
A Model to Reduce IDS Alerts

MARCO AURÉLIO BONATO, WALTER GODOY JR.
Centro de Pós-Graduação em Engenharia Elétrica e Informática Industrial

Centro Federal de Educação Tecnológica do Paraná
Av. Sete de Setembro, 3165 Cep: 80.230-901 – Curitiba - Paraná

BRASIL

Abstract: - The goal of this paper is to present a model to reduce the alerts generated by an IDS[01] analyzer.
This model allows the administrator to analyze only the messages that really generate risks for an environment or
machine. This is very important when you have a complex environment with a lot of machines with many
services in them.

Key-Words: - Network Security, Intrusion Detection, IDS.

1 Introduction
One of the biggest problems in IDS administration is
the generation of false positive alerts or alerts that do
not bring risks to an environment or machine. One
false positive alert occur when normal packages are
identified as attacks. In a complex environment of
intrusion detention, a large number of alerts of this
kind can harm the analysis of true attacks.
 The configuration of any type of analyzer is a
complicated task because it demands from the
administrator deep knowledge in protocols,
applications and attacks format. However, if the
administrator is able to make this administration
through a friendly platform, the analyzer can detect
all the alerts, the filtering being made in the
configuration of the profile of each network/machine.
This platform is represented as an object oriented
model (UML representation)[02] and has three parts.
The first part show one model to represent the
environment or machine, the second part show the
way that the attacks database must be organized to
facilitate the analysis, and the third part is the
program that analyzes the alerts. This program uses
the environment definition plus the attacks database
to define if the alerts bring risks to the environment
or machine.

2 Environment
The Environment class (Fig. 1) defines the
environment where the analyzer is installed. Through
this class and its aggregations it is possible to create a
profile for each computer or network.
 The Environment class has four attributes:

• description: optional. One brief description
about the environment;

• location: optional. The location of the
environment;

• address: required. The environment network
address;

• netmask: optional. The network mask for the
address.

Fig. 1 The Environment Model

 Node

 STRING ident
 ENUM category

 location
0..1

 name
0..1

 Adress

 Platform

Environment

 STRING description
 STRING location
 STRING address
 STRING netmask

 Analyzer
1..*

 Services

0..*

0..*

 STRING name
 STRING model
 STRING manuf

 OS
 STRING name
 STRING version
 STRING manuf
 STRING release

1..*

 Service

 STRING name
 STRING port
 STRING action

*..1

1..*

 Classification

 STRING first_group
 STRING second_group
 STRING third_group
 STRING fourth_group
 STRING action

1..*

 Object

 STRING name
 STRING version
 STRING action

 Patch
 STRING date
 STRING patch

2.1 The Analyzer class
 The Analyzer class identifies the analyzer that is
installed in the environment. This class is defined in
[03].

2.2 The Node class
The Node class is used to identify hosts and others
devices. In this case it is used to identify the hosts
that belong to an environment.
 The Node class has two attributes:

• ident: optional. A unique identifier for the
node;

• category: optional. The “domain” from which
the name information was obtained, if
relevant. The permitted values for this
attribute are showed in [03]. The default
value is “unknown”.

 The Node class has two simple aggregated classes
that are defined here:

• location: zero or one. STRING. The location
of the equipment;

• name: zero or one STRING. The name of the
equipment.

2.3 The Address class
The Address class is used to represent the network
address for a node. This class is defined in [03].

2.4 The Platform class
The Platform class is used to define the node
characteristics. This is useful because some attacks
are targeted only to some specific platforms.
 The Platform class has three attributes:

• name: required. The platform name.
Examples: Intel, Hp, Sun, etc.;

• model: optional. The platform model;
• manufacturer: optional. The manufacturer of

the platform.

2.5 The OS class
The OS class is used to define the operational system
installed in the platform. This is useful because some
attacks are targeted only to some specific operational
systems.
 The OS class has three attributes:

• name: required. The OS name. Examples:
Unix, Linux, Windows, etc.;

• version: required. The OS version;
• manufacturer: optional. The manufacturer of

the OS;

• release: required. The current operational
system release.

2.6 The Patch class
The Patch class is used to define the patch that has
been applied to the operational system. This is useful
because some attacks are targeted only to some
specific operational systems versions. Some patches
correct vulnerabilities, so it’s important to know this
information.
 The Patch class has two attributes:

• date: required. The date on which the patch
was applied to the operational system;

• patch: required. What is the patch that was
applied (version, name, number, etc);

2.7 The Service class
The Service class is used to define the service that is
being executed. This service can be associated to an
environment or to a single machine.
 The Service class has three attributes:

• name: required. The service name. Examples:
Web, Ftp, Telnet, etc;

• port: required. The tcp/udp port which is
being used by the service;

• action: required. What to do with the alerts
that are being received by this
machine/service, “accept” or “reject”;

2.8 The Classification class
The Classification class is used to define the service
classification. This is used to detail the service.
 The Classification class has five attributes:

• first_group: required. The first classification.
Examples: for the service Web we can use
Apache, IIS, Netscape, etc. The service that
does not have a specific classification receive
“general” for this attribute;

• second_group: optional. The second
classification, if necessary. Examples: For the
service Web, first classification IIS we can
use FrontPage as a second classification;

• third_group: optional. The third
classification, if necessary;

• fourth_group: optional. The fourth
classification, if necessary;

• action: required. What to do with the alerts
that are being received by this
machine/service/classification, “accept” or
“reject”;

2.9 The Object class
The Object class is used to define the service object.
 The Object class has three attributes:

• name: required. The object name. Examples:
for the service Web we can use Apache for
the first classification and we can define the
object httpd;

• version: required. The current object version;
• action: required. What to do with the alerts

that are being received by this
machine/service/classification/object,
“accept” or “reject”;

3 Attack
The Attack class (Fig. 2) identifies and organizes the
atack information. With the environemnet
information (Environment class) and the atack
information (Atack class), it becomes more easy to
administer and minimize alerts. The environment
caracteristics are compared with the attack database
to verify if the alert brings risks to the environment or
machine.

Fig. 2 The Attack Class

 The Attack has two attributes:

• name: required. A generic name to the attack;
• severity: optional. The risks that the attack

can cause to the environment or machine.
The permitted value for this attribute are

shown bellow;

Rank Description
0 Low risk
1 Medium risk
2 High risk

Table 1 Severity

3.1 The Ident class
 The Ident class is used to determine for each unique
attack its relationship with all databases notification
attacks available in the Internet. For each one of these
databases there is a description and a specific
identification. Examples of attacks databases are:
Bugtrap[04], Cve[05], Nessus[06], Arachnids[07],
etc.
 The Ident class has four attributes:

• name: required. The database name.
Examples: Bugtrap, Cve, etc;

• ident: required. The attack identification on
this database;

• pdate: required. The date on which the attack
information was registered in this database;

• u_date: optional. The last updated
information about the attack.

• The Ident class has one simple aggregated
class that is defined here:

• url: one or more. STRING. The url that one
person can use to find information inside the
database.

3.2 The More_Information class
The More_information class is used to determine
where the security administrator can find more
information about this atack. This class can receive
any information. For example, a url.

3.3 The Affected_Service class
The Affected_Service class is used to identify the
service that is affected by the attack.
 The Affected_Service has five attributes:

• name: required. The name of the service.
Examples: Web, Ftp, Telnet, etc;

• first_group: required. The first classification.
Examples: for the service Web we can use
Apache, IIS, Netscape, etc. The service that
does not have a specific classification receive
“general” for this attribute;

• second_group: optional. The second
classification, if necessary. Examples: For the
service Web, first classification IIS we can

Attack

 STRING name
 STRING severity

 More_information

1..*

0..*

 Exploit

 Solutions

1..*

Ident

 STRING name
 STRING ident
 STRING p_date
 STRING u_date

Affected_Service

 STRING name
 STRING 1o_group
 STRING 2o_group
 STRING 3o_group
 STRING 4o_group

0..*

0..*

1..*

Version

 String version

1..*

Object

 STRING nome
 STRING objeto

1..*

 url
1..*

Affected_Platform

 STRING name
 STRING model
 STRING manuf

1..*
OS

 STRING name
 STRING version
 STRING manuf
 STRING release

 Patch *..1

use FrontPage as a second classification;
• third_group: optional. The third

classification, if necessary;
• fourth_group: optional. The fourth

classification, if necessary.

3.4 The Object class
The Object class is used to identify the object that is
affected by the attack.
 The Object class has two attributes:

• name: required. One generic name for the
object;

• object: required. The object. Examples: httpd,
ftpd, fingerd;

3.5 The Version class
The Version class is used to determine for a specific
object which versions are vulnerable for this attack.
 The Version class has one attribute:

• version: required. The version of the object
that is vulnerable for this attack. If any
version is vulnerable, the value “any” appears
in the attribute.

3.6 The Affected_Platform class
The Affected_Platform class is used to determine for
a specific object/version which are the platforms that
are vulnerable for this attack. Some attacks are only
applied for some specific platform.
 The Affected_Platform class has three attributes:

• name: required. The platform name.
Examples: Intel, Hp, Sun, etc. If any platform
is vulnerable, the value “any” appears in this
attribute;

• model: optional. The platform model;
• manufacturer: optional. The manufacturer of

the platform.

3.7 The OS class
The OS class is used to define for a specific
object/version/platform which are the operational
systems that are vulnerable for this attack. Some
attacks are targeted only to some specific operational
systems.
 The OS class has three attributes:

• name: required. The OS name. Examples:
Unix, Linux, Windows, etc. If any OS is
vulnerable, the value “any” appears in this
attribute;

• version: required. The OS version;

• manufacturer: optional. The manufacturer of
the OS;

• release: optional. The current operational
system release.

3.8 The Patch class
The Patch class is used to define for a specific
object/version/platform/os which are the patches that
are vulnerable for this attack.
 The Patch class has one attributes:

• patch: required. The patch that is vulnerable.
If every patch is vulnerable, the value “any”
appears in this attribute;

3.9 The Exploited class
The Exploited class (STRING) is used to define how
the vulnerability was explored to generate this attack.

3.10 The Solution class
The Solution class (STRING) is used to define how
the vulnerability can be corrected and the proceedings
to stop the atack.

4 The Tests
For the tests we made two information collections in
a network with approximately 50 machines using a
Snort IDS sensor. This sensor was configured to
generate all possible alerts.
 After collecting the data we got 5 machines (10%)
to create the machines caracteristcs. The profiles
were converted to a group of rules. One of them is
detailed below.

Table 2 Rules based on machine characteristics

 This machine has only three services running. One
Netscape Web Server, one FTP Server (nom
anonymous) and one Radius Server. The only cgi
(common gateway interface) installed in the Web
Server is the “count.cgi” (version 2.5) that is used to
count pages access. The machine platform has the
characteristics shown below:
 Platform name: HP model: Risc

 Operational System name: hp-ux version: 11.00
release: A
 For all rules is applied the environment
characteristics to filter the attacks that are specific for
this platform/os.
 Without this group of rules the security
administrator has 4.605 alerts to analyze. Applying
the rules remained 3 alerts with 21 occurrences.
 We made the same test to five others machines.
The results are shown below.

Machine
Generated

Alerts
No rules

Generated
Alerts

With rules

%
eliminations

1 4605 21 99,54%
2 46 15 67,39%
3 38 17 55,26%
4 19 7 63,16%
5 34 7 79,41%

Table 3 Tests Resume – First Collection

Machine
Generated

Alerts
No rules

Generated
Alerts

With rules

%
eliminations

1 2354 5 99,79%
2 218 10 95,41%
3 16 2 87,50%
4 4 0 100,00%
5 52 1 98,08%
Table 4 Tests Resume – Second Collection

5 Conclusions
This technique to reduce IDS alerts is only applied to
attacks that have as target the computer/network
services.
 We have to do more tests in this model to find
problems and improve the functionality. We think
that this is one way to reduce the excessive number of
alerts generated when you have to administer the
security of a great network with a large number of
machines.

References:
[1] Rebeca Bace and Peter Mell, NIST Special
Publication on Intrusion Detection Systems, 2000.
[2] Object Management Group. UML – Unified
Modeling Language, 2003. http://www.omg.org/uml.
[3] D. Curry and H. Debar. Intrusion Detection
Message Exchange Format data model and
Extensible Markup Language (XML) Document Type
Definition, 2002.

[4] Bugtrap. http://www.securityfocus.com/.
[5] CVE – Common Vulnerabilities and Exposures.
http://cve.mitre.org.
[6] Nessus. http://www.nessus.org/.
[7] ArachNIDS. http://www.whitehats.com.

