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We investigate many-body corrections to the conductivity due to the interference of electron-electron scalt-
tering and elastic electron scattering from impurities and defects in weakly disordered conductors. In
quasi-one-dimensional conductors with 3D and 2D electron spectra (a wire with radius r < Ly and a strip
with width b < Ly, where Ly = vp /T, vr is the Fermi velocity) as well as in multichannel one-dimensional
conductors, the temperature-dependent corrections are proportional to InT. The value and the sign of the
corrections depend on the strength of the electron-electron interaction in the triplet channel. The results
can explain the logarithmic term observed in multiwall nanotubes and quantum-dot molecules.
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1 Introduction

Electron-electron interaction determines trans-
port properties of low-dimensional conductors at low
temperatures. Corresponding many-body corrections
to conductivity have various temperature dependen-
cies. The logarithmic term is widely observed and
well studied in two-dimensional conductors in the
diffusion limit [1]. Surprisingly, the logarithmic tem-
perature dependence has been observed in conduc-
tivity of multiwall nanotubes [2] and quantum-dot
molecules with high mobility [3].

To understand temperature-dependent conduc-
tivity of low-dimensional conductors with high mo-
bility, we investigate effects of the electron-electron
interaction in the quasi-ballistic limit, T'r > 1, 7 is
the electron momentum relaxation time. In weak-
ly disordered conductors the interference corrections
are always proportional to the Drude conductivity.

The electron-phonon interaction in the quasi-
ballistic limit was theoretically studied in our paper
[4]. Tt was found that the corresponding correction
to conductivity is quadratic in the electron temper-

ature,
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where o, = eQU%TVn /n is the Drude conductivity
in corresponding dimensionality n, ep and pp are
the Fermi energy and momentum, wu; and wu; are
the longitudinal and transverse sound velocities, §;
is the constant of the electron-phonon interaction,
and v, is the electron density of states. It is in-
teresting that the longitudinal phonons give rise to
a positive correction to conductivity, while trans-
verse phonons result in a negative correction, which
dominates in the temperature-dependent conductiv-
ity due to stronger coupling of transverse phonons.
This T?-term proportional to the Drude conductivi-
ty have been observed in a wide temperature range,
from 20K up to 200K, in Nb, Al, Be [5], NbC [6],
NbN [7], and W [8] films.

Effects of the electron-electron interaction in the
quasi-ballistic limit have been studying for years
[9, 10, 11, 12, 13]. After series of improvements,
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all exchange (Fock) and direct (Hartree) processes
have been taken into account in the frame of the
Landau Fermi-liquid theory in the paper [13]. In
this approach numerous scattering proccsscs are re-
duced (o the effective interaction in the singlet and
triplet channels. Both singlet and triplet channels
give corrections to conductivity,
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In the quasiballistic limit, 77 > 1, the correction
Lo conductivity is
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where I{§ is the Fermi-liquid parameter describing
interaction in the triplet channel. Results of re-
cent measurements in GaAs/GaAsAl heterostruc-
tures [14, 15] and Si MOSFETs [16, 17] have shown
good agreement with the theory [13] at subkelvin
(GaAs/GaAlAs) and helium (Si) temperatures.

We would like to stress, that the many-body cor-
rections due to the electron-phonon or interelectron
interactions (interference corrections) always origi-
nate from the elastic part of the corresponding col-
lision integral.[1, 4, 13] Therefore, the interference
corrections depend on the electron temperature on-
ly. Early theoretical papers on the electron-phonon-
impurity interference considered inelastic scattering
from vibrating impurities and extracted the T2-term
to conductivity from the inelastic part of the colli-
sion integral [18]. However, as it is shown in our
previous work, [4] such terms cancel out and this
is a reason why the T?-term is independent on the
phonon temperature.

In the current paper we calculate many-body
corrections to conductivity in one-dimensional and
quasi-one-dimensional conductors. In Sec. II we
start with the basic equations describing interfer-
ence phenomena in the electron transport. In Sec.
ITT we calculate the electron-electron corrections to
the conductivity in various dimensions with respect
to the effective interaction. The cross-over to the
lower dimensionality occurs when one of the conduc-
tor dimensions becomes smaller than ¢!, where g
is the characteristic value of the transferred electron
momentum. For the electron-electron interaction in

weakly disordered conductors, ¢; ' is of the order
of Ly = vp/T. At sub-Kelvin and helium temper-
atures, LT ~ 1 — 10pm, and the transition to the
quasi-one-dimensional case occurs in wires of radius
r ~ L7 and in 2D conducting channels of width
b ~ Ly. We will show that the interference cor-
rections Lo the conductivity is mainly determined
by the sample dimensionality with respect to the
effective interaction. Dimensionality of the electron
spectrum just slightly changes numerical coefficients
of the interference corrections.

2 Basic Formalism

Effects of interference between scattering mech-
anisms on the electron transport can be studied by
the linear response method as well as by the quan-
tum transport equation. Both methods are based
on the digrammatic technique. The linear rcsponsc
method requires many diagrams (o be considered,
while the transport equation deals only with the
electron self-energy diagrams but includes specific
terms in the form of Poisson brackets. [4, 10]

In this paper we investigate the interference elec-
tron proccsses, which are characterized by the mo-
mentutn transfer much smaller than the Fermi mo-
mentum. These proccsses can be described in the
frame of the Landau Fermi-liquid theory. The corre-
sponding self-energy diagrams for weakly disordered
systems are shown in Fig. 1 and the diagrams of
the linear response method are presented in Fig. 2.
Results of the papers, [4, 10, 13] show that in the
quasiballistic limit the correction o conductivity of
one-dimensional and quasi-one-dimensional conduc-
lors may be presented as
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where n is used for the dimensionality of the electron
spectrum.
The function f(w) is given by
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The function (¢, w) is given by
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where V.F(q,w) is the retarded propagator describ-
ing electron-electron interaction, and ®(q,w) is giv-
en by
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In Eq. 7, e = E/F is the unit vector in the direction
of the electric field, and () (q) stands for the aver-
aging over the directions of vy and q. Note, that
the averaging over the angle ¢, the angle between p
and q, is given by
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where z = cos(¢).

In the next sections the above equations are used
to calculate the quantum corrections to conductivi-
ty due to electron-electron interaction in weakly dis-
ordered one-dimensional and quasi-one-dimensional
conductors with 2D and 3D spectrum.

3 Corrections to Conductivity

As we discussed in the introduction, the effec-
tive electron-electron interaction in weakly disor-
dered conductors is characterized by the momentum
transfer of the order of T'/vp, which is much small-
er than the Fermi momentum (see also calculations
below). Therefore, the electron transport can be
described in the frame of the Landau Fermi-liquid
theory.[13] In the singlet channel the bare interac-
tion is given the sum of the Coulomb potential,
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and the Fermi-liquid interaction,

The screened interaction in the random phase
approximation, which is justified for small momen-
tum transfers, is given by
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where PF(A) (g, w) is the polarization operator.

In the absence of the magnetic field and spin-
orbit scattering the screened propagator in the triplet-
channel may be taken in the form [13]

3F¢
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where F is the Fermi-liquid constant. The above
equation assumes that the Fermi-liquid coupling is
independent on electron momenta. Restrictions of
this approximation were discussed in the paper[13].

3.1 Singlet Channel

First we consider a conductor with three-dimensional

electron spectrum. For 1/7 < w < qup < €F, the
polarization operator is given by

P (q,w) =

1- 2 arctanh( or >} (13)
qQURF w + 10

= —]/3

where the branch of arctanh(y) is chosen as

1
arctanh(y) = —% + 2 In

y+1
=, 1. 14
1 Y (14)

Thus, the screened Coulomb potential may be pre-
sented as

Vi (q,w) = (15)
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where li% = 4re’vs, and vz = mpF/7r2. In the limit
of strong screening, k3 >> ¢, the screened potential



is independent on the form of the bare potential (the
unitary limit).

For quasi-one-dimensional conductors, such as
wires with radius r, which is much smaller than L,
the vectors q and e are parallel. Averaging Eq. 7
over the angles of q we get
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In the limit of strong screening, the function Y (qup /w)
(Eq. 6), is given by
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Then, the correction to the conductivity (Eq. 4) is
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Next we investigate the many-body correction in
conductors with two-dimensional electron spectra.
For 2D electron gas the polarization operator in the
quasi-ballistic limit is

Pf(q,w) =
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where vy = m/m.

We calculate conductivity in the quasi-one- di-
mensional conductor, such as a narrow channel with
width b < Lp. Taking into account that in the
quasi-one-dimensional case the vectors q and E are
parallel and averaging Eq. 7 over the angles of q,
we get
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Therefore, in the unitary limit, the function Y (qvp/w)
(Eq. 6). is given by
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Calculating the correction to the conductivity in the
singlet channel,
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Finally, we study a multichannel conductor con-
sisting of few one-dimensional wires. In this model,
electrons can scalter from one wire (o another due
impurities and defects. For 1D electrons the polar-
ization operator in the quasi-ballistic limit is

(qur)?
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where v1 = 2/(mvr). Averaging Eq. 7 in the one-
dimensional geometry we find
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Then, in the unitary limit, the function Y (qup/w)
(Eq. 6). is given by
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Thus, in quasi-one-dimensional conductors with
3D electron spectra (Eq. 21) and 2D spectra (Eq.
26) as well as in multichannel one-dimensional con-
ductors (Eq. 30), the corrections have the logarith-
mic temperature dependence.

3.2 Triplet Channel

Conductivity corrections in the triplet channel
are calculated in the same way as the singlet-channel
corrections. First, we consider the quasi-one- dimen-
sional conductor carved from the two-dimensional
structure. With the triplet channel interaction (Eq.
12), the function Y(y) is given by
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Next we consider the multichannel one-dimensional

conductor. Using Eqgs. 7 and 12 we find the function
T(y),
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Finally, substituting T1(y) in Eq. 4 and integrating
it, we get
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Thus, the temperature dependence of the con-
ductivity corrections in the triplet channel (Eqs. 32
and 34) is the same as in the singlet channel, but
the value and sign depend on the parameter Fy.

o1 4

4 Conclusions

In this work we investigated the interference of
electron-electron scattering and elastic electron scat-
tering from impurities and defects in weakly dis-
ordered one-dimensional and quasi-one-dimensional
conductors. We have calculated the many-body cor-
rections to the conductivity and demonstrated that
even weak disorder significantly modifies its temper-
ature dependence.

In weakly disordered conductors, characteristic
momentum transfers are of the order of T'/vg, which
is significantly smaller than the Fermi momentum.
Therefore, the Landau Fermi-liquid theory is ap-
plicable and all processes with the large momen-
tum transfer are taken into account by the effec-
tive Fermi-liquid constants. Due to the Coulomb
potential divergence at small momenta, the singlet-
channel interaction corresponds to the unitary limit
and corresponding corrections are independent on
the Fermi-liquid parameters. Our main results for
the singlet channel are presented by Eqs. 21, 26,
30. We found that in quasi-one-dimensional con-
ductors with 3D electron spectra (Eq. 21) and 2D
spectra (Eq. 26) as well as in multichannel one-
dimensional conductors (Eq. 30), the corrections
have the logarithmic temperature dependence. The
triplet-channel corrections (Eqgs. 32 and 34) have the



same temperature dependence as the singlet-channel
corrections. Contrary to the singlet channel, the
triplet channel corrections are not universal. There-
fore, the value and sign of the total correction de-
pend on the Fermi-liquid parameter F§ in the triplet
channel. In the weak coupling limit, |[F| << 1, the
singlet-channel dominates over the triplet one and
the corrections to conductivity are positive. Neg-
ative values of Fi§ may result in the negative to-
tal correction, which is observed in heterostructures
[16].

Note, that at sub-Kelvin temperatures the char-
acteristic length, d, = vp/T, is of the order of 1 -
10 pm. Therefore, experiments with wires and chan-
nels of pm-sizes would allow to observe crossovers to
lower dimensions. Note, that the logarithmic term
has been recently observed in arrays of open quan-
tum dots of pum-sizes al sub-Kelvin temperatures
[3]. The logarithmic temperature dependence is al-
so often observed in multiwall carbon nanotubes [2].
These observations may be relevant to the interfer-
ence corrections calculated in this paper.

The research was supported by the ONR grant.
We would like to thank I. Aleiner, B. Narozhny, and
J. Bird for useful discussions.

References

[1] B. L. Altshuler and A. G. Aronov, Electron-
Electron Interaction in Disordered Systems,
edited by A. L. Efros and M. Polak (North-
Holand, Amsterdam, 1985).

[2] L.Forro and Ch. Schonenberger, Carbon Nan-
otubes, edited by M.S. Dresselhaus, G. dressel-
haus, and Ph. Avouris (Springer, Berlin, NY,
2000).

[3] A. Shailos, J.P. Bird, C. Prasad et al, Phys.
Rev. B Vol. 63, 2001, p. 241302(R).

[4] M. Yu. Reizer and A. V. Sergeev, Zh. Eksp.
Teor. Fiz. Vol. 92, 1987, p. 2291 [Sov. Phys.
JETP Vol. 65, 1987, p. 1291].

[5] N.G. Ptitsina, G.M. Chulkova, K.S. II'in et. al,
Phys. Rev. B Vol. 56, 1997, p. 10089.

[6] K.S. II'in, N.G. Ptitsina, A.V. Sergeev el. al,
Phys. Rev. B Vol. 57, 1998, p. 15623.

[7] A. Sergeev, B.S. Karasik, N.G. Ptitsina et. al,
Physica B Vols. 263-264, 1999, p. 190.

[8] A. Stolovits, A. Sherman, T. Avarmaa, O.
Meier, and M. Sisti, Phys. Rev. B Vol. 58, 1999,
p. 11111.

[9] A. Gold and V.T. Dolgopolov, Phys. Rev. B
Vol. 33, 1986, p. 1076.

[10] M. Reizer, Phys. Rev. B Vol. 57, 1998, 12338.

[11] F. Stern and S. Das Sarma, Solid State Elec-
tron. Vol. 28, 1985, p. 158.

[12] D.V. Khveshchenko and M. Reizer, cond-

mat/9609174.

[13] G. Zala, B.N. Narozhny, and L.L.. Aleiner, Phys.
Rev. B Vol. 64, 2001, p. 214204.

[14] Y.Y. Proskuryakov, A.K. Savchenko, S.S. Sa-
fonov et al., Phys. Rev. Lett. Vol. 89, 2002, p.
076406.

[15] H. Noh, M.P. Lilly, D.C. Tsui, J.A. Simmons,
E.H. Hwang, S. Das Sarma, L.N. Pfeifer, and
K.W. West, cond-mal/0206519.

[16] V.M. Pudalov, E.M. Gershenson, A. Kojima,
G. Brunthaler, A. Prinz, and Bauer, cond-
mat/0205449.

[17] S.A. Vitkalov, K. James, B.N. Narozhny,
M.P. Sarachik, and T.M. Klapwijk, cond-
mat/0204566.

[18] S. Koshino, Prog. Theor. Phys, Vol. 24, 1960, p.
484, P.L. Taylor, Phys. Rev. A Vol. 135, 1964,
p- 1333.



