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Abstract:A software package for the simulation and investigation of the dynamic behavior of dynamical systems calledAnT
will be presented in this paper. Due to its flexible architecture,AnT is able to simulate dynamical systems belonging to

various classes, e.g. maps, ordinary and delay differential equations, etc., as well as many sub–classes derived from these. A

main feature aimed at the development ofAnT is the support of the investigation of the dynamics of the simulated systems

with several provided investigation methods, like e.g. period analysis, Lyapunov exponents calculation, generalized Poincaré

section analysis and much more. Another important feature ofAnT are so–called scan runs, i.e. the ability to investigate a

dynamical system by varying some relevant influence quantities, such as the control parameters, initial values, or even some

parameters of the investigation methods.
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1 Introduction

Efficient simulation of dynamical systems is an impor-
tant field in research, industrial applications and edu-
cation as well. The project presented here is focused
on the development and implementation of a software
packageAnT for the simulation and investigation of a
broad spectrum of dynamical systems. TheAnT pack-
age comes along with a set of investigation methods,
thus enabling the user to analyze various aspects of dif-
ferent classes of dynamical systems. Hereby, the user
must only provide an equation of motion corresponding
to one of the supported classes of dynamical systems
and do the appropriate initialization of the simulator,
e.g. by means of a configuration file or, more comfort-
ably, by using a corresponding graphical user interface.
The ability to turn several investigation methods either
on or off leads to an increase in flexibility and also effi-
ciency, since one only has to pay for resources that are
really needed.

TheAnT simulation package is a powerful tool which
provides the user with data resulting from the per-
formed computations. The user of the software may
further process and interpret the produced data in order
to get valuable insights concerning the dynamics of the
investigated system. Compared to other known tools for
the simulation and investigation of dynamical systems,

like for instance AUTO, XPP, DsTool, Dynamics, DDE-
BIFTOOL, etc.,AnT has some advantages. Firstly, the
spectrum of dynamical system classes and investigation
methods supported byAnT is broader than that of any
other tool which we know of. Secondly,AnT allows the
investigation of dynamical systems while varying some
settings. Although other tools are also able to perform
similar tasks,AnT is by now the only tool running in
client-server mode. Hence, computation intensive tasks
may be distributed among many clients automatically.

2 Classes of dynamical systems sup-
ported by AnT

According to the aims of theAnT project, the term of
a dynamical system was kept very general. In this sec-
tion we present a brief overview of several classes of
dynamical systems which can be simulated and investi-
gated usingAnT . Currently, the simulator is able to deal
with the followingbasic classesof dynamical systems:

• standard discrete maps:
~xn+1 = ~f(~xn, {σ})

• ordinary differential equations (ODE):
~̇x(t) = ~f(~x(t), {σ})



• delay differential equations(DDE):
~̇x(t) = ~f(~x(t), ~x(t− τ), {σ})

• functional differential equations (FDE):
~̇x(t) = ~F [~xt, {σ}]
with ~xt(θ) = ~x(t + θ), θ ∈ [−τ, 0]

• partial differential equations (PDE) with one
spatial component:
∂
∂t~x(q, t) = ~f

(
~x(q, t), ∂

∂q~x(q, t), . . . , {σ}
)

with a

scalar spatial componentq defined on the domain
[qmin, qmax].

Here~xn and~x(t) denote the real–valued state vector
of the system,σ a set of parameters, andτ the time de-
lay. The vector~xt(θ) is an element of the extended state
space given by the space of vector–valued functions on
the interval[−τ, 0] and ~F is a non–linear functional de-
fined on this space. Dealing with partial differential
equations, one can use several types of von Neumann
boundary conditions (fluxless, cyclic, interpolated, con-
stant), as well as Dirichlet boundary conditions.
Figures 1.a, 1.b, 2.a, 5 show some simulation examples
of dynamical systems belonging to these basic classes.

In addition to standard discrete maps it is also possible
to use

• recurrent maps
~xn+1 = ~f(~xn, ~xn−1, ..., ~xn−nτ , {σ})

with nτ ∈ N, nτ > 1. Of course, the recurrent maps
can be transformed into standard discrete maps by ex-
tending the state space accordingly. Hence, one is in
principle always able to do the work with standard maps
only, but using the more natural form of recurrent maps
simplifies the modeling of time discrete systems with
delay and is therefore supported byAnT . As a side note,
we have to remark that this kind of elimination of the
delay by state space extension is not possible for delay
differential equations ([1], [5]).
Non–autonomous systems are not supported byAnT
directly, but this is not a restriction, since they can
be transformed into autonomous ones by a standard
extension of the state space, i.e. by introducing a new
state variable representing the time.

Additionally, AnT can be used with two more classes
of dynamical systems, denoted ascompositeor cellular
dynamical systems. These are known as coupled map
lattices (CML) and coupled ordinary differential equa-
tions lattices (CODEL) respectively. Given local cou-
plings and closed ring topology, these systems can be
defined by

• CML:
~x

(i)
n+1 = ~f

(
~x

(i−l)mod N
n , . . . ,

~x
(i)
n , ~x

(i+r)mod N
n , {σ}

)
• CODEL:

~̇x(i)(t) = ~f
(
~x(i−l)mod N (t), . . . , ~x(i)(t), . . . ,
~x(i+r)mod N (t), {σ}

)
Hereby,N denotes the number of cells in the lattice,i
is the cell index (i = 1 . . . N ) andl andr the ranges of
the coupling interval.AnT provides also more general
types of lattices with global coupling, where a cell is
coupled arbitrarily with other existing cells. Hence,
arbitrary lattice topology is also possible, as well as
lattices with more than one space direction. Examples
of coupled systems are shown in Fig. 3 and Fig. 4.

Furthermore,AnT has support forhybrid dynamical
systems, which became more and more important dur-
ing the past few years. A basic property of these sys-
tems is, that their state space consists of two parts,
a continuous–valued vector~xn ∈ Rnc and a vector
~m ∈ Mnd where M is a set of discrete values and
nc, nd ∈ N+. AnT provides three types of hybrid sys-
tems, i.e.

• hybrid maps:
~xn+1 = ~f(~xn, ~mn, {σ})
~mn+1 = ~φ(~xn, ~mn, {σ})

• hybrid ODEs:
~̇x(t) = ~f(~x(t), ~m(t), {σ})
~m(t+) = ~φ(~x(t), ~m(t), {σ})

• hybrid DDEs
~̇x(t) = ~f(~x(t), ~x(t− τ), ~m(t), {σ})
~m(t+) = ~φ(~x(t), ~m(t), {σ})

The notation~m(t+) means that the vector~m is as-
sumed to be left-side continuous with respect to time.

AnT is also able to deal with some classes ofstochas-
tic systemswith additive noiseη, although it should be
remarked, that currently only a limited set of integra-
tion and investigation methods is available for these sys-
tems. The stochastic system classes supported byAnT
are:

• maps with additive noise:
~xn+1 = ~f(~xn, {σ}) + ~ηn

• ODEs with additive noise:
~̇x(t) = ~f(~x(t), {σ}) + ~η(t)



• DDEs with additive noise:
~̇x(t) = ~f(~x(t), ~x(t− τ), {σ}) + ~η(t)

Here ~η means the additive white noise vector, which
can be distributed differently, e.g., uniform or gaussian.
An example of a stochastic ODE with additive noise is
presented in Fig. 2.b.

A remarkable feature ofAnT is the very general im-
plemented concept ofPoincaré sections. According
to this concept, the orbit of a discrete map is result-
ing from the orbit of some other dynamical system,
whereby only those points are selected which satisfy
a specific condition. In the case of classical Poincaré
sections, this condition is given by the cross–section of
the orbit with a plane.AnT supports two variants of
classical Poincaré sections, which behave differently in
the context of scan runs. On the one hand, the plane
can be fixed, i.e. the plane remains the same even if
the parameters of the investigated dynamical system are
varied. For instance, the behavior of the Rössler system
([4]) can be investigated by varying the parametera us-
ing Poincaŕe sections with the fixed planey = 0 (see
Fig. 6). On the other hand, in some cases it can be in-
teresting to define the plane depending on the system
parameters, and hence the coefficients of the plane have
to be varied together with the system parameters. For
instance, it is known that the Lorenz–63 system ([2])
possesses three fixed points, which can be determined
analytically. Two of these fixed points depend on the
system parametersr andb. In the Fig. 7 one can see
the bifurcation diagram of the Poincaré map, using the
plane defined by the fixed points of the Lorenz–63 sys-
tem. In addition to the classical Poincaré section ap-
proach,AnT can use any other condition in order to
calculate generalized Poincaré sections. Especially, in
the case of hybrid systems, there is a specific condi-
tion generating the Poincaré section, which is fulfilled
whenever a change in the discrete state part occurs. Ad-
ditionally, any user defined condition may be used as
well. It has to be mentioned that, due to the architecture
of AnT , Poincaŕe sections are represented as discrete
maps with a special kind of system function, which iter-
ates the given dynamical system until the Poincaré con-
dition gets fulfilled. Hence, all investigation methods
applicable for maps are also applicable for numerical
calculated Poincaré maps.
At last, we ought to remark thatAnT can also pro-
ceedexternal input data. Although this topic was not
intended to be the main application area of theAnT
package, we were able to achieve this functionality by
implementing our system function as an external data

reader. Hence, this dynamical system belongs to the
class of standard discrete maps and may be described
informally by

• ~xn+1 = next input vector

Summarizing, it has to be remarked that the support
of such a broad spectrum of dynamical systems was
not a primary aim in the early phases of theAnT
project. However, it turned out that the software ar-
chitecture concepts, designed and used in the project
(see sec. 6), allow this support generically. As a conse-
quence hereof, we were able to implement many of our
investigation methods at a high level of abstraction, thus
reusing this functionality for many classes of dynamical
systems and avoiding source code duplication.

3 Integration methods

In order to investigate dynamical systems continuous
in time, i.e. ODEs, DDEs, etc.,AnT integrates them
numerically. Hereby, the continuous trajectory has to
be approximated by a sequence of discrete states re-
sulting from the applied integration method. To cope
with typical problems arising by the numerical inte-
gration, like for instance by the integration of the so–
called stiff differential equations or the integration of
stochastic systems,AnT provides several classes of
integration methods. Currently implemented methods
with fixed step size include the well–known one–step
methods of Runge–Kutta type defined by their corre-
sponding pre–implemented Butcher arrays. Addition-
ally, the Butcher arrays can be supplied by the user.
Hence,AnT supports user defined integration meth-
ods of this type. Furthermore a large collection of
different integration methods is implemented, contain-
ing among others some implicit methods like Heun–
backward, some multi–step methods with memory like
the backward differentiation approach (Gear method)
and some predictor–corrector methods like the Adams–
Moulton approach. Additionally,AnT supports several
methods with adjustable step size.

4 Scans

An important issue within the theory of non-linear dy-
namical systems is the investigation of the system dy-
namics depending on various settings.AnT can handle
this kind of investigation by allowing so–called scan–
runs, which incorporate the analysis of the system dy-
namics for varying settings. During such a scan–run,



not only one or more parameters of the investigated dy-
namical system can be varied, but also the initial values
as well as specific parameters of the applied investiga-
tion methods. One possible application of the scan–run
is the investigation of bifurcation scenarios showing the
dependency of the system dynamics on some control
parameters.AnT supports one–dimensional scan–runs,
where only one control parameter is varied (see Fig. 6,
Fig. 7 and Fig. 9), as well as higher–dimensional scans
(see Fig. 10). Another domain of application for scan–
runs is the investigation of basins of attraction in the
case of coexisting attractors. Furthermore, one can em-
pirically determine the parameter settings of certain in-
vestigation methods for which these methods operate
optimally. A sample application of this case is pre-
sented below, but we have to remark that such scans
are rather unusual, since scan–runs normally concern
the parameters or initial values of the system.

One of the approaches for the calculation of the Lya-
punov exponents, implemented byAnT (some modifi-
cation of the approach of Wolfet al. [7]), possesses
as parameters the length of a small deviation vector|~ε|
and the numberNGSO of iteration steps between two
subsequent applications of the Gram–Schmidt ortho–
normalization procedure. These parameters must be
provided by the user. In order to determine the suitable
settings for the parameters, one can investigate their
influence on the calculated values of Lyapunov expo-
nents by using them as scan parameters in a scan–run.
In the example presented in Fig. 8, the correct value
of the Lyapunov exponent can be determined analyti-
cally, which yieldsλ∗ = ln(2). In Fig 8.a, the accu-
racy of the numerical calculation is shown depending
on the length of the deviation vectors|~ε|. The Gram–
Schmidt ortho–normalization procedure is applied in
each step. As one can see, the appropriate setting for|~ε|
lies betweenεmin ∝ 10−9 andεmax ∝ 10−7. If one
sets|~ε| � εmax, the results are not precise enough due
to approach specific requirements, by|~ε| � εmin the
accumulated numerical errors made by the computer
become perceptible. By increasing the number of itera-
tions, one achieves more precise results, but the suitable
ranges forε will be smaller. In Fig. 8.b, the accuracy
of the numerical calculation is shown depending on
the number of iteration steps between two subsequent
applications of the Gram–Schmidt ortho–normalization
procedure. As one can see, the best results are achieved,
if the procedure is applied in each step. We remark that
for other dynamical systems, especially continuous in
time, the optimal setting for the parameterNGSO may
be larger, depending on the step size used by the nu-

merical integration method.

5 Investigation methods

As already mentioned,AnT provides a lot of investiga-
tion methods, considering various aspects of the behav-
ior of a dynamical system. In order to acquire a rough
idea of the investigated dynamical system, one can use
the basic trajectory evaluations. For instance, one can
calculate one or more trajectories of the system, the or-
bital and average velocities as well as other values like
e.g. the wave numbers ([9], Fig. 9.d). The period anal-
ysis makes it possible to calculate bifurcation and pe-
riod diagrams. This is particularly useful in combina-
tion with one– or higher–dimensional scan runs (com-
pare Fig. 9.a, Fig. 9.b and Fig. 10). The stability proper-
ties of a dynamical system can be investigated by calcu-
lating the Lyapunov exponents of its attractors (Fig. 8,
Fig. 9.c). This investigation method is implemented not
only for maps and ordinary differential equations, but
also for dynamical systems with memory, such as delay
differential equations. Due to its generality, this method
can also be applied to the more general class of func-
tional differential equations.
We have included some standard techniques from the
field of frequency analysis, like e.g. the calculation of
power spectra. Singular value decomposition is another
useful method provided byAnT .
Methods based on symbolic dynamics provide a collec-
tion of generic techniques for the generation of sym-
bolic sequences corresponding to the underlying trajec-
tory. AnT supportsn–dimensional extensions of the
techniques, which are known for1–dimensional sys-
tems, like for instance(LR)– and(+−)– symbolic dy-
namics. From the symbolic sequence,AnT is able to
calculate some quantitative measures like e.g. its en-
tropy ([11]).
A powerful part ofAnT is the module for determination
and evaluation of symbolic images ([13, 15, 17]). Using
this analysis method one is able to find invariant sets
of a vector field, especially including unstable orbits.
Note, that the method is applicable for both dynamical
systems discrete and continuous in time. Furthermore,
it is possible to determine the basins of attraction at least
for simple attractors, that is, for fixed points and for
limit cycles.
The results of each investigation method are written to
corresponding data files. After a simulation run, these
results can be visualized and evaluated by the user. Ad-
ditionally, 2D and 3D online-visualization modules are
implemented, which can be used during single-run sim-



ulations.

6 Architecture

AnT is a very powerful tool due to its underlying soft-
ware concepts. An important issue concerns e.g. the
selective insertion of investigation methods during the
initialization phase. Hereby is to mention, that an in-
vestigation method is implemented as consisting of ex-
ecutable entities spread all over the program but coop-
erating while performing the joint task.
In order to make this executable entities pluggable and
mutually exchangeable we designed a common abstract
base class denoting an abstract state transition. Us-
ing the main concepts of polymorphism and inheritance
well–known from the field of the object–oriented pro-
gramming we derived several concrete state transitions.
Typical examples hereof are the calculation of the next
state vector as performed by any iterator or integrator,
the execution steps of some investigation method, and
so on. For reasons of flow control, we were interested
in finding a possibility to join these executable entities
together, thus building so–called state machines. We
developed some common types of state machines for
general use, including e.g. transition sequences as well
as cyclic state machines, which perform an inner transi-
tion as long as a given condition holds. Another kind of
state machine heavily used is that of a pre–post state
machine, consisting of three transitions executed se-
quentially and corresponding to the initialization, main
computation and finalization phase of an algorithm.
The iterative nature of the simulation of dynamical sys-
tems implied the use of a special kind of state machine
in order to perform the iteration steps. This iteration
machine is a pre–post state machine, whereby the main
computation is performed by a cyclic state machine. Its
main task is to calculate the trajectory of the simulated
system, however there are also other activities being
performed as well, such as e.g. transitions represent-
ing parts of investigation methods (so–called plug–ins).
This state machine terminates usually as soon as a cer-
tain number of iteration steps is reached.
The iteration machine described above is contained in
the so–called scan machine, which has a similar struc-
ture, namely a pre–post state machine containing a
cyclic state machine. As in the case of the iteration
machine the main job was to calculate the trajectory of
the system, so is the most important part of the scan
machine even the execution of the embedded iteration
machine. This will be repeated many times, since the it-
eration machine will be executed within the cyclic part

of the scan machine as long as the scan condition holds.

According to the architecture presented above, an in-
vestigation method is implemented as a collection of
state transitions. These have to be inserted into the right
place, i.e. either into the iteration or into the scan ma-
chine, depending on the task to be performed within
the specific transition. For instance, methods producing
some data files must have at least two transitions related
to opening and closing the corresponding files, mostly
along with another state transition which performs the
real computation and output. Usually, the opening act
belongs to the pre–part of the involved state machine
(e.g. the scan machine) while the closing of a file should
be done within the post-transition.

7 Distributed run mode

An important feature ofAnT is the possibility of au-
tomatically distributing scan-runs among several nodes
(processors, machines), thus executing the simulations
simultaneously (currently this feature is available only
for Linux/UNIX platforms).

The parallel execution of a scan-run is coordinated by a
server, which provides the running clients with the val-
ues of the scan settings to proceed with. In order for a
client to do the required computation, it must be initial-
ized by the first interaction with the server. Thereafter,
it enters a cyclic process of requesting scan points from
the server, doing the calculations it was initialized for,
and finally, transferring the results back to the server,
which has to perform the whole data management (e.g.
writing the incoming data out to files in a consistent
manner). The advantage of this configuration is that
if a client fails, the server will not be affected and the
computation will be performed by the other clients. An-
other advantage is that clients can join the computation
dynamically, so if computing power is getting available
new clients can be added to the already running compu-
tation.

It is worth to mention that a client has to do quite the
same work as in the case of a stand–alone application,
with only minor changes concerning especially the out-
put, which has to be redirected to the appropriate net-
work connection (socket). From a user’s viewpoint, the
server is just another application implemented in order
to control the interaction with its clients, as sketched
above. Since the server is performing a scan run, we
were able to realize it as a special kind of scan machine
having no iteration machine inside.



8 Conclusion

The AnT package is free software and is distributed
under the GNU public license. It is available at the
URL http://www.AnT4669.de . There, one can
also find a more detailed description of the package.
The software is yet available for UNIX-based op-
erating systems like Linux, Solaris or FreeBSD
and uses free libraries only. For instance, in some
numerical investigation methods the libraries
fftwlib ( http://www.fftw.org ) and CLAPACK
(http://www.netlib.org/clapack ) are used. If
these libraries are not installed on the current system,
then the corresponding numerical methods (Fourier
analysis, principal values decomposition) can not be
loaded. However, the simulator works even without
them, since the other investigation methods are not
affected anyway.
For future releases, it is planned to extend theAnT
package with new system classes. Especially, partial
differential equations (PDE) with more then one spa-
tial direction and coupled delay and functional differ-
ential equations (CDDEL and CFDEL) will be consid-
ered. Another important goal is the extension of the
list of supported investigation methods. Currently, we
are working on more precise methods for the numerical
calculation of entropies and several fractal dimensions,
on including some new ideas from the field of symbolic
dynamics, etc. Due to the simplicity of integration of
new software modules into theAnT simulator, exter-
nal researchers are welcome to contribute by the further
development ofAnT .
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(a) discrete map

x(t)

y(t)

z(t)

(b) ordinary differential equation

Figure 1: Attractors of some dynamical systems investigated using AnT .

(a) Hénon map xn+1 = 1 − ax2
n + yn, yn+1 = bxn ([3]). A standard example of a two–dimensional system

discrete in time. Shown is the chaotic attractor at a = 1.4, b = 0.3. A small rectangular area of the state space
is shown enlarged in the zoom window.

(b) Lorenz 84 system ẋ = aF −ax− (y2 +z2), ẏ = −y +G+(xy− bxz), ż = −z +(bxy +xz) ([6]). Presented
is the chaotic attractor at a = 0.25, b = 4.0, F = 8.0, G = 1.0.

ẋ(t)

x(t)

(a) delay differential equation

y(t)

x(t)

z(t)

(b) stochastical ODE

Figure 2: Attractors of some dynamical systems investigated using AnT .

(a) Phase locked loop with normalized time delay ẋ(t) = R sin(x(t − 1)) ([12]). The three attractors coexisting
at R = 4.157 are shown here, a symmetric limit cycle and two asymmetric ones, symmetric to each other.

(b) Example of a stochastic system ~̇x = L~x + ~η. The figure illustrates a single realization of the trajectory of a
particular three–dimensional Ornstein–Uhlenbeck process ([10]) using the matrix L = aI with a = −10−3 and
I the identity matrix. Each component of the additive white noise vector ~η has Gaussian distribution N(0, 1).
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Figure 3: Dynamics of a CML, supported by AnT .

Coupled map lattices may show spatio–temporal structures, like the one presented here. The lattice is defined by

xi(n + 1) = f(κi(n)) ∀i = 1 . . . N f(x) =
{

x + a if x < 1
0 if xn ≥ 1

κi(n) =


γ1xN (n)+γ2x0(n)+γ3x1(n)

γ1+γ2+γ3
if i = 0

γ1xi−1(n)+γ2xi(n)+γ3xi+1(n)
γ1+γ2+γ3

if 0 < i < N
γ1xN−1(n)+γ2xN (n)+γ3x0(n)

γ1+γ2+γ3
if i = N

The gray scale values correspond to the values xi(n). The lattice consists of 238 cells, randomly initialized, and
locally coupled using the ring topology. Parameter settings: γ1 = γ2 = γ3 = 1, a = 0.36. In the left part of the
figure, before the stationary state is reached, the glider–phenomenon, known from the field of cellular automata, can
be observed.
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Figure 4: Dynamics of a CODEL, supported by AnT .

An example for a CODEL with global coupling is the following system of coupled selection equations:

ẋijk(t) = xijk(t)

(
1 + (3β − 1)xijk(t)2 − β

∑
j′k′

xij′k′(t)2 − β
∑
i′k′

xi′jk′(t)2 − β
∑
i′j′

xi′j′k(t)2
)

This system is developed based on pattern formation concepts, and is intended for solving a special problem of
combinatorial optimization, the so–called three–index assignment problem ([14]). The time series presented here
corresponds to the system with problem size 3. The system has hence 33 = 27 state variables. Parameter setting is
β = 2.

T (x, t)

t

x

Figure 5: Dynamics of a one dimensional PDE, supported by AnT .

An example for a one dimensional PDE is the following heat conduction equation:

∂

∂t
T (x, t) = κ

∂2

∂x2
T (x, t)

Shown is the relaxation of the temperature profile during evolution of time, starting from a given initial profile. The
parameter κ = 0.1 is usually denoted as diffusion coefficient.
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Figure 6: Investigation of the Rössler system.

The Rössler system, given by ẋ(t) = −(x(t) + z(t)), ẏ(t) = x(t) + ay(t), ż(t) = b + z(t)(x(t) − c),
is here investigated using the parameter settings a = 0.15, b = 0.2 and varying c.
(a),(b) Bifurcation diagrams for the Poincaré map, defined by the cross–sections of the trajectory

with the half–plane
{
(x, y, z)T | y = 0, x > 0

}
.

(c) The figure shows the largest two Lyapunov exponents of this three–dimensional system con-
tinuous in time.

(d) A periodic and a chaotic (two–band) attractor and the corresponding Poincaré sections. The
parameter values used here (c = 5.7 and c = 6.2) are marked with arrows in the bifurcation
diagrams shown in (a) and (b).
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Figure 7: Investigation of the Lorenz–63 system.

The Lorenz–63 system, given by ẋ(t) = σ(y(t)−x(t)), ẏ(t) = x(t)(r−z(t))−y(t), ż(t) = x(t)y(t)−
bz(t) is here investigated using the parameter settings σ = 16.0, b = 4.0 and varying r. Here, a small
periodical window within the chaotic regime can be observed.

(a) Bifurcation diagram for the x variable of the Poincaré map, which is defined by the cross–
section of the trajectory with the parameter–dependent plane defined by the three fixed

points of the system O = (0, 0, 0)T and P± =
(
±
√

b(r − 1),±
√

b(r − 1), r − 1
)T

.

(b), (d) Parts of the bifurcation diagrams for the x and z variables of the Poincaré map mentioned
above.

(c) Largest two Lyapunov exponents.
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Figure 8: Accuracy of the numerical calculation of the Lyapunov exponents for the logistic map xn+1 = αxn(1−
xn) for α = 4.0. The number of iterations is 25 000 steps (solid line), 250 000 steps (dashed line) and 2 500 000
steps (dotted line). The transient part is 1000 steps in all three cases. The initial value is x0 = 0.1.
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Figure 9: Some investigation results.

Presented are some aspects of the dynamical behavior of the following one–dimensional dynamical system discrete
in time, with piece–wise defined system function

xn+1 =
{

αxn(1− xn) if xn ≤ 1
2

βxn(xn − 1) + 1 if xn > 1
2

(1)

at β = 2.8 and varying values of α.

(a) Bifurcation diagram. Shown are the periodic and aperiodic dynamics of the system.
(b) From the period diagram one can see that the bifurcation scenario presented in Fig. (a) resembles a period

adding scenario [16].
(c) As one can see from the diagram of the Lyapunov exponent, the bifurcations presented in Fig. (a) take mostly

place on super–stable parameter values.
(d) In the wave number diagram one can recognize the typical ”devil’s staircase” structure [8].
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Figure 10: Bifurcation structures of the system (1) in the 2-dimensional parameter space [α× β].

The white spaces denote regions with the same periodical behavior, calculated by the method denoted as region
analysis. Some of the periods are written within the corresponding regions. The dashed line shows the section
corresponding to a 1-dimensional parameter scan for α with β = 2.8, as presented in Fig. 9.



Figure 11: Architecture of the AnT simulator.

ScI initialization of the scan machine
ScC scan condition check
ScF final part of a scan run
ItM iteration machine
IM-p investigation method plug–in

ItI initialization of the iteration machine
It iterator
ItC iteration condition check
ItF final part of an iteration run


