techniques for curvature 
estimation, for more references and details see [13]. 
 

2.1 Construction of the quadric 
 
Here, we shall give a short account of the quadric 
construction technique used in the application 
considered in this paper. 
It is necessary to determine normals at the nodes of 
the initial mesh. For that we calculate normals for 
each triangle and then average them at shared 
points.  
For quadric interpolation we use least squares 
method, whose detailed description may be found 
in [14]. Here we only describe main steps. For each 
node jp  of the initial mesh: 

- Get the k  nearest neighboring nodes. 
- Compute the tangent plane P  at 

concerned node (i.e. the plane 
perpendicular to the normal jn  at jp ). 

- Define an orthonormal coordinate system 
),( yx in P  with a node jp  as an origin and 

take the normal jn  as a z axis. 
- Find the coordinates ),,( iii zyx , ki ,...,1=  of 

the k  nearest neighboring nodes in the new 
coordinate system.  



- Form the system: BAX = , where 
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 - required coefficients of the 

quadric. 
- Solve the system BAXAA tt = , where X  is 

the least square solution, with classical 
Gauss method. 

 
2.2 Calculation of the principal 

curvatures 
 

After the quadric 
 feydxcybxyaxyxfz +++++== 22),(  has 
been found for each node of the mesh the 
principal curvatures are calculated using 
notions of classical differential geometry [15].  
The matrix of the first fundamental form for 
our quadric is written in the form: 
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The eigenvalues of these pair of forms, i.e. of 
the equation 0)det( =− GQ λ , are the principal 
curvatures: maximal maxλ  and minimal minλ .  

 
3. Method 

 
3.1 Calculation of the “improved” 

normals 
 
For realization of our method we need at each node 
of the mesh not only normals defined in section 3.1 
but also “improved” normals which will be as close 
as possible to the smooth surface approximated by 
initial mesh. To calculate such normals we propose 
to use area-weighted coefficients. Consider an 
oriented triangle mesh. Let us define the 
“improved” normal in some node p  of the mesh. 
For each triangle i  incident to the concerned node  
 

 
Fig.1: Node movement for non-regular mesh. 

 
Fig.2: Node movement for regular mesh. 
 
 

we calculate the weight coefficient
∑

=
i i

i
i S

S
k . Here 

iS  is the area of the triangle i  that incident to p . 
We calculate normals for each triangle incident to 
the concerned node and averaging them at that 
node with coefficients

ik
1 .  Then we normalize 

these averaged normals.  
 

3.2 CBMI algorithm 
 
Let us consider some node 0p  of the mesh and all 
nodes kppp ,...,, 21  associated with the node 0p . Let 

in  and imp
in , ki ,...,1,0= are respectively “ordinary” 

and “improved” normals defined at the node ip . 
For each node ip , ki ,...,1=  new position ip0  of the 
node 0p is found by the following procedure. 

If ελ >0max_ (in our examples we used 3.0=ε ), 

where 0max_λ   is the maximal principal curvature 
defined in the node 0p , through the node ip  we 



  
Fig.3: Node movement in 2D case. 
 
 
draw a sphere with a center on the line defined by 
the normal imp

in  and with a radius equal 

to
0max_

1
λ . Then in the direction of the normal 

0n we draw the radius of that sphere. The point, in 
which this radius picks the sphere, is sought 
point ip0 . After the all points ip0 , ki ,...,1=  are 
found the new position of the node 0p  is defined 

by averaging the coordinates of ip0 . Described 
procedure is shown in Fig.1. It is clear that in case 
of the regular mesh the found new position of the 
node 0p  coincides with position of this node as 
shown in Fig.2. 
For more lucidity we can consider how described 
algorithm works in 2D case. In this case the 
problem is formulated in the following way. It is 
necessary to reduce the difference between the 
lengths of the segments of the given polygonal line 
keeping the new nodes as close as possible to the 
curve approximated this polygonal path.  
The CBMI algorithm is transformed into the 
following procedure. For each node of the 
polygonal line we define the “ordinary” normals 
similarly to 3D case. Then if the node is not the end 
vertex we draw the circumference passing through 
concerned node ( 0p  for definiteness) and two 
nodes incident to it. From the center of the 
circumference we draw the radius in the direction 
opposite to the normal defined in 0p . Obtained 
point on the circumference is the new position for 

0p  as shown in Fig.3.  
In case of ελ <imax_  the nodes ip , ki ,...,1,0=  are 

situated in the plane and the new position of 0p  is 
found by the simple Laplacian smoothing. It is 
possible to apply constrained Laplacian smoothing 
or another suitable method for improving of plane 
mesh.   

          
              (a)                                          (b)   

            
(c) (d)     

 
Fig.4: (a) Mesh of the sphere; (b) Mesh optimized 
with Laplacian smoothing; (c) Mesh optimized 
with CBMI algorithm using “ordinary” normals;  
(d) Mesh optimized with CBMI algorithm using 
“ideal” normals. 
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Fig.5: The deviation meshes obtained by Laplacian 
smoothing and CBMI algorithm from the initial 
sphere (Line 1 – Laplacian smoothing; Line 2 – 
CBMI with “ordinary” normals; Line 3 – CBMI 
with “ideal” normals) 
 
 
Note that the “ordinary” normal serves as an 
indicator to the value of the node shift. The closer 
this normal is to the “ideal” normal (i.e. to the 
normal to the smooth surface approximated by the 
initial mesh), the smaller the value of the node 
movement is. On the other hand using the maximal 
curvatures guarantees that the new nodes are 
situated very close to the approximated smooth 
surface.  
 



κ  
(aspect 
ratio) 

Initial 
mesh 

Laplacian 
smoothing 

CBMI 
with 

“ordinary” 
normals 

CBMI 
with 

“ideal” 
normals 

 
1.0   -1.5 1114 2848 2456 2583
 
1.5   - 2.0 2676 2818 2784 2816
 
2.0   - 3.0 1075 531 912 797
 
3.0   - 4.0 446 25 65 22
 
4.0   - 5.0 141 6 9 12
 
5.0   - 7.5 279 2 4 0
 
7.5  -10.0 85 0 0 0
 
10.0-15.0 163 0 0 0
 
15.0- 251 0 0 0
 
Table 1: Hystograms of aspect ratio in initial and 
optimized with Laplacian and CBMI algorithm 
meshes for sphere (Fig.4). 
 

   
Fig.6: Comparison between images by CBMI 
algorithm and Laplacian smoothing. (a) The sphere 
optimized with CBMI algorithm using “ideal” 
normals (the difference of the volume from the 
original model is 0.93%); (b) The sphere processed 
with Laplacian smoothing (the difference of the 
volume from the original model is 1.83%). 

 
4. Results 

 
We have tested CBMI algorithm on various 
meshes. Firstly, we used triangulated meshes 
representing analytical surfaces to calculate the 
deviation the new mesh from these surfaces easily. 
Fig.4 shows triangulated mesh on the sphere and 
the results of Laplacian smoothing and CBMI 
algorithm. To demonstrate the improvement of the 
initial mesh we use aspect ratio

min
max

l
l=κ , where 

maxl  and minl  are respectively lengths of the 
maximal and minimal sides of the triangle. It can 
be seen from the Table 1 that Laplacian smoothing 
can improve the shapes of triangles a little better  
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Fig.7: The deviation meshes obtained by Laplacian 
smoothing and CBMI algorithm from the initial 
ellipsoid (Line 1 – Laplacian smoothing; Line 2 – 
CBMI with “ordinary” normals; Line 3 – CBMI 
with “improved” normals).  
 

  
Fig.8: (a) Mesh of the initial ellipsoid; (b) Mesh 
optimized with the Laplacian smoothing; (c) Mesh 
optimized with CBMI algorithm using “ordinary” 
normals; (d) Mesh optimized with CBMI algorithm 
using “improved” normals. 
 
 
than CBMI algorithm. On the other hand the Fig.5 
demonstrates that the deviation of the new mesh 
from the initial sphere is much bigger for Laplacian 
smoothing. 
We have tested our algorithm using “ordinary” 
normals (Fig.4c) and “ideal” normals calculated 
analytically (Fig.4d) to show how the accuracy of 
the method depends from the accuracy of normal 
estimation.  Fig.7, 8, 9, and 11, Tables 2 and 3 
demonstrate similar results for meshes on the 
ellipsoid and paraboloid. In Fig.8d and 11d we used 
CBMI algorithm with “improved” normals 
described in section 4.1. As it can be seen in Fig.6 
and 10 the meshes improved with CBMI algorithm 
represent much more smooth surfaces then the 
meshes processed with Laplacian smoothing. 
Finally complex meshes of a bone and a horse are 
presented in Fig.12 and 13 to illustrate the 
effectiveness CBMI algorithm on large surface 
meshes. The Tables 4 and 5 show the improvement 
of the initial meshes. 
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Fig.9: The deviation meshes obtained by Laplacian 
smoothing and CBMI algorithm from the initial 
paraboloid (Line 1 – Laplacian smoothing; Line 2 – 
CBMI with “ordinary” normals; Line 3 – CBMI 
with “improved” normals).  
 

5. Conclusions 
 
In this paper we presented a novel technique 
(CBMI algorithm) to improve the quality of the 
triangulated mesh without deviation of the new 
mesh from the initial surface too much.  
At each node of the mesh the principal curvatures 
are calculated. The new position of the node is 
found using the value of the maximal curvature at 
that node.  
CBMI algorithm has been successfully tested both 
for the meshes on the analytical surfaces and for the 
meshes on the complex surfaces.  
Because for PDE applications the surfaces 
consisted of the simple geometric primitives, such 
as sphere, ellipsoid, cylinder, prevail we 
concentrate our attention on different analytical 
surfaces and show that CBMI algorithm is very 
suitable approach to improve mesh on such 
surfaces. The deviation a new mesh from the initial 
analytical surfaces (sphere, ellipsoid and 
paraboloid) has been calculated for the Laplacian 
smoothing and CBMI algorithm. The aspect ratio 
was presented and calculated to show the 
improvement of the meshes. The practical 
applications have good results in the sense of 
volume preserving and visual appearance (see Fig.6 
and 10).  
As it has been mentioned in Section 2 there are a 
number of remarkable techniques for surface 
denoising with simultaneous mesh improvement. 
Let us note that as it can be seen from color images 
in Fig.14, 15, and 16 (software tool available on 
WWW at http://www.mpi- 
sb.mpg.de/%7Ebelyaev/soft/soft.html of Dr. 
Ohtake from Max-Planck-Institut für Informatik  

                            
 
Fig.10: Comparison between images by CBMI 
algorithm and Laplacian smoothing. (a) The 
ellipsoid optimized with CBMI algorithm using 
“ideal” normals (the difference of the volume from 
the original model is 0.41%); (b) The ellipsoid 
processed with Laplacian smoothing (the difference 
of the volume from the original model is 2.86%). 
 
 

 
κ  

(aspect 
ratio) 

 
Initial 
mesh 

 
Laplacian 
smoothing 

CBMI 
with 

“ordinary” 
normals 

 
CBMI with 
“improved” 

normals 
 
1.0   -1.5 1118 1714 1615 1842
 
1.5   - 2.0 4786 612 668 493
 
2.0   - 3.0 232 64 107 61
 
3.0   - 4.0 164 6 6 0
 
4.0   - 5.0 60 0 0 0
 
5.0   - 7.5 106 0 0 0
 
7.5  -10.0 58 0 0 0
 
10.0-15.0 32 0 0 0
 
15.0- 148 0 0 0
 
Table 2: Hystograms of aspect ratio in initial and 
optimized with Laplacian smoothing and CBMI 
algorithm meshes for ellipsoid.     
 
 
was used) applying CBMI algorithm to the surfaces 
without noise gives us more smooth results in 
comparison with other techniques. 
In future works we intend to extend described 
algorithm to the general polygonal meshes. As it 
has been shown the accuracy of the method heavily 
depends on the accuracy of the normal estimation. 
Therefore we will attempt to improve the algorithm 
for normal estimation.  
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(a) (b) 
 

Fig.12: Zoom in the mesh of the bone. Number of 
polygons is 68530. (a) Initial mesh and surface; (b) 
Mesh and surface optimized with CBMI algorithm. 
 

 
κ  

(aspect ratio) 
Initial mesh Mesh optimized with 

CBMI algorithm 
 

1.0   -1.5 
 

19240 
 

41452 
 

1.5   - 2.0 
 

29912 
 

21233 
 

2.0   - 3.0 
 

16492 
 

5269 

 
3.0   - 4.0 

 
2609 

 
429 

 
4.0   - 5.0 

 
170 

 
85 

 
5.0   - 7.5 

 
93 

 
50 

 
7.5  -10.0 

 
14 

 
9 

 
10.0-15.0 

 
0 

 
3 

 
15.0- 

 
0 

 
0 

 
Table 4: Hystograms of aspect ratio in initial and 
optimized with CBMI algorithm meshes for the 
bone. 
 
 
 
 
 
 

    
 

(a) (b) 
 

Fig.13: Zoom in the mesh of the horse. Number of 
polygons is 96966. (a) Initial mesh and surface; (b) 
Mesh and surface optimized with CBMI algorithm. 
 
 

κ  
(aspect ratio) 

Initial mesh Mesh optimized with 
CBMI algorithm 

 
1.0   -1.5 

     
    22632 

 
              56877 

 
1.5   - 2.0 

 
    66439 

 
              38547 

 
2.0   - 3.0 

 
      5989 

 
                1444 

 
3.0   - 4.0 

 
        782 

 
                    79 

 
4.0   - 5.0 

 
        370 

 
                    15 

 
5.0   - 7.5 

 
        376 

 
                     4 

 
7.5  -10.0 

 
        170 

 
                     0 

 
10.0-15.0 

 
        140 

 
                     0 

 
15.0- 

 
          68 

 
                     0 

 
Table 5: Hystograms of aspect ratio in initial and 
optimized with CBMI algorithm meshes for the 
horse.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
          (a)                         (b)                         (c)                        (d)                         (e)                           (f) 
       
Fig.14: (a) initial sphere; (b) sphere optimized with Laplacian smoothing; (c) sphere optimized with Bi-
Laplacian smoothing; (d) sphere optimized with Mean Curvature Flow (Desbrun); (e) sphere optimized with 
Taubin smoothing; (f) sphere optimized with CBMI algorithm. 
 
 
       

 
             (a)                       (b)                       (c)                        (d)                            (e)                        (f) 
 
Fig.15:    (a) initial ellipsoid; (b) ellipsoid optimized with Laplacian smoothing; (c) ellipsoid optimized with Bi-
Laplacian smoothing; (d) ellipsoid optimized with Mean Curvature Flow (Desbrun); (e) ellipsoid optimized 
with Taubin smoothing; (f) ellipsoid optimized with CBMI algorithm.         
 

         
             (a)                         (b)                        (c)                        (d)                          (e)                          (f) 
 
Fig.16: (a) initial paraboloid; (b) paraboloid optimized with Laplacian smoothing; (c) paraboloid optimized 
with Bi-Laplacian smoothing; (d) paraboloid optimized with Mean Curvature Flow (Desbrun); (e) paraboloid 
optimized with Taubin smoothing; (f) paraboloid optimized with CBMI algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 


