
Pattern Based Lossless Data Compression

ANGEL KURI-MORALES
Instituto Tecnológico Autónomo de México

Río Hondo No. 1
México 01000, D.F.

MEXICO

Abstract. In this paper we discuss a method for lossless data compression (LDC) which relies on finding a set of
patterns (each of these patterns will be called a metasymbol) in a set of data whose elements (which we will call
symbols) are of arbitrary size and which is, itself, also of arbitrary size. This arbitrary data set will be called a
message. In order to achieve LDC two things are necessary: a) A method to find the metasymbols and b) A
scheme to represent the message as a function of these metasymbols. In the past, LDC has been attempted,
among other methods, by using the probability that a given symbol or combination of symbols appears in the
message (as in Huffman and PPM encoding schemes) or by keeping a record of the last K symbols in the
message’s stream and using references to this record to represent the data (as in the several variations of Lempel-
Ziv compression schemes). In both of the aforementioned approaches to LDC the structure of the premium data
structure on which the method is based is fixed a priori. Furthermore, the compression ratio of both of these
approaches changes even in the presence of similar patterns in the structure of the message. The structure of the
metasymbols in our approach, however, does not depend on aprioristic considerations. In fact, the structure of
every metasymbol is arbitrary and , in general, different from every other’s one. We compare MLDC to
traditional encoding schemes, showing the potential superiority of our method. We also show that Metasymbolic
Lossless Data Compression (MLDC) is dependent on the structure of the patterns of symbols and NOT on the
symbols and under which conditions MLDC is superior to other LDC schemes.

Keywords. Data compression, Losslessness, Encoding, Information theory, Ergodicity.

1 Introduction
In this paper we address the problem of achieving the
most compact representation of an arbitrary set of
data without losing any of the information contained
in it, a goal that is generally called lossless data
compression (LDC). Alternatively, one may attempt
to compress data with a given acceptable (under some
measure) loss of its contents; something we refer to
as lossy data compression. LDC may be very broadly
classified considering whether such compression is
achieved by taking into account the probabilities of
the symbols in a message or not. For this
classification to make sense, we must define a
symbol. Intuitively, a symbol is the smallest unit of
information contained in a message. In this regard it
is clear that any message composed of symbols may
be reconstructed by orderly enumerating them.
However, given the digital and usually binary nature
of present day computers and data channels, it is clear
that a symbol may be defined as an n-ary collection
of bits and that, although not generally made explicit,
the choice of n is arbitrary. Typically, however, the
choice corresponds to n=8 where this selection

corresponds to a byte (or character, when the
analyzed data is a text). In some compression
schemes this choice is taken one step forward by
considering compression optimized to streams of
characters or words, where the regularity present in a
given language yields some purported advantage.
Furthermore, it is tacitly assumed in all LDC schemes
up to date, that the sought for regularity is present in
neighboring symbols and no attempt has been made
to try to find such regularity in arbitrary clusters of
symbols.
If, however, no a priori consideration is made on the
size of a symbol we may take one further step and
validly ask whether the structure of such symbol is to
be taken for granted. That is, we may not only
consider the size of groups of adjacent bits, but
rather, groups of possibly non-adjacent bits. In what
follows we assume, for the sake of simplicity and
without loss of generality, that we arbitrarily set the
size of a group to 8 (i.e. symbols are of length 8).
Likewise we explore the possible advantages of
attempting LDC by identifying clusters of symbols
with arbitrary structure. These we call metasymbols.

We show that when such identification is possible, it
is also possible to encode a given message by simply
representing the message as a collection of
metasymbols. From the analysis of the detailed
representation it is easy to find the bounds on
metasymbolic structure in order to achieve LDC. The
rest of the paper is organized as follows: in section 2
we make a brief summary of previous approaches to
LDC. In section 3 we introduce a novel approach to
LDC based on the discovery of patterns of arbitrary
structure. In section 4 we describe a set of tests which
we performed in order to establish the relative
behavior of traditional LDC techniques versus our
own. Finally, in section 5 we offer some conclusions
and point to future lines of research.

2 Previous approaches to LDC
Several previous attempts to LDC have been tried. In
what follows we give a very brief account of some of
these.

2.1 Huffman Coding and Related Techniques

2.1.1 Huffman and Shannon-Fano Coding
Huffman coding is a statistical data compression
technique which gives a reduction in the average
code length used to represent the symbols of an
alphabet. The Huffman code is an example of a code
which is optimal in the case where all symbols
probabilities are integral powers of 1/2. A Huffman
code can be built in the following manner:
 (1) Rank all symbols in order of probability of
occurrence.
 (2) Successively combine the two symbols of the
lowest probability to form a new composite symbol;
eventually we will build a binary tree where each
node is the probability of all nodes beneath it.
 (3) Trace a path to each leaf, noticing the direction
at each node.
A technique related to Huffman coding is Shannon-
Fano coding, which works as follows:
 (1) Divide the set of symbols into two equal or
almost equal subsets based on the probability of
occurrence of characters in each subset. The first
subset is assigned a binary zero, the second a binary
one.
 (2) Repeat step (1) until all subsets have a single
element.
The algorithm used to create the Huffman codes is
bottom-up, and the one for the Shannon-Fano codes
is top-down. Huffman encoding always generates
optimal codes, Shannon-Fano sometimes uses a few
more bits. The interested reader is referred to [1].

2.1.2 Arithmetic Coding
It would appear that Huffman or Shannon-Fano
coding is the perfect mean of compressing data.
However, this is not the case. As mentioned above,
these coding methods are optimal when and only
when the symbol probabilities are integral powers of
1/2, which is usually
not the case. The technique of arithmetic coding does
not have this restriction. It achieves the same effect as
treating the message as one single unit (a technique
which would, for Huffman coding, require
enumeration of every single possible message), and
thus attains the theoretical entropy bound to
compression efficiency for any source.
Arithmetic coding works by representing a number
by an interval of real numbers between 0 and 1. As
the message becomes longer, the interval needed to
represent it becomes smaller and smaller, and the
number of bits needed to specify that interval
increases. Successive symbols in the message reduce
this interval in accordance with the probability of that
symbol. The more likely symbols reduce the range by
less, and thus add fewer bits to the message.

2.1.3 DMC and PPM Coding
Using the symbol probabilities by themselves is not a
particularly good estimate of the true entropy of the
data: We can take into account intersymbol
probabilities as well. Some of the best compressors
available today take this approach: DMC (Dynamic
Markov Coding) starts with a zero-order Markov
model and gradually extends this initial model as
compression progresses; PPM (Prediction by Partial
Matching) looks for a match of the text to be
compressed in an order-n context. If no match is
found, it drops to an order n-1 context, until it reaches
order 0. Both these techniques thus obtain a much
better model of the data to be compressed, which,
combined with the use of arithmetic coding, results in
superior compression performance. For a more
detailed description of PPM principles, see [2].

2.2 Substitutional Compressors
The basic idea behind a substitutional compressor is
to replace an occurrence of a particular phrase or
group of bytes in a set of data with a reference to a
previous occurrence of that phrase. There are two
main classes of schemes, named after Jakob Ziv and
Abraham Lempel, who first proposed them in 1977
and 1978.

2.2.1 The LZ78 family of compressors
LZ78-based schemes work by entering phrases into a
dictionary and then, when a repeat occurrence of that
particular phrase is found, outputting the dictionary

index instead of the phrase. There exist several
compression algorithms based on this principle,
differing mainly in the manner in which they manage
the dictionary. The most well-known scheme (in fact
the most well-known of all the Lempel-Ziv
compressors, the one which is generally referred to as
"Lempel-Ziv Compression"), is Terry Welch's LZW
scheme, which was designed in 1984 for
implementation in hardware for high-performance
disk controllers. LZW starts with a 4K dictionary, of
which entries 0-255 refer to individual bytes, and
entries 256-4095 refer to substrings. Each time a new
code is generated it means a new string has been
parsed. New strings are generated by appending the
current character K to the end of an existing string w.
The most remarkable feature of this type of
compression is that the entire dictionary is
transmitted to the decoder without actually explicitly
transmitting the dictionary. At the end of the run, the
decoder will have a dictionary identical to the one the
encoder has, built up entirely as part of the decoding
process.
LZW is more commonly encountered today in a
variant known as LZC, after its use in the UNIX
"compress" program. In this variant, pointers do not
have a fixed length. Rather, they start with a length of
9 bits, and then slowly grow to their maximum
possible length once all the pointers of a particular
size have been used up. Furthermore, the dictionary
is not frozen once it is full (as for LZW). The
program continually monitors compression
performance, and once it starts decreasing the entire
dictionary is discarded and rebuilt from scratch.
More recent schemes use some sort of least-recently-
used algorithm to discard little-used phrases once the
dictionary becomes full rather than discarding the
entire dictionary.

2.2.2 The LZ77 family of compressors
LZ77-based schemes keep track of the last n bytes of
data seen, and when a phrase is encountered that has
already been seen, they output a pair of values
corresponding to the position of the phrase in the
previously-seen buffer of data, and the length of the
phrase. In effect the compressor moves a fixed-size
window over the data (generally referred to as a
sliding
window), with the position part of the (position,
length) pair referring to the position of the phrase
within the window. The most commonly used
algorithms are derived from the LZSS scheme
described by James Storer and Thomas Szymanski in
1982. In this the compressor maintains a window of
size N bytes and a lookahead buffer the contents of
which it tries to find a

match for in the window.
Decompression is simple and fast: Whenever a
(position, length) pair is encountered, go to that
(position) in the window and copy (length) bytes to
the output.
Sliding-window-based schemes can be simplified by
numbering the input text characters mod N, in effect
creating a circular buffer. The sliding window
approach automatically creates the LRU effect which
must be done explicitly in LZ78 schemes. Variants of
this method apply additional compression to the
output of the LZSS compressor, which include a
simple variable-length code (LZB), dynamic
Huffman coding (LZH), and Shannon-Fano coding
(ZIP 1.x), all of which result in a certain degree of
improvement over the basic scheme, especially when
the data are rather random and the LZSS compressor
has little effect.
An algorithm was developed which combines the
ideas behind LZ77 and LZ78 to produce a hybrid
called LZFG. LZFG uses the standard sliding
window, but stores the data in a modified trie data
structure and produces as output the position of the
text in the trie. Since LZFG only inserts complete
phrases into the dictionary, it should run faster than
other LZ77-based compressors.

2.3 The Burroughs-Wheeler Transform
The BWT [3] is an algorithm that takes a block of
data and rearranges it using a sorting algorithm. The
resulting output block contains exactly the same data
elements that it started with, differing only in their
ordering. The transformation is reversible, meaning
the original ordering of the data elements can be
restored with no loss of information. The BWT is
performed on an entire block of data at once. Most of
the LDC algorithms operate in streaming mode,
reading a single byte or a few bytes at a time. But
with BWT operation on the largest sets of data is
desirable.
The basic idea behind the BWT is to map the original
message into an equivalent one which is better suited
than the original one for an efficient application of a
typical encoding process (such as an arithmetic one
as described above).

2.4 Problem Oriented Compression

2.4.1 Predictive Encoding
In predictive encoding [4], the idea is to have an
“oracle” which adequately predicts the output from
the information source on both sides of the
communications channel. Once the oracle emits its
prediction on the transmitting end, it sends” the
number of correctly predicted bits rather than the bits

themselves. On the receiving end, the received data
stream is matched versus the predicted one,
corrections (if necessary) are made and, thus, the
original message is recovered. Clearly, the main
problem, in this case, is to ensure a minimum
prediction accuracy (or prediction ratio) . If is large
enough, significant compression is achieved. In
practice, a Neural Network (NN) may be used as the
oracle.
The main drawback of this approach is that an oracle
has to be found specifically for each particular data
set.

2.4.2 Neural Networks
In [5] a predictive arithmetic encoder called P6 based
on a 6-gram character model is described. This
algorithm is specifically aimed (the NN is trained for)
at texts of the English language. Prediction is done
one bit at a time by a two layer neural network with
222 (about 4 million) inputs, and one output. The
output is the probability that the next bit will be a 1.
The inputs are "context detectors", where the context
is the last 1 to 5 complete bytes, plus the 0 to 7 bits of
the partially read current byte. An input unit is active
(output of 1) when the context matches a particular
value, otherwise it is 0. Because there are more than
222 possible context values, the context is hashed to a
22-bit number to select the active input. There are 5
contexts considered, with lengths of 1 to 5 complete
bytes. Thus there are 5 out of 222 inputs active at any
time. Using this methodology, 42-47% better
compression than gzip-9 is reported. Compression
time for 600 KB is attained in 15 seconds (using a
475 MHz P6-II). As in the previous case, the main
drawback of this approach is that the NN has to be
trained specifically for a particular data set.

2.5 Theoretical Limitations
From the information theoretical point of view, the
reason for statistical LDC schemes such as Huffman
coding not to achieve optimal performance relates to
the following three simple facts:
a) One is unable to work with the probabilities of the
basic symbols (because they are, in general,
unknown). Instead, one has to use proportions within
the realm of the known data. For instance, if in a
block of size n a byte (say), stemming from a given
information source S, appears m times, it is common
to say “the probability that byte appears in the data
stream generated by source S is (n-m)/n”, or . In
general, symbols such as are assumed to be
statistically independent which is, of course, an
unrealistic assumption. The efficiency of schemes
such as PPM and its variations, on the one hand, or
DMC, on the other, depends fundamentally on their

ability to find second, third, …, n-th order
correlations.
b) Once the proportions are calculated, the LDC
technique “assumes” that the source exhibits an
ergodic behavior and that the aforementioned
probabilities are set, at least, for the duration of the
data block.
c) The structure of the symbol is assumed to be of the
simplest nature, i.e. a symbol is defined as an
arbitrary collection of adjacent bits. This is not to be
taken for granted if theoretical bounds are to be
approached in LDC.
With this point of view in mind, substitutional
compressors may be seen as methods which are
simply trying to dynamically adjust themselves to
varying probabilities and to take into consideration
correlations of higher order. The order is, in practice,
limited by the size of the dictionary.

3 Pattern Based Data Compression
If one abandons the idea of defining symbols as
above, and rather searches for patterns whose
structure is not defined a priori statistical
independence of such patterns (or metasymbols) is
guaranteed, the order of correlation is unbounded and
the source (seen as a generator of metasymols)
approaches an ergodic behavior.
As a simple example, let us assume that we are faced
with a set of data (message 1) such as the one in
figures 1a and 1b. Message 1 consists of 512 (32 X
16) arbitrary characters. For presentation purposes it
has been split in two parts (16 X 16 each). Figure 1a
consists of the leftmost part (columns 1 to 16) of the
data set while figure 1b consists of the rightmost part
(columns 17 to 32). For convenience, we refer to the
ensemble of figures 1a and 1b as “Figure 1” (similar
considerations apply to the rest of the figures). The
displayed characters are the printable ASCII
characters corresponding to the 8 bits long number. It
is not evident which patterns, if any, are to be found
in the message. Let us assume that we have an
efficient algorithm which is capable of finding
patterns which repeat themselves throughout the data.
One such metasymbol is shown in figure 2.
The distribution of metasymbol 1 in the message is
shown in figure 3. Metasymbol 1 consists of 16
characters. It appears in the message 8 times and
accounts, therefore, for 25% of the data. Likewise,
we are able to find 4 more metasymbols, shown in
figures 4-7.

Fig. 1a. A Message

Fig 1b. A Message

Metasymbol 2 consists of 10 characters. It appears 5
times and accounts for 9.76% of the data.
Metasymbol 3 consists of 4 characters. It appears 30
times and accounts for 23.44% of the data.
Metasymbol 4 consists of 3 characters. It appears 15
times and accounts for 8.79% of the data.
Metasymbol 5 consists of 4 characters. It appears 5
times and accounts for 3.9% of the data.

Figure 2a. Metasymbol 1

Figure 2b. Metasymbol 1

Figure 3a. Occurrences of metasymbol 1

 Figure 3b. Occurrences of metasymbol 1

Figure 4a. Metasymbol 2

Figure 4b. Metasymbol 2

Fig. 5a. Metasymbol 3.

 Fig. 5b. Metasymbol 3.

Fig. 6a. Metasymbol 4

Fig. 6b. Metasymbol 4

Fig. 7a. Metasymbol 5

Fig. 7b. Metasymbol 5

The remaining 149 characters may not be accounted
for in any metasymbol. They are shown in figure 8.
This set of un-patterned symbols will be called the
filler.

 Fig. 8a. Filler

Fig. 8b. Filler

The reader may verify that, by superimposing all
occurrences of metasymbols 1-5 plus the filler, we
may reconstruct the message fully.
Even with the metasymbols at hand, it is not a simple
task to find the places where they appear in the
message. This is so because patterns are not pre-
specified in either content or structure. For instance,

metasymbol 5, which consists of 4 characters,
appears for the first time in position 32, having
intersymbolic gaps (or, simply, “gaps”) of size 11, 5
and 11 respectively. In contrast, metasymbol 3, which
consists of 4 symbols also, appears for the first time
in position 2, having gaps of size 13, 10 and 3
respectively.
We may represent the message above as a
combination of metasymbols as follows.

3.1 Algorithm MT: Metasymbolic Transform
1. Create a Header.
The basic characteristics of the encoding process are
encoded in a header (in this case, it is 16 bits long). In
the header we define:
 a) The symbol’s length [λ]. As stated in the
introduction, the length of a symbol is arbitrary. We
use 4 bits to specify its length (i.e. symbol’s length
goes from 1 to 16).
 b) The number of bits needed to express the amount
of metasymbols found [µ]. Again we use 4 bits (i.e.

we provide for up to 1µ2 − possible metasymbols).
 c) The number of bits needed to express the
maximum distance between two consecutive
metasymbols [ω]. This distance is expressed relative
to preceding metasymbol. By convention, the first
occurrence of the first metasymbol is set relative to 0.
We call this distance, an offset. Hence, we express a
set of offsets.
 d) The number of bits needed to express the
maximum gap between two consecutive symbols in a
given metasymbol [γ]. The position of the first
symbol in the i-th metasymbol is obtained from (c).
With exception of the first symbol, this distance (the
gap) is expressed relative to the previous symbol.
2. Express the message in metasymbols. Once the
metasymbols are identified we re-express the
message as a list of metasymbols, plus the filler.
3. Describe the initial position of each one of the
metasymbols.
4. Describe the structure of each of the metasymbols.
5. Describe the contents of each of the metasymbols.
6. Describe the contents of the filler

3.1 Higher Order Metasymbolic LDC (MLDC)
The mere re-expression of the message as described
is enough to achieve data compression. But, the re-
expressed message may be further subject to, say,
arithmetic encoding, allowing for further
improvements.
The MLDC, as developed and tested is what we may
call a 0-order MLDC Compression Scheme (MLDC0,
for short). In fact, MLDC0 is a transformation
method which, like BWT discussed above, may

prepare the data for further compression. In this
regard, we may say that application of MLDC0
merely transforms a source data set to a target data
set. If no compression by traditional schemes is
performed on the target data set, MLDC0 is achieved.
If, on the other hand, we do some sort post-
compression processing then MLDC1 is achieved.
Furthermore, second order MLDC (MLDC2) may be
achieved by determining distribution frequencies of
metasymbols in sets of data whose nature is
determined a priori. For instance, one may
extensively analyze sets of English texts or sets of
.BMP files. These sets may be indexed canonically.
The most frequently appearing metasymbolic
structures in every predefined set may be indexed
canonically as well. The indices of the data sets, the
indices of the metasymbolic structures and the
structures themselves are stored in a catalog which
has to be calculated only once, and made known to
the potential receivers of the data sets. Once this is
done, one achieves MLDC2 by a) Identifying the
proper set (i.e. the index of the set is encoded) and b)
Encoding the indices of the metasymbols. This
process eliminates the need for step 4 in algorithm
MT above.

4 Preliminary test and discussion
In order to tests the behavior of MLDC0, we
performed the following test:
1. We randomly generated a patterned file 512 bytes
long (the samples above correspond to one such data
file). A maximum of 16 symbols and a maximum gap
of 16 per metasymbol were allowed.

2. We considered:

a) A uniform distribution, that is, one in
which ji,)jP(S)iP(S ∀= .

 We also obtained the frequencies of all 256 binary
combinations in 4 sets of sample data:

b) An excerpt of Cervantes’ novel “El
Amante Liberal” (61,233 bytes).

c) An excerpt of Shakespeare’s play
“Macbeth” (64,000 bytes).

d) A .JPG image of Iguazu’s cataracts
(308,158 bytes).

e) An .MP3 piano recording of Manzanero’s
(2,819,971 bytes).
3. We filled the patterns obtained in step 1 with bytes
having the same probability distributions as in each
of the data samples.
4. We subjected each of the 5 patterned files to the
following algorithms:

a) MLDC0
b) LZ77

c) LZW
d) Huffman
e) PPM

5. We calculated the compression ratio as L/C. Where
L is the size of the original message and C is the size
of the transformed message (in bits). The ratios for
the five algorithms are shown in Table 1.

Distribution Compressor Compressed

File's Size
Compression

Ratio
Uniform MLDC0 281 1.8221

 LZ77 571 0.8967
 LZW 512 1.0000
 HUFFMAN 648 0.7901
 PPMZ2 437 1.1716

Spanish MLDC0 281 1.8221
 LZ77 539 0.9499
 LZW 392 1.3061
 HUFFMAN 345 1.4841
 PPMZ2 298 1.7181

English MLDC0 281 1.8221
 LZ77 536 0.9552
 LZW 390 1.3128
 HUFFMAN 341 1.5015
 PPMZ2 297 1.7239

Image MLDC0 281 1.8221
 LZ77 572 0.8951
 LZW 522 0.9808
 HUFFMAN 657 0.7793
 PPMZ2 447 1.1454

Audio MLDC0 281 1.8221
 LZ77 572 0.8951
 LZW 524 0.9771
 HUFFMAN 668 0.7665
 PPMZ2 446 1.1480

Table 1. Compressors’ Performances

Several points are to be made:
1. First and foremost, in all cases MLDC0
outperformed the traditional compressors.
2. The next best compressor was PPMZ2 (a variation
of PPM). This is to be expected given that PPM
explores larger correlation orders than the rest.
3. In general, traditional methods’ performance was
relatively better for text files. This may be explained
by noting that short “patterns” and correlations are
frequent in natural languages such as English and
Spanish
4. .JPG and .MP3 data has already undergone a
compression (albeit lossy) process. Therefore, with
the notable exception of PPM, all traditional

compressors yield compression rations below unity
or, in other words, the “compressed” file is larger
than the original, uncompressed one.
5. Uniformly distributed data turns out to be almost
as impervious to traditional compressors as pre-
compressed data. The short range and simply
patterned search that traditional compressors perform
is unsuccessful when range is not short nor patterns
are simple..
6. Traditional compressors perform differently for
different distributions whereas MLDC, by finding
complex patterns, is indifferent to basic, simple
probability distributions.

5 Theoretical Bounds
To determine when MLDC0 is effective, we perform
the following analysis.

Definitions.
1. Let L denote the size of the original uncompressed
message in bits.
2. Let H denote the size of the header in bits. By
convention H=16.
3. Let M denote the number of different meta-
symbols. In the example above M=5.
4. Let Ni denote the number of instances of
metasymbol i. For instance, N1=8 and N3=30 in the
example.
5. Let |mi| denote the number of symbols of
metasymbol i.
6. Let γω,µ,λ, be defined as in algorithm MT.
 Then C (the length of the MLDC0 transformed
message in bits) is expressed by equation (1).





 ∑

=
−+∑

=
+∑

=
+∑

=
+∑

=
+<

M

1i iNimL
M

1i imλ
M

1i imγ
M

1i iNω
M

1i iNµHC

)1(iN
M

1i im
M

1i imλ)(γ
M

1i iNω)(µLHC ∑
=

−∑
=

++∑
=

+++<

To achieve data compression from MLDC0 it is only
needed that L/C>1. When compression is low, the
advantages derived from it are offset by the need to
supply the decoding information. In MLDC2, for
example, the size of the compressed data is given by
(2) where the term corresponding to metasymbolic
structure has been left out because it is no longer
needed.

(2)iN
M

1i im
M

1i imλ
M

1i iNω)(µLHC ∑
=

−∑
=

+∑
=

+++<

6 Conclusions
MLDC0 may yield better potential compression ratios
than any of the traditional compression methods. This
is true only if: a) There are patterns to be found in the

message, b) C>L in equation (1) and c) We are able
to detect the embedded patterns. In [6] we have
shown that the problem of finding the metasymbols is
of NP complexity. Moreover, it is NP-complete.
Therefore, except for the most simple cases which
carry no practical interest, there is no deterministic
algorithm which guarantees that condition (c) is
fulfilled. However, we have been able to approach
the theoretical bounds in some cases by applying
evolutionary optimization. As reported in [7] a
genetic algorithm with special operators has
approached such limits.
We should show that data sets whose symbols come
from different sources (for example, a mixture of
image and audio files) when transformed by MLDC0
retain the compression properties. We should also
establish the most adequate method for post-
processing transformed data to achieve MLDC1. We
should determine also the different sets of interesting
data and proceed with their cataloguing and indexing
to achieve MLDC2. We ought to compare the
efficiency of our method (in terms of processing
requirements) with traditional ones. Finally, we have
to benchmark our method versus traditional ones on
some accepted data corpus.
At any rate, archival storage/retrieval may benefit
from optimized compression even at greater encoding
expenses in view of the fact that decompression times
for MLDC are comparable to traditional methods’.

References:
 [1] Gailly, Jean-loup, “Data Compression FAQs”,
ftp://rtfm.mit.edu/pub/usenet/news.answers/compress
ion-faq/
 [2] Zhao, Ben, “Algorithms in the "Real World" ,
http://www-2.cs.cmu.edu/afs/cs/project/pscico-
guyb/realworld/www/index.html#notes
[3] Nelson, Mark,
http://dogma.net/markn/articles/bwt/bwt.htm
[4] Hamming, R.W., Coding and Information Theory,
Prentice-Hall, 1980, p. 80-89.
[5] Mahoney, Matthew, "Fast text compression with
neural networks", Proc. FLAIRS, Orlando, 2000.
cs.fit.edu/~mmahoney/compression/nn_paper.html
[6] Kuri, A., Galaviz, J., Pattern-Based Data
Compres-sion, III Mexican International Congress
on Artificial Intelligence, to be published.
[7] Kuri, A., Herrera, O., Metrics for Symbol
Clustering from a Pseudoergodic Information Source,
Proceedings of ENC03, Tlaxcala, IEEE Press, 2003.

