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Abstract: - In this paper, an analysis for chaos synchro-
nization under nonvanishing perturbations is presented.
In particular, we use sliding modes control to synchronize
perturbed chaotic systems. We use two coupled Rossler
systems, the first like a master and the other like a per-
turbed slave. The proposed controller is able to synchro-
nize perturbed chaotic systems, even with elimination of
chattering problem. Some simulations are presented.
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1 Introduction

Synchronization of chaotic systems has been in the last
years subject of great interest. Since the work of Pecora
and Carroll [1], many researchers have proposed different
approaches for chaotic synchronization [2]-[7]. Such inter-
est is because chaotic synchronization is useful in many
cases of practical interest, like to design secure commu-
nication systems [8]-[10], and significantly when it occurs
in living systems like could be the case for the synchro-
nization of the activity of groups of neurons located in
different brain areas [11]-[13] or, in the synchronization
between heart and respiratory rates [14] or, the coupling
of biological oscillators [15].

In all these cases, it is important to be sure that the
mechanisms that guide this synchrony are robust. For
that reason, an important problem in the analysis of chaos
synchronization is the robustness with respect to synchro-
nization error, aging of physical components, uncertain-
ties, and disturbances that exist in any realistic problem.
The perturbation effect at the equilibrium point of the
synchronization error dynamical system can be null or not.
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The first case, is called vanishing perturbation; this means
that the equilibrium point of the perturbed synchroniza-
tion error dynamical system remains the same as that of
the equilibrium of the unperturbed one. The second case,
is called nonvanishing perturbation, for which equilibrium
points of the perturbed and unperturbed error systems are
not the same. However, the perturbed error system may
not have an equilibrium at all, in which case we cannot
study the problem as the stability of equilibria any longer.
So, the best we can expect are ultimately bounded state
trajectories if the perturbation satisfies some conditions.

In this paper, we discuss the stability of the synchro-
nization error between two coupled chaotic systems using
sliding modes control from nonlinear control theory [16],
[17] and subjected to a class of nonvanishing perturbations
(see [18] and [19]), when the unperturbed error system has
an uniformly asymptotically stable equilibrium point. We
show that the error trajectories stay bounded if the pertur-
bation satisfies some conditions. We use a classical exam-
ple with a chaotic Rossler system and we show that, in this
case, synchronizing partial states (output synchronization)
of the Rossler system will result in the synchronization of
their entire states.

This paper is organized as follows. In Section 2, we
present the problem statement. In Section 3, we make
a description of the sliding mode control for a nominal
case (without perturbation), and we make an analysis of
the perturbed case. In Section 4, we apply this result to
synchronize a Réssler system for nominal and perturbed
case using sliding modes control and making a quantitative
analysis of the perturbation; some numerical simulations
are presented. Finally, in Section 5, we give some conclud-
ing remarks.

2 Problem Statement
Let the dynamical master system be given by
Ly

ya = h(zq),



where z4 (1) € R, is the system state vector of the master
system, f(z4) is a smooth vector field, and y, (t) € R is
the output of the system.

Let us now take a dynamical system of the same order
as that of (1),

t = f(z)+Af(z)+ Bu,
y = hz),

(2)

where z (1) € R™ denotes the state vector of the slave sys-
tem, B is a matrix of suitable size that define the control
channel, « (t) € R is the control input, and Af (z) is a per-
turbation term due to parameter mismatching or structure
differences. The system (2), represents the perturbed case
of the nominal slave system

= f(z)+ Bu,
= h(x).

(3)

Assume that dynamical systems (1)-(3) under certain
conditions have chaotic behavior. Then, the nominal slave
chaotic system (3) synchronizes with the master chaotic
system (1), if

lim ||z (t) — z4 ()] = 0,

t—o0

(4)

no matter which initial conditions x (0) and x4 (0) have,
and for suitable input signal w (t).

The perturbed system (2) does not holds the condition
(4), in which we cannot expect complete synchronization
between systems (1) and (2), but we can expect ultimately
bounded state trajectories, i.e.,

b 2 (1) — 2 ()] < p.

t— o0

(5)

with a small p > 0.

In the next sections, we describe how to satisfy synchro-
nization conditions (4) and (5) from the perspective of the
sliding modes control and Lyapunov-based stability from
nonlinear control theory.

3 Description of the Sliding Mode Con-
trol

In order to obtain the objective of chaotic synchroniza-
tion, from the control theory viewpoint, the synchroniza-
tion problem can be seen as follows: define e; = x; — xy;.
Then, the following system describes the dynamics of the
unperturbed synchronization error between (1) and (3)

¢ = f(z)—f(za) + Bu, (6)
y = Ce.

In this way, the synchronization problem can be seen as
the stabilization of system (6) at the equilibrium point,

i.e., the problem become to find a feedback control law
u (t) such that e (¢) — O (which implies that z (t) — x4 (¢)
and condition (4) holds) as ¢ — oco. So, the proposed
design method for the sliding mode control that stabilize
(6) is as follows.

3.1 Sliding surface design and associated control
law

Let us to propose the following sliding surface

s=e+5\/0te(r“)d7“’, (7)

where A > 0 it is a design constant that can be chosen
suitably. Let us to find a continuous control such that
under the initial position of the state s(x,z4), it yields
identical equality to zero of the time derivative of vector
s(z, ) along trajectories of system (6)

5=f(x)— f(xq) + Bu+ le =0. (8)

Suppose that a solution of the system of algebraic Egs.
(8) with respect to m-dimensional control does exist. This
solution is referred as equivalent control ueq (x,z4) [16],
which assuming that matrix B is nonsingular for all x, it
can be find an equivalent control from (8)

Uy = —B7Lf (x) + B71f (wq) — AB e

9)

Let the control law be represented as

(10)

where g, = —ksign(s) is the switching control and the
switching gain £ > 0.

In order to find stability conditions and guarantee the
existence of a sliding surface and the convergence at finite
time of the trajectories of system (6) to the sliding surface
(7), let the Lyapunov function of the system be [17]

U = Ueq + Usw,

(1)

1
V(s) = =s*
( ) 2 ?
then, its first derivative with respect to time is

Vi(s) = ss=—k|ls] < —nlsll, (12)
with & > 7 for some 77 > 0. Then V (s) < 0, that is,
there exist sliding mode dynamics and the trajectories of
the system (6) converge to the surface in finite time. This
is easy to demonstrate, since the solution to the Eq. (7),
is given by

e = Cexp(—At),

where C is a positive constant and the convergence time
depends of both C and \. Suppose that is wished a small



synchronization error e < A, then, the convergence time
t1 will be given by the equality

(C‘Agl) .
Note: For chattering elimination it is proposed

yo { Uea ksign(s)  for ||s]] > A.
S Ueg — A for ||s|| < A,

~—1
tl =A In

(13)

(14)

Next, an analysis for the synchronization of the per-
turbed chaotic system (2) with (1) is presented.

3.2 Robust stability analysis of perturbed syn-
chronization

Consider the perturbed chaotic system (2). It is desired
that this one synchronize with the chaotic system (1). The
following system describes the dynamics of the synchro-
nization error in the perturbed case:

[ (@) = f(za) + Af (x) + Bu,
1y, = Ce.

e =

(15)

If it is proposed the same surface (7) like from nominal
case, then

=1 () -

using again the control law (10), with the same equivalent
control (9), we have

§= —ksign(s)+Af (z).

f(za) + Af (2) + Bu+ e,

(16)

With the intention of demonstrate bounded trajectories
n (15), for the proposed surface the following suppositions
are established:

(H1) The origin of the sliding surface (7) is an asymptot-
ically stable equilibrium point.

If supposition (H7) holds, then from an inverse Lya-
punov’s theorem the existence of a Lyapunov function
V (s) is guaranteed for (7). The function V (s) satisfies

alslf < V() < el ()
oV ds 2

< - 1
Wl < ey, ()
H < ellsl, (19)

for some positive constants ¢y, ¢z, ¢z, and ¢4 (for more

details see [20]).

(H2) The perturbed term Af (z) satisfies the bound
[Af (@) < Ls + 05 [|s (2, za)l - (20)

for all 2,24, s € R™ and with positive constants I5 and

ds.

Theorem 1 Consider that the origin is an asymptotically
stable equilibrium point for the nominal dynamical syn-
chronization error system (6). Assume thal supposition

(H2) holds. Then, for all |le(to)] <

ist constants ly, 6, > 0 such that the solution € (t) of the
perturbed error system (15) is ultimately bounded for all
t > to and for all perturbed term Af (x) that satisfies (20)
with 0, < 05, and ly < .

%7’3, there ex-

Proof. Let be (11) candidate to Lyapunov function for
the perturbed case and the sliding surface (7). Then, its
first derivative with respect to time along perturbed error
trajectories of system (15) is

s[—ksign (s) + Af ()],
—k sl +sAf (z),

Vv o=

where sAf (z) it is the resulting term of the perturbation
from system (2). Then, from (20), and using (17)-(19)

. 2

4 —cz||s]|” + callsll (Is + 65 [|s]])

<
< = (es—ads) sl +eals s -

If é, is small enough to satisfy the bound
- c
8, <8, <,

¢y
then

: 2

V< —as Il + cals 8],
with ay; = ¢3 — ¢405 > 0. Moreover

V<= (1=0:)aq|ls|* = bsas |Is|* + cals |ls]],

where 0 < 0, < 1, and a bound for [, is given by

9 Osas
ls < sl (22)
Then,
. C4ls
V< —(1—0,)als|? Vsl > p=
<= (=)o sl Vsl zu= g
and an ultimate bound is finally given by
ls
by < —— 2 (23)

- 95 (CS - 6465) C_1

]

Note that the ultimate bound b, is proportional to the
upper bound on the perturbation l;. This result can
be viewed as a robustness property of the unperturbed
synchronization error system having asymptotically stable
equilibria at the origin because it shows that arbitrarily
small nonvanishing perturbations will not result in large
synchronization error.



4 Synchronization of Perturbed Chaotic
Systems Using Sliding Modes Control

We make use of the previous result to show how the syn-
chronization of chaotic systems can be achieved. We con-
sider the output synchronization problem where the sys-
tem (6) has a strong relative degree r = 1, i.e., Lyh(e) # 0
(for all e and with g (¢) = B, and h (e) = Ce). Even though
it yields a zero dynamics £ (0,¢) for the system (15), sev-
eral chaotic systems are so-called minimum phase, that is,
the zero dynamics converge to an attractor, the closed-
loop system is internally stable [21]. This is reasonable
for the boundness of chaotic attractor in state space and
the interaction of all the trajectories inside the attractor.
So, when we have taken actions to achieve e;« — 0, for a
suitable i* € { ¢ | 7 = 1}, the part £ (e,¢) — £(0,¢) — O
asymptotically for the so-called minimum-phase character
(see [22] for an illustrative example). So, we only need to
synchronize one state and the others will be synchronized
automatically (for unperturbed case).

Then, consider the Rossler system writing in the form
(1) given by [23]:

Tq1 —Tg2 — Tq3
L2 = Tg1 + Qg2 ,
Tq3 &+ g3 (Tq1 — f1)
Yd = Tq2, (24)

as a chaotic master system. With the parameter values
& = 0.2 and ft = 7, the Rossler system exhibits chaotic
dynamics. Consider as a perturbed slave chaotic system
to another Rossler system in the same way

Ciil —Ty9 — X3 1
To = T + Qxo + 0 u,
Ci?g a+ T3 (CEI — i:L) 0
Yy = Zo, (25)

where & = & + A&, and = o+ Aj, with Aé and
Aji like small perturbations in the parameters &
[t, respectively. For this particular case, we have cho-
sen Aé = 0.02sin (27t/1") and Af = 0.7sin (27t/1),
with 7" = 10, such that & = 0.2 + 0.02 sin (27t/1") and
ft =7+ 0.7 sin (27t/ 1), represent the perturbed parame-
ters with variations between £10%, for the slave chaotic
system. So, the perturbed slave chaotic system can be

writing in the form (2), as follows

and

Cbl —T9 — X3 0
To = x1 + Gxg + Adxs
Cbg &+ T3 (CEl — ﬂ) Ad — A[LCEg
1
+1 0 |u,
0
Yy = . (26)

Suppose that it is desired that the output y (t) = x2 (t)
of (26) follows the output trajectory yq (t) = @42 (t) of
(24). Considering that these small variations in the pa-
rameters or parameter mismatching are not available for
measurement or are simply not considered in the design of
the controller, then, we can design the controller from the
unperturbed case, i.e., Ad = Aft = 0. Then, consider the
dynamics of the synchronization error

ér = —(e2+es)+u,

€2 = e+ ey,

€3 = mger+ (1 — ) es — ejes,

Yo = €3. (27)

A sliding surface for (27) based on the output synchro-
nization error y. (t) = ez (t) = x2 (t) — z42 (1), is proposed
as

s=é9+ 5\62. (28)

Its first derivative with respect to time along (27) yields
the following sliding mode equation

$= <a+i)e1— <]—&5\—&2)62—63+u, (29)

where, in agreement with (10), and choosing A = & * —
& > 0 (since & < 1), the control law u (t) is given by

2
u = ] —A2a e; + e3 — ksign <el + ;62) . (30)
& &
Then, replacing the control law (30) in Eq. (29) we obtain
$= ksign(el + éeg). Thus, by (11) it is guaranteed that
the surface (28) is sliding and the output of (27) converges
to the sliding surface, which means that the output of slave
chaotic system (26) converges to the output of the master
chaotic system (24), when Ad = Aji = 0.

This result is illustrated with some numerical simu-
lations. The initial conditions z(0) and z4 (0) were
(1.1,-0.8,-0.8) and (0.1,-0.3,1), respectively, k = 1 and
A =4.8. Fig. 1 shows a) the output of (26), y (1) = z2 (¢)
following the output of (24), y4(t) = xa2 (), b) the
convergence of €; (t), ez (t), and e3 (¢) to sliding surface
5(t) =0, ¢) the sliding surface converging to zero, and d)
the bounded control u (¢). The control law takes action
intentionally after 60 seconds with the purpose of making
more illustrative the individual dynamics and their be-
havior after the coupling. As it was discussed previously,
synchronization in all states is obtained.

Once we have been able to design a control law that
achieve master-slave synchronization we are ready to ap-
ply this control law in the perturbed case, i.e., that Ad #
Aft # 0, when they take the values established before, i.e.,
Aé& = 0.02sin (27t/1) and Aji = 0.7sin (27t/1"). Then,
using the same control law from the unperturbed case,
and using (21) and (22), the closed-loop perturbed error
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Figure 1: Synchronization of Rossler system: unperturbed
case. a) The slave’s output y (t) = w2 (t) following the
master’s output yq () = 42 (). b) Convergence of e; (%),
ez (t), and eg (t) to sliding surface s(t) = 0. ¢) Sliding
surface. d) Bounded control (). The control law takes
action intentionally after 60 seconds.

system (15) leads to (29) taking the form (16), and the
correspond Lyapunov function (11) satisfies (17)-(19) with
¢ = 0.25, ¢g = 0.75, c3 = k = 5, and ¢4 = 1. Moreover,
it has be considered that the maximum value of the per-
turbation Anyax is |A| . = 0.7. So, a bound ¢, = 4 and
the constant value 6, = 0.2 leads the bound I, = 0.44735.
Finally, in agreement with Theorem 1, if we take a ball of
radio g = 4, an ultimate bound for e (t) is given by (23)
like by = ||s]| ... = 3.8742.

Fig. 2 shows the limited behavior of the perturbed syn-
chronization error e; (t), ez (t), and e3 (t) for different ini-
tial conditions and the control law (14) without chatter-
ing taking action after 40 seconds. Fig. 3 shows a) the
bounded synchronization error inside by = 3.8742 after
a short transient time and b) the sliding surface without
chattering after A..

5 Concluding Remarks

In this paper, a sliding mode control for synchronizing
chaotic systems under nonvanishing perturbations is pro-
posed. Based on a mathematical analysis and Lyapunov
stability theory, a sliding mode controller is designed such
that the slave chaotic system under perturbations can be
synchronized with a master chaotic system like the desired
chaotic trajectory, no matter which initial conditions they
have. The Rossler system was used as an example to ver-
ify and visualize the synchronization strategy. Under the
proposed control method, the synchronization error con-
verge at a finite short time to the sliding surface. A control

amplitude
n
S
control
o
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0
0 20 40 60 80 100 40 60 80 100

time (sec) time (sec)

Figure 2: Synchronization of Rossler system: perturbed
case. a) 21 (t) following x4 (t). b) o (¢) following 4o (%).
¢) x3 (t) following g3 (). d) Control without chattering
u(t). Control takes action after 40 seconds.

law with elimination of chattering has been proposed for
the perturbed case and the synchronization error holds the
ultimate calculated bound. Both analysis and numerical
simulation reveal that the proposed sliding mode control
has great potential for synchronizing chaotic systems un-
der nonvanishing perturbations.
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