
IDS Administration Platform

MARCO AURÉLIO BONATO, WALTER GODOY JR.
Centro de Pós-Graduação em Engenharia Elétrica e Informática Industrial

Centro Federal de Educação Tecnológica do Paraná
Av. Sete de Setembro, 3165 Cep: 80.230-901 – Curitiba - Paraná

BRASIL

Abstract: - The goal of this paper is to present the existent open protocols for information exchange among
components of an IDS (Intrusion Detection System)[1] architecture, how they work, and one open model, which
is being developed by us to manage remote ids components. These protocols are considered open because they
are not associated with any hardware and software manufacturer, but with autonomous groups, which look for
standardization in which the cooperation among several products is possible, no matter the manufacturer.

Key-Words: - Intrusion Detection, Network Security, IDS.

1 Introduction
The more the attacks to computers grow the more the
use of ids technology is justified, because Firewall
based network protection can’t detect attacks
embedded in the application protocols or attacks that
use networks, as DoS. In the case of large corporative
networks, with many networks geographically
distributed, protection based on Firewalls does not
detect the attacks that occur inside the internal
network[2].
 There is one problem associated with the
implementation and use of intrusion detection in large
computer networks, which is the integration among
the analyzers, because the analyzers of different
manufacturers can’t exchange information, and this
becomes a problem for the security administrators.
 To provide this portability among the components
of an IDS architecture, a group of researchers of the
IETF (Internet Engineering Task Force) has created a
set of protocols called IDP (Intrusion Detection
Protocol). This set of protocols can exchange
information among IDS components. This work
group is denominated IDWG (Intrusion Detection
Working Group).

2 IDWG Specification

2.1 Intrusion Detection Message Exchange

Format
The IDMEF[3] data model is an object oriented alert
representation. With it it’s possible to reach a pattern
specification in the relationship between
environments of little or great complexity.
 The IDMEF data model guarantee:

• Heterogeneity: the alerts can be represented
in many ways, depending on where they are
installed and how the detection tool analyzes
them. The model is flexible and because it is
object oriented, it can represent these
characteristics through the aggregation and
subclasses functionality;

• Distinct environment: alerts of one given
attack with different data sources, supply
different information. The IDMEF data
model defines classes that support different
data for one given attack;

• Compatibility among analyzers: The model
provides a set of format converters that will
be used by the analyzers to supply the
managers with standardized information. In
order to define these extensions to the basic
scheme, the IDMEF defines two kinds of
alerts: the simple and the complex, both
provided through the association and
subclasses characteristics;

• Different analysis : depending on the
environment in which the analyzer is
inserted, attacks can be observed and
reported differently. The specified model
makes these differences flexible through
subclasses which are defined with additional
attributes, which can make the data sent to
the management platform compatible.

2.2 Intrusion Detection Exchange Protocol
The IDXP [5] protocol is implemented as a profile of
the BEEP[4] protocol, describing the way the
information is exchanged among IDS components.
While the BEEP model supplies the protocol, the
IDXP specifies the necessary characteristics for the

establishment of a channel and information exchange
among the involved components.
 The IDXP specification can be divided in 4 parts,
which are detailed below.

• Connections: for this task the IDXP profile
requires the use of another profile called
initialization. The use of the initialization
profile for this purpose can preserve all the
compatibility between the IDXP and the
remaining phases, because they only need to
know that there is a connection between two
components and that it can be used;

• Security: after the establishment of the
connection between two IDS components, it
is necessary that the security in the
information exchange also be established. As
the initialization profile also provides the
security characteristic, no other profile is
needed for this functionality. All the security
conditions are preserved at the moment when
the information is transmitted;

• BEEP channel: after a BEEP session has
already established and all the security
processes have been initialized, the next
phase is to open a channel where the data can
be exchanged. The first message contains an
URI, which determines how the information
will be exchanged together, with a machine
name an IP address of the origin. With this
information the server has the capacity to
decide if the client’s request is acceptable,
returning to it a yes or no. Through only one
BEEP session, several IDXP channels can be
created, this way saving the establishment
from new sessions;

• Data transference: the data about intrusion
detection is sent from the clients to the
servers in one of the three types of MIME
data: text/xml, text/plain or application/octet-
stream. XML data must be in accordance
with IDMEF messages. The other two types
have been created in order not to restrict the
use of new implementations.

2.3 Intrusion Alert Protocol
The IAP[6] protocol was constructed to carry alerts
among the IDS components. Like any protocol, it is
based on a model of communication and messages
exchange. It is characterized by simplicity, not having
the same robustness of BEEP/IDXP protocols.

3 Project Using Open Protocols
We are developing a project to manage the analyzers
dispersed in a large network. Knowing that each IDS
analyzer of a great corporative network will have
different configurations, it will be necessary to
remotely configure each one of them. And there’s
also the fact that not all the collected information is
relevant to be sent to a centralized platform of
networks management, therefore, through a
configured filtering politics it is possible to specify
which alerts will be received. As shown in Fig. 1, the
Information Collector takes as a base for its
functioning the rules that will be registered in the
Configuration Manager. The Configuration Manager
is a parameterized interface that the administrator
uses to generate the profile of information collection
for each local network that belongs to the corporative
network and to specify the rules of functioning for
each analyzer.

Analyzer Information
Colector

Configuration
Manager

Network
Management

Security
Platform

Functioning Rules

Alert

Filtering Rules

Filtered
Alerts

Fig. 1 Project Model

3.1 Configuration Manager
The Configuration Manager has the following
characteristics:

• Responsible for the interface that makes the
configuration of all the IDS analyzer
available in the network;

• Responsible for the interface where the
administrator can decide which alerts must be
considered for each of the analyzers of the
net;

• For the updating of the analyzer rules it is
necessary a standard protocol that is shown
below.

3.2 Intrusion Detection Analyzer

Configuration Format
The Intrusion Detection Analyzer Configuration
Format has as its function to make possible to IDS
analyzers to be configured remotely. The relationship
between the principal components of the data model
is shown in Fig. 2.
 To construct this model the model IDMEF[3] was
used as a base.
 The top-level class for the model is IDACF; the
configuration is a subclass of this top-level class.

IDACF

Configuration

 STRING version
 STRING description

 Rule

0..*

1..*

1..*

Analyzer

0..1

ConfigurationSource

 STRING username
 STRING date
 STRING time
 STRING timezone

 address

 address

1..*Manager

 description
1..*

Security

 STRING signature

Fig. 2 IDACF Model Representation

 The Configuration class has two attributes:

• version: required. The version number of the
rules. The creation of the rules is automatic
and has the following format:
YYYMMDDSS. To update the rules version
is necessary to load the old configuration, so
the system can generate the new one. YYYY
– year, MM – month, DD – day and SS –
sequential number that receives 01 when any
modification occurs in the year, month or
day.

• description: optional. One description for the
configuration rules. Example: “rule for DMZ
analyzers”.

3.2.1 The Analyzer Class
The Analyzer class Fig. 3 identifies the analyzer that
receives the functioning rules. For belonging to an
environment where more than an analyzer can have
equal configurations, the model permit that a group of
rules can be attributed to more than an analyzer.
 The Analyzer class and its aggregations are defined
in [3].

Analyzer

 STRING analyzerid
 STRING manufacturer
 STRING model
 STRING version
 STRING class
 STRING ostype
 STRING osversion

Node

 STRING ident
 ENUM category

 location

0..1

 name
0..1

 Address
 STRING ident
 ENUM category
 STRING vlan-name
 STRING vlan-num

 address

 netmask

Fig. 3 The Analyzer Class

3.2.2 The Rule Class
 The Rule class is used to inform to the analyzer what
are its rules of functioning.
 The Rule class is composed of seven aggregated
classes, as shown in Fig. 4.

Rule

 STRING ruleid

 protocol

 direction

 action

1..*

 Signature

 STRING signaturename
 STRING signaturegroup
 STRING url
 STRING string
 STRING depth

 Source

 STRING ident
 ENUM category

 address

 netmask

 port

 Destination

 STRING ident
 ENUM category

1..*

 ExtraParameter
0..*

 address

 netmask

 port

Fig. 4 The Rule Class

 The Rule class has three simple aggregated classes
that are defined here:

• protocol: one or more. STRING. The
protocol that will be analyzed. The permitted
values for this class are defined in the
RFC790[7]. If it is not possible to define the
protocol, the default value is “any”;

• direction: exactly one. STRING. Define the
search criteria. To search for packets going to
or originating from a network machine. The
permitted values for this class are shown
below. The default value is “s<>d”.

Rank Keyword Description

1 s->d From the origin to the
Destination

2 s<-d From the destination to the
Origin

3 s<>d To the two directions
Table 1 The direction definition

• action: one or more. STRING. The action

that will be executed by the analyzer when
the condit ions defined in this rule occur. The
permitted values for this class are shown
below. The default value is “log”.

Rank Keyword Description

1 log Save the information
in the log

2 Alert

Save the information
in the log and send
an alert to the
security network
management

3 reset_sender
Send information to
the sender to close
the connection.

4 reset_destination
Send information to
the destination to
close the connection

5 reset_all

Send information to
the sender and
destination to close
the connection

Table 2 The action definition

The Rule class has one attribute:

• RuleID: optional. A unique identifier for the
rule;

3.2.2.1 The Signature Class
The Signature class is used to define the signature
characteristics.
 The Signature class has five attributes:

• name: required. The signature name. This
name will be stored in the log or showed to
the administrator when the rule is detected by
the analyzer;

• group: optional. The group to which the
signature belongs. This attribute is used to
group signatures that have characteristics in
common. Example: ftp (signatures associates
to FTP protocol), http (signatures associates
to http protocol), etc;

• url: optional. A url at which the manager can
find additional information about the
signature;

• string: required. The string definition. This is
the content that the analyzer will search in
the packet;

• depth: optional. This sets the maximum
search depth for the content pattern match
function to search from the beginning of its
search region.

3.2.2.2 The Source Class
The Source class is used to describe the source
machine that will be analyzed.

 The aggregate classes that make up Source are:
• address: zero or one. STRING. The source

address information. The format of this data
is governed by the category attribute. If it is
not possible to define the source address, the
default value is “any”;

• netmask: zero or one. STRING. The network
mask for the address, if appropriate;

• port: zero or one. STRING. The source port
information. This class can be used for
protocols Udp and Tcp. If it is not be
possible to define the source port, the default
value is “any”.

 The Source class has two attributes:
• category: required. The type of address

represented. The permitted values for this
attribute are shown in [3]. The default value
is “any”.

Rank Keyword Description
15 Any Any address
Table 3 New category for the address class

• negate: required. Address negation. This

attribute allow the administrator to invert the
meaning of the action. The permitted values
for this attribute are “yes” or “no”. This is
useful when the administrator needs to create
one rule where only one source address can
bypass the rule.

3.2.2.3 The Destination Class
The Destination class is used to describe the
destination machine that will be analyzed.
 The aggregate classes that make up Destination
are:

• address: zero or one. STRING. The
destination address information. The format
of this data is governed by the category
attribute. If it is not possible to define the
destination address, the default value is
“any”;

• netmask: zero or one. STRING. The network
mask for the address, if appropriate;

• port: zero or one. STRING. The destination
port information. This class can be used for
protocols Udp and Tcp. If it is not possible
to define the destination port, the default
value is “any”.

 The Destination class has two attributes:
• category: required. The type of address

represented. The permitted values for this
attribute are shown in [3]. The default value

is “any”;
• negate: required. Address negation. This

attribute allow the administrator to invert the
meaning of the action. The permitted values
for this attribute are “yes” or “no”. This is
useful when the administrator needs to create
one rule where only one destination address
can bypass the rule.

3.2.2.4 The ExtraParameter Class
The ExtraParameter class is used to define additional
parameters that will be sent to the analyzer. These
parameters are defined by the analyzer’s features
implementation, and can be different for each
analyzer.
 The ExtraParameter class has two attributes:

• parameter: optional. The name parameter that
will be informed to the analyzer;

• value: required. This attribute is required if
the attribute parameter is informed. It is the
value of the parameter.

3.2.3 The ConfigurationSource Class
 The ConfigurationSource class is used to inform
which machine sent the configuration rules for the
analyzer.
 The aggregate class contained in
ConfigurationSource is:

• node: exactly one. Information about the host
or device that sent the configuration to the
analyzer.

 The ConfigurationSource has tree attributes:
• username: required. The user that sent the

configuration rules to the analyzer;
• date: required. The date when the rules were

sent to the analyzer. The data has the
following format: YYYYDDMM;

• time: required. The time when the rules were
sent to the analyzer. The time has the
following format: HH:MM:SS.

• timezone: required. The time zone.

3.2.4 The Manager Class
Knowing that on a large network can exist more than
one platform of security management, the Manager
class identifies which are these platforms and the
analyzer knows who sent the alert messages.
 The aggregate class contained in Manager is:

• node: one or more. Information about the
host or device that is the Network Security
Manager.

3.2.5 The Security Class
The security between the Configuration Manager and
the analyzer is achieved by the Beep protocol
characteristics. Additionally to this security, the
analyzer receives, through the Security class, one
digital signature that can be used by the analyzer to
prove the rules consistency.
 The Security class has one attribute:
signature: optional. The digital signature that is sent
to the analyzer.

3.3 The IDACF Tests
The tests related below (Fig. 5) were done to show if
the IDACF can be useful. To perform these tests two
APIs for Linux were created to permit that a Snort
analyzer could be configured by a Web Server.

Analyzer 01- Linux

Snort
IDACP

Analyzer
API

Configuration Manager 01
Linux

IDACF
Manager

API

Web
Server

The Manager

Ssl connection

Fig. 5 The IDACF Tests

 The protocol was successfully tested and now we
are testing it in a commercial IDS analyzer.

3.3.1 The Next Steps
After the tests, to complete the platform describe in
Fig. 1 we need:

1) To improve the functioning of the
Configuration Manager. The strength of this
platform is in its facility to configure the
analyzers. During the tests we detected that
the configuration manager must have specific
features for different analyzers. The problem
now is not the way that the rules are sent to
the analyzer; it is to find the best way to
implement the Configuration Manager;

2) Implement Beep/Idxp in the data exchange
between the Configuration Manager and the
analyzers;

3) Implement IDMEF in the data exchange
between analyzer and the Information
Collector;

4) Define the functioning rules for the
Information Collector to do the activity as
shown in Fig. 6;

5) Test the platform and comment the results.

Apply the
Filterering

Da
ta

Ba
se

Fi
lte

r

Filtering Rules

Alerts

M
IB

SNMP Trap

Fig. 6 Information Collector

5 Conclusions
 It’s getting more and more complicated to manage
security in great corporate networks, because the
environment is extremely complex and there’s a great
variety of hardware and software.
 This work showed which are the basic
requirements for information exchange among
components of an IDS architecture where the focus is
a centralized administration. Inside the same network
it is possible to have IDS platforms of different
manufacturers exchanging information. The platform
that is being proposed here is fundamental when you
can manage the security of remote networks.

References
[1] Biswanath Mukherjee and Karl Levitt, Network
Intrusion Detection, IEEE Network, 1999.
[2] Rebeca Bace and Peter Mell, NIST Special
Publication on Intrusion Detection Systems, 2000.
[3] D. Curry and H. Debar, Intrusion Detection
Message Exchange Format data model and
Extensible Markup Language (XML) Document Type
Definition. February, 2002.
[4] M. Rose, RFC3080:The Blocks Extensible
Exchange Protocol, March 2001.
[5] G. Mattnews and et all, The Intrusion Detection
Exchange Protocol (IDXP). Internet Engineering
Task Force, 2002.
[6] D. Gupta and et all, IAP: Intrusion Detection
Protocol, Internet Engineering Task Force, 2001.
[7] Postel J., RFC0790: Assigned Numbers, 1981.

