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Abstract. In this paper we discuss a method for lossless data compression (LDC) which relies on finding a set of 
patterns (each of these patterns will be called a metasymbol) in a set of data whose elements (which we will call 
symbols) are of arbitrary size and which is, itself, also of arbitrary size. This arbitrary data set will be called a 
message. In order to achieve LDC two things are necessary: a) A method to find the metasymbols and b) A 
scheme to represent the message as a function of these metasymbols. In the past, LDC has been attempted, 
among other methods, by using the probability that a given symbol or combination of symbols appears in the 
message (as in Huffman and PPM encoding schemes) or by  keeping a record of the last K symbols in the 
message’s stream and using references to this record to represent the data (as in the several variations of Lempel-
Ziv compression schemes). In both of the aforementioned approaches to LDC the structure of the premium data 
structure on which the method is based is fixed a priori. Furthermore, the compression ratio of both of these 
approaches changes even in the presence of similar patterns in the structure of the message. The structure of the 
metasymbols in our approach, however, does not depend on aprioristic considerations. In fact, the structure of 
every metasymbol is arbitrary and , in general, different from every other’s one. We compare MLDC to 
traditional encoding schemes, showing the potential superiority of our method. We also show that Metasymbolic 
Lossless Data Compression (MLDC) is dependent on the structure of the patterns of symbols and NOT on the 
symbols and under which conditions MLDC is superior to other LDC schemes. 
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1 Introduction 
In this paper we address the problem of achieving the 
most compact representation of an arbitrary set of 
data without losing any of the information contained 
in it, a goal that is generally called lossless data 
compression (LDC). Alternatively, one may attempt 
to compress data with a given acceptable (under some 
measure) loss of its contents; something we refer to 
as lossy data compression. LDC may be very broadly 
classified  considering whether such compression is 
achieved by taking into account the probabilities of 
the symbols in a message or not. For this 
classification to make sense, we must define a 
symbol. Intuitively, a symbol is the smallest unit of 
information contained in a message. In this regard it 
is clear that any message composed of symbols may 
be reconstructed by orderly enumerating them. 
However, given the digital and usually binary nature 
of present day computers and data channels, it is clear 
that a symbol may be defined as an n-ary collection 
of bits and that, although not generally made explicit, 
the choice of n is arbitrary. Typically, however, the 
choice corresponds to n=8 where this selection 

corresponds to a byte (or character, when the 
analyzed data is a text). In some compression 
schemes this choice is taken one step forward by 
considering compression optimized to streams of 
characters or words, where the regularity present in a 
given language yields some purported advantage. 
Furthermore, it is tacitly assumed in all LDC schemes 
up to date, that the sought for regularity is present in 
neighboring symbols and no attempt has been made 
to try to find such regularity in arbitrary clusters of 
symbols. 
If, however, no a priori consideration is made on the 
size of a symbol we may take one further step and 
validly ask whether the structure of such symbol is to 
be taken for granted. That is, we may not only 
consider the size of groups of adjacent bits, but 
rather,  groups of possibly non-adjacent bits. In what 
follows we assume, for the sake of simplicity and 
without loss of generality, that we arbitrarily set the 
size of a group to 8 (i.e. symbols are of length 8). 
Likewise we explore the possible advantages of 
attempting LDC by identifying clusters of symbols 
with arbitrary structure. These we call metasymbols. 



We show that when such identification is possible, it 
is also possible to encode a given message by simply 
representing the message as a collection of 
metasymbols. From the analysis of the detailed 
representation it is easy to find the bounds on 
metasymbolic structure in order to achieve LDC. The 
rest of the paper is organized as follows: in section 2 
we make a brief summary of previous approaches to 
LDC. In section 3 we introduce a novel approach to 
LDC based on the discovery of patterns of arbitrary 
structure. In section 4 we describe a set of tests which 
we performed in order to establish the relative 
behavior of traditional LDC techniques versus our 
own. Finally, in section 5 we offer some conclusions 
and point to future lines of research. 
 
2 Previous approaches to LDC 
Several previous attempts to LDC have been tried. In 
what follows we give a very brief account of some of 
these. 
 
2.1 Huffman Coding and Related Techniques 
 
2.1.1 Huffman and Shannon-Fano Coding 
Huffman coding is a statistical data compression 
technique which gives a reduction in the average 
code length used to represent the symbols of an 
alphabet.  The Huffman code is an example of a code 
which is optimal in the case where all symbols 
probabilities are integral powers of 1/2.  A Huffman 
code can be built in the following manner: 
  (1) Rank all symbols in order of probability of 
occurrence. 
  (2) Successively combine the two symbols of the 
lowest probability to form a new composite symbol; 
eventually we will build a binary tree where each 
node is the probability of all nodes beneath it. 
  (3) Trace a path to each leaf, noticing the direction 
at each node. 
A technique related to Huffman coding is Shannon-
Fano coding, which works as follows: 
  (1) Divide the set of symbols into two equal or 
almost equal subsets based on the probability of 
occurrence of characters in each subset.  The first 
subset is assigned a binary zero, the second a binary 
one. 
  (2) Repeat step (1) until all subsets have a single 
element. 
The algorithm used to create the Huffman codes is 
bottom-up, and the one for the Shannon-Fano codes 
is top-down. Huffman encoding always generates 
optimal codes, Shannon-Fano sometimes uses a few 
more bits. The interested reader is referred to [1]. 
 

2.1.2 Arithmetic Coding 
It would appear that Huffman or Shannon-Fano 
coding is the perfect mean of compressing data.  
However, this is not the case. As mentioned above, 
these coding methods are optimal when and only 
when the symbol probabilities are integral powers of 
1/2, which is usually 
not the case. The technique of arithmetic coding does 
not have this restriction. It achieves the same effect as 
treating the message as one single unit (a technique 
which would, for Huffman coding, require 
enumeration of every single possible message), and 
thus attains the theoretical entropy bound to 
compression efficiency for any source. 
Arithmetic coding works by representing a number 
by an interval of real numbers between 0 and 1.  As 
the message becomes longer, the interval needed to 
represent it becomes smaller and smaller, and the 
number of bits needed to specify that interval 
increases.  Successive symbols in the message reduce 
this interval in accordance with the probability of that 
symbol. The more likely symbols reduce the range by 
less, and thus add fewer bits to the  message. 
 
2.1.3 DMC and PPM Coding  
Using the symbol probabilities by themselves is not a 
particularly good estimate of the true entropy of the 
data: We can take into account intersymbol 
probabilities as well.  Some of the best compressors 
available today take this approach: DMC (Dynamic 
Markov Coding) starts with a zero-order Markov 
model and gradually extends this initial model as 
compression progresses; PPM (Prediction by Partial 
Matching) looks for a match of the text to be 
compressed in an order-n context.  If no match is 
found, it drops to an order n-1 context, until it reaches 
order 0.  Both these techniques thus obtain a much 
better model of the data to be compressed, which, 
combined with the use of arithmetic coding, results in 
superior compression performance. For a more 
detailed description of PPM principles, see [2]. 
 
2.2 Substitutional Compressors 
The basic idea behind a substitutional compressor is 
to replace an occurrence of a particular phrase or 
group of bytes in a set of data with a reference to a 
previous occurrence of that phrase.  There are two 
main classes of schemes, named after Jakob Ziv and 
Abraham Lempel, who first proposed them in 1977 
and 1978. 
 
2.2.1 The LZ78 family of compressors 
LZ78-based schemes work by entering phrases into a 
dictionary and then, when a repeat occurrence of that 
particular phrase is found, outputting the dictionary 



index instead of the phrase. There exist several 
compression algorithms based on this principle, 
differing mainly in the manner in which they manage 
the dictionary.  The most well-known scheme (in fact 
the most well-known of all the Lempel-Ziv 
compressors, the one which is generally referred to as 
"Lempel-Ziv Compression"), is Terry Welch's LZW 
scheme, which was designed in 1984 for 
implementation in hardware for high-performance 
disk controllers.  LZW starts with a 4K dictionary, of 
which entries 0-255 refer to individual bytes, and 
entries 256-4095 refer to substrings.  Each time a new 
code is generated it means a new string has been 
parsed.  New strings are generated by appending the 
current character K to the end of an existing string w.  
The most remarkable feature of this type of 
compression is that the entire dictionary is 
transmitted to the decoder without actually explicitly 
transmitting the dictionary.  At the end of the run, the 
decoder will have a dictionary identical to the one the 
encoder has, built up entirely as part of the decoding 
process. 
LZW is more commonly encountered today in a 
variant known as LZC, after its use in the UNIX 
"compress" program.  In this variant, pointers do not 
have a fixed length. Rather, they start with a length of 
9 bits, and then slowly grow to their maximum 
possible length once all the pointers of a particular 
size have been used up.  Furthermore, the dictionary 
is not frozen once it is full (as for LZW). The 
program continually monitors compression 
performance, and once it starts decreasing the entire 
dictionary is discarded and rebuilt from scratch.  
More recent schemes use some sort of least-recently-
used algorithm to discard little-used phrases once the 
dictionary becomes full rather than discarding the 
entire dictionary.  
 
2.2.2 The LZ77 family of compressors 
LZ77-based schemes keep track of the last n bytes of 
data seen, and when a phrase is encountered that has 
already been seen, they output a pair of values 
corresponding to the position of the phrase in the 
previously-seen buffer of data, and the length of the 
phrase. In effect the compressor moves a fixed-size 
window over the data (generally referred to as a 
sliding  
window), with the position part of the (position, 
length) pair referring to the position of the phrase 
within the window.  The most commonly used 
algorithms are derived from the LZSS scheme 
described by James Storer and Thomas Szymanski in 
1982. In this the compressor maintains a window of 
size N bytes and a lookahead buffer the contents of 
which it tries to find a  

match for in the window. 
Decompression is simple and fast: Whenever a 
(position, length) pair is encountered, go to that 
(position) in the window and copy (length) bytes to 
the output. 
Sliding-window-based schemes can be simplified by 
numbering the input text characters mod N, in effect 
creating a circular buffer.  The sliding window 
approach automatically creates the LRU effect which 
must be done explicitly in LZ78 schemes. Variants of 
this method apply additional compression to the 
output of the LZSS compressor, which include a 
simple variable-length code (LZB), dynamic 
Huffman coding (LZH), and Shannon-Fano coding 
(ZIP 1.x), all of which result in a certain degree of 
improvement over the basic scheme, especially when 
the data are rather random and the LZSS compressor 
has little effect. 
An algorithm was developed which combines the 
ideas behind LZ77 and LZ78 to produce a hybrid 
called LZFG.  LZFG uses the standard sliding 
window, but stores the data in a modified trie data 
structure and produces as output the position of the 
text in the trie.  Since LZFG only inserts complete 
phrases into the dictionary, it should run faster than 
other LZ77-based compressors. 
 
2.3 The Burroughs-Wheeler Transform 
The BWT [3] is an algorithm that takes a block of 
data and rearranges it using a sorting algorithm. The 
resulting output block contains exactly the same data 
elements that it started with, differing only in their 
ordering. The transformation is reversible, meaning 
the original ordering of the data elements can be 
restored with no loss of information. The BWT is 
performed on an entire block of data at once. Most of 
the LDC algorithms operate in streaming mode, 
reading a single byte or a few bytes at a time. But 
with BWT operation on the largest sets of data is 
desirable. 
The basic idea behind the BWT is to map the original 
message into an equivalent one which is better suited 
than the original one for an efficient application of a 
typical encoding process (such as an arithmetic one 
as described above). 
 
2.4 Problem Oriented Compression 
 
2.4.1 Predictive Encoding 
In predictive encoding [4], the idea is to have an 
“oracle” which adequately predicts the output from 
the information source on both sides of the 
communications channel. Once the oracle emits its 
prediction on the transmitting end, it sends” the 
number of  correctly predicted bits rather than the bits 



themselves. On the receiving end, the received data 
stream is matched versus the predicted one, 
corrections (if necessary) are made and, thus, the 
original message is recovered. Clearly, the main 
problem, in this case, is to ensure a minimum 
prediction accuracy (or prediction ratio  ) . If   is large 
enough, significant compression is achieved. In 
practice, a Neural Network (NN) may be used as the 
oracle. 
The main drawback of this approach is that an oracle 
has to be found specifically for each particular data 
set. 
 
2.4.2 Neural Networks 
In [5] a predictive arithmetic encoder called P6 based 
on a 6-gram character model is described. This 
algorithm is specifically aimed (the NN is trained for) 
at texts of the English language. Prediction is done 
one bit at a time by a two layer neural network with 
222 (about 4 million) inputs, and one output. The 
output is the probability that the next bit will be a 1. 
The inputs are "context detectors", where the context 
is the last 1 to 5 complete bytes, plus the 0 to 7 bits of 
the partially read current byte. An input unit is active 
(output of 1) when the context matches a particular 
value, otherwise it is 0. Because there are more than 
222 possible context values, the context is hashed to a 
22-bit number to select the active input. There are 5 
contexts considered, with lengths of 1 to 5 complete 
bytes. Thus there are 5 out of 222 inputs active at any 
time. Using this methodology, 42-47% better 
compression than gzip-9 is reported. Compression 
time for 600 KB is attained in 15 seconds (using a 
475 MHz P6-II). As in the previous case, the main 
drawback of this approach is that the NN has to be 
trained specifically for a particular data set. 
 
2.5 Theoretical Limitations 
From the information theoretical point of view, the 
reason for statistical LDC schemes such as Huffman 
coding not to achieve optimal performance relates to 
the following three simple facts: 
a) One is unable to work with the probabilities of the 
basic symbols (because they are, in general, 
unknown). Instead, one has to use proportions within 
the realm of the known data. For instance, if in a 
block of size n a byte (say  ), stemming from a given 
information source S, appears m times, it is common 
to say  “the probability that byte   appears in the data 
stream generated by source S is (n-m)/n”, or . In 
general, symbols such as   are assumed to be 
statistically independent which is, of course, an 
unrealistic assumption. The efficiency of schemes 
such as PPM and its variations, on the one hand, or 
DMC, on the other, depends fundamentally on their 

ability to find second, third, …, n-th order 
correlations. 
b) Once the proportions are calculated, the LDC 
technique “assumes” that the source exhibits an 
ergodic behavior and that the aforementioned 
probabilities are set, at least, for the duration of the 
data block. 
c) The structure of the symbol is assumed to be of the 
simplest nature, i.e. a symbol is defined as an 
arbitrary collection of adjacent bits. This is not to be 
taken for granted if theoretical bounds are to be 
approached in LDC.  
With this point of view in mind, substitutional 
compressors may be seen as methods which are 
simply trying to dynamically adjust themselves to 
varying probabilities and to take into consideration 
correlations of higher order. The order is, in practice, 
limited by the size of the dictionary. 
 
3 Pattern Based Data Compression 
If one abandons the idea of defining symbols as 
above, and rather searches for patterns whose 
structure is not defined a priori statistical 
independence of such patterns (or metasymbols) is 
guaranteed, the order of correlation is unbounded and 
the source (seen as a generator of metasymols) 
approaches an ergodic behavior. 
As a simple example, let us assume that we are faced 
with a set of data (message 1) such as the one in 
figures 1a and 1b. Message 1 consists of 512 (32 X 
16)  arbitrary characters. For presentation purposes it 
has been split in two parts (16 X 16 each). Figure 1a 
consists of the leftmost part (columns 1 to 16) of the 
data set while figure 1b consists of the rightmost part 
(columns 17 to 32). For convenience, we refer to the 
ensemble of figures 1a and 1b as “Figure 1” (similar 
considerations apply to the rest of the figures). The 
displayed characters are the printable ASCII 
characters corresponding to the 8 bits long number. It 
is not evident which patterns, if any, are to be found 
in the message. Let us assume that we have an 
efficient algorithm which is capable of finding 
patterns which repeat themselves throughout the data. 
One such metasymbol is shown in figure 2. 
The distribution of metasymbol 1 in the message is 
shown in figure 3. Metasymbol 1 consists of 16 
characters. It appears in the message 8 times and 
accounts, therefore, for 25% of the data. Likewise, 
we are able to find 4 more metasymbols, shown in 
figures 4-7. 
  



Fig. 1a. A Message 
 

Fig 1b. A Message 
 
Metasymbol 2 consists of  10 characters. It appears 5 
times and accounts for 9.76% of the data. 
Metasymbol 3 consists of  4 characters. It appears 30 
times and accounts for 23.44% of the data. 
Metasymbol 4 consists of 3 characters. It appears 15 
times and accounts for 8.79% of the data. 
Metasymbol 5 consists of 4 characters. It appears 5 
times and accounts for 3.9% of the data. 
 

 
Figure 2a. Metasymbol 1 

 

 
Figure 2b. Metasymbol 1 

Figure 3a. Occurrences of metasymbol 1 

 Figure 3b. Occurrences of metasymbol 1 
 

Figure 4a. Metasymbol 2 

Figure 4b. Metasymbol 2 

Fig. 5a. Metasymbol 3. 

 Fig. 5b. Metasymbol 3. 
 

 
Fig. 6a. Metasymbol 4 



Fig. 6b. Metasymbol 4 
 

Fig. 7a. Metasymbol 5 

Fig. 7b. Metasymbol 5 
 

The remaining 149 characters may not be accounted 
for in any metasymbol. They are shown in figure 8. 
This set of un-patterned symbols will be called the 
filler. 

 
  Fig. 8a. Filler 

 
Fig. 8b. Filler 

 
The reader may verify that, by superimposing all 
occurrences of metasymbols 1-5 plus the filler, we 
may reconstruct the message fully.  
Even with the metasymbols at hand, it is not a simple 
task to find the places where they appear in the 
message. This is so because patterns are not pre-
specified in either content or structure. For instance, 

metasymbol 5, which consists of 4 characters, 
appears for the first time in position 32, having 
intersymbolic gaps (or, simply, “gaps”) of size 11, 5 
and 11 respectively. In contrast, metasymbol 3, which 
consists of 4 symbols also, appears for the first time 
in position 2, having gaps of size 13, 10 and 3 
respectively. 
We may represent the message above as a 
combination of metasymbols as follows. 
 
3.1 Algorithm MT: Metasymbolic Transform 
1. Create a Header. 
The basic characteristics of the encoding process are 
encoded in a header (in this case, it is 16 bits long). In 
the header we define: 
   a) The symbol’s length [ λ ]. As stated in the 
introduction, the length of a symbol is arbitrary. We 
use 4 bits to specify its length (i.e. symbol’s length 
goes from 1 to 16). 
   b) The number of bits needed to express the amount 
of metasymbols found [ µ  ]. Again we use 4 bits (i.e. 

we provide for up to 1µ2 −   possible metasymbols). 
  c) The number of bits needed to express the 
maximum distance between two consecutive 
metasymbols [ω  ]. This distance is expressed relative 
to preceding metasymbol. By convention, the first 
occurrence of the first metasymbol is set relative to 0.  
We call this distance, an offset. Hence, we express a 
set of offsets. 
   d) The number of bits needed to express the 
maximum gap between two consecutive symbols in a 
given metasymbol [ γ  ]. The position of the first 
symbol in the i-th metasymbol is obtained from (c). 
With exception of the first symbol, this distance (the 
gap) is expressed relative to the previous symbol. 
2. Express the message in metasymbols. Once the 
metasymbols are identified we re-express the 
message as a list of metasymbols, plus the filler. 
3. Describe the initial position of each one of the 
metasymbols. 
4. Describe the structure of each of the metasymbols. 
5. Describe the contents of each of the metasymbols. 
6. Describe the contents of the filler 
 
3.1 Higher Order Metasymbolic LDC (MLDC) 
The mere re-expression of the message as described 
is enough to achieve data compression. But, the re-
expressed message may be further subject to, say, 
arithmetic encoding, allowing for further 
improvements. 
The MLDC, as developed and tested is what we may 
call a 0-order MLDC Compression Scheme (MLDC0, 
for short). In fact, MLDC0 is a transformation  
method which, like BWT discussed above, may 



prepare the data for further compression. In this 
regard, we may say that application of MLDC0 
merely transforms a source data set to a target data 
set. If no compression by traditional schemes is 
performed on the target data set, MLDC0 is achieved. 
If, on the other hand,  we do some sort post-
compression processing then MLDC1 is achieved. 
Furthermore, second order MLDC (MLDC2) may be 
achieved by determining distribution frequencies of 
metasymbols in sets of data whose nature is 
determined a priori. For instance, one may 
extensively analyze sets of English texts or sets of 
.BMP files. These sets may be indexed canonically. 
The most frequently appearing metasymbolic 
structures in every predefined set may be indexed 
canonically as well. The indices of the data sets, the 
indices of the metasymbolic structures and the 
structures themselves are stored in a catalog which 
has to be calculated only once, and made known to 
the potential receivers of the data sets. Once this is 
done, one achieves MLDC2 by a) Identifying the 
proper set (i.e. the index of the set is encoded) and b) 
Encoding the indices of the metasymbols. This 
process eliminates the need for step 4 in algorithm 
MT above. 
 
4 Preliminary test and discussion 
In order to tests the behavior of MLDC0, we 
performed the following test: 
1. We randomly generated a patterned file 512 bytes 
long (the samples above correspond to one such data 
file). A maximum of 16 symbols and a maximum gap 
of 16 per metasymbol were allowed. 
 
2. We considered: 

a) A uniform distribution, that is, one in 
which  ji,)jP(S)iP(S ∀= . 

    We also obtained the frequencies of all 256 binary 
combinations in 4 sets of sample data: 

b) An excerpt of Cervantes’ novel “El 
Amante Liberal” (61,233 bytes). 

c) An excerpt of Shakespeare’s play 
“Macbeth” (64,000 bytes). 

d) A .JPG image of Iguazu’s cataracts 
(308,158 bytes). 

e) An .MP3 piano recording of Manzanero’s 
(2,819,971 bytes). 
3. We filled the patterns obtained in step 1 with bytes 
having the same probability distributions as in each 
of the data samples.  
4. We subjected each of the 5 patterned files to the 
following algorithms: 

a) MLDC0 
b) LZ77 

c) LZW 
d) Huffman 
e) PPM 

5. We calculated the compression ratio as L/C. Where 
L is the size of the original message and C is the size 
of the transformed message (in bits). The ratios for 
the five algorithms are shown in Table 1. 

 
Distribution Compressor Compressed 

File's Size 
Compression 

Ratio 
Uniform MLDC0 281 1.8221 

  LZ77 571 0.8967 
  LZW 512 1.0000 
  HUFFMAN 648 0.7901 
  PPMZ2 437 1.1716 
    

Spanish MLDC0 281 1.8221 
  LZ77 539 0.9499 
  LZW 392 1.3061 
  HUFFMAN 345 1.4841 
  PPMZ2 298 1.7181 
    

English MLDC0 281 1.8221 
  LZ77 536 0.9552 
  LZW 390 1.3128 
  HUFFMAN 341 1.5015 
  PPMZ2 297 1.7239 
    

Image MLDC0 281 1.8221 
  LZ77 572 0.8951 
  LZW 522 0.9808 
  HUFFMAN 657 0.7793 
  PPMZ2 447 1.1454 
    

Audio MLDC0 281 1.8221 
  LZ77 572 0.8951 
  LZW 524 0.9771 
  HUFFMAN 668 0.7665 
  PPMZ2 446 1.1480 

Table 1. Compressors’ Performances 
 

Several points are to be made: 
1. First and foremost, in all cases MLDC0 
outperformed the traditional compressors. 
2. The next best compressor was PPMZ2 (a variation 
of PPM). This is to be expected given that PPM 
explores larger correlation orders than the rest. 
3. In general, traditional methods’ performance was 
relatively better for text files. This may be explained 
by noting that short “patterns” and correlations are 
frequent in natural languages such as English and 
Spanish 
4. .JPG and .MP3 data has already undergone a 
compression (albeit lossy) process. Therefore, with 
the notable exception of PPM, all traditional 



compressors yield compression rations below unity 
or, in other words, the “compressed” file is larger 
than the original, uncompressed one. 
5. Uniformly distributed data turns out to be almost 
as impervious to traditional compressors as pre-
compressed data. The short range and simply 
patterned search that traditional compressors perform 
is unsuccessful when range is not short nor patterns 
are simple.. 
6. Traditional compressors perform differently for 
different distributions whereas MLDC, by finding 
complex patterns, is indifferent to basic, simple 
probability distributions. 
 
5 Theoretical Bounds 
To determine when MLDC0 is effective, we perform 
the following analysis. 
 
Definitions. 
1. Let L denote the size of the original uncompressed 
message in bits. 
2. Let H denote the size of the header in bits. By 
convention H=16. 
3. Let M denote the number of different meta-
symbols. In the example above M=5. 
4. Let Ni denote the number of instances of 
metasymbol i. For instance, N1=8 and N3=30 in the 
example. 
5. Let |mi| denote the number of symbols of 
metasymbol i. 
6. Let γω,µ,λ,  be defined as in algorithm MT. 
    Then C (the length of the MLDC0 transformed 
message in bits) is expressed by equation (1). 
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To achieve data compression from MLDC0 it is only 
needed that L/C>1. When compression is low, the 
advantages derived from it are offset by the need to 
supply the decoding information. In MLDC2, for 
example, the size of the compressed data is given by 
(2) where the term corresponding to metasymbolic 
structure has been left out because it is no longer 
needed. 

(2)iN
M
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6 Conclusions 
MLDC0 may yield better potential compression ratios 
than any of the traditional compression methods. This 
is true only if: a) There are patterns to be found in the 

message, b) C>L in equation (1) and c) We are able 
to detect the embedded patterns. In [6] we have 
shown that the problem of finding the metasymbols is 
of NP complexity. Moreover, it is NP-complete. 
Therefore, except for the most simple cases which 
carry no practical interest, there is no deterministic 
algorithm which guarantees that condition (c) is 
fulfilled. However, we have been able to approach 
the theoretical bounds in some cases by applying 
evolutionary optimization. As reported in [7] a 
genetic algorithm with special operators has 
approached such limits. 
We should show that data sets whose symbols come 
from different sources (for example, a mixture of 
image and audio files) when transformed by MLDC0 
retain the compression properties. We should also 
establish the most adequate method for post-
processing transformed data to achieve MLDC1. We 
should determine also the different sets of interesting 
data and proceed with their cataloguing and indexing 
to achieve MLDC2. We ought to compare the 
efficiency of our method (in terms of processing 
requirements) with traditional ones. Finally, we have 
to benchmark our method versus traditional ones on 
some accepted data corpus. 
At any rate, archival storage/retrieval may benefit 
from optimized compression even at greater encoding 
expenses in view of the fact that decompression times 
for MLDC are comparable to traditional methods’. 
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