
 

 

1 Introduction 
Simple analog synapse model using a single MOSFET 
to compute synapse multiplication (internal activity) 
function was proposed [1][2]. In subsequent chapters 
we develop and design an artificial neuron circuit based 
on that model. To study the feasibility for real-life 
applications, we design and build a Neural Matrix 
implemented in a VLSI circuit to be used in a system 
for finger-print feature extraction.  

In order to be successfully used in a real-life VLSI 
circuit, accounting for various parasitic effects and 
signal noise requirements, we devise and pursue the 
following goals for the design of the artificial neural 
synapse and synapse matrix itself: 
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(1) Design a small-silicon-area analog synapse and 
minimize the total chip area yet allow for a large 
number of synaptic connections. 

(2) Use analog-current signal representation for data 
propagation from one neuron to another and thus 
minimize parasitic capacitive effects due to highly-
interconnected neuron’s input/output nodes 

(3) Use dynamic analog RAM-like memory on 
capacitors to store temporary weight data to avoid 
multiple SRAM data read out operations 

(4) Provide easy-expansion capability 

We believe we achieved these goals in a small, five 
transistor synapse circuit which interconnects with one 
or more of the same to form an artificial neuron.  

2 Synapse design 

2.1 Synapse circuit design 
In order to use the drain current of a MOSFET as a 
post-synaptic activity signal an independent variation of 
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gate-source and drain-source voltages is required. We 
devise a circuit, which utilizes a current-feedback 
technique to allow drain-source voltage to be set and 
maintained independently from the input gate-source 
voltage. The circuit can have one or more current inputs 
and a single current output. The current through each 
input is converted into voltage difference on an input 
capacitor CX and then applied on gate-source MOSFET 
terminals. 

The neuron circuit is comprised of: a current summing 
node N0, common for all synapses; a synapse MOSFET 
M1; active load M0, common for the neuron; current 
sensor M3; summing-node voltage drop compensation 
circuit built on M2, M4 and M5; weight control switch 
SWi and capacitor CW; input current switch SXi and input 
current conversion capacitor CX; and a neuron output 
NY current sink on M6, M7 and M8. In practice, the 
input-current switch SXi, for all but the first layer of 
neurons, is embedded in the output stage of the 
previous-layer of neurons. 

First, the synapse weight is set by applying a constant 
reference current pulse on CW through SWi, for a 
variable time period TW, which is generated by 
synchronous down-counters pre-loaded with a 9-bit 
weight value. Then, the pre-synaptic input current signal 
is sampled and integrated over a fixed2 period of time, 
TX on the poly-silicon, thin-oxide, n-well capacitor CX. 
The input current remains constant for TX. After the 
switch SXi is opened, summation of all synapse currents 
at node N0 begins, and the output current, iY, now 

                                                 
2 Input current conversion time, �� , is programmable for each 
NN layer in the range of 1 to 32xTCLK (5-160ns) to provide 
input signal scaling capabilities 

represents the sum of all synaptic currents through the 
active load M0. Devices M0, M6, M2 and M3 are all-
parameters-matched devices. Ratio of M4 and M5 is 
chosen3 such that: 

 � �� �� ��  (1) 

Any difference in iD2 from iD0 creates voltage difference 
between VA and VB thus determining the synapse 
transistor weight voltage: 
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Since M2 and M0 are all-parameter matched pair: 
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The difference between the drain current of M2 and M0 
is established by offsetting the threshold voltage of the 
current sensor M3 through a small weight-setting 
voltage stored on CW This voltage ranges from 0 – 
400mV and allows for a 9-bit weight value 
representation. VW is much smaller and varies from 0 to 
100mV maximum. 

Current synapse M1 operates in non-saturated mode (VX 
ranges from 1000mV to 2024mV) at all times, while all 
other devices are normally in saturation. 
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Figure 1 Analog current synapse; synapse current input; weight-
control and neuron output circuit schematic 

 

Figure 2 Composite plot of weight voltage VW and weight-setting 
voltage VWSET 

 



 

 

2.1.1 Relationship between weight-setting voltage 
on CW and weight-voltage 

The derivation of the differential equation that yields the 
relationship between the weight-setting voltage on CW 
and the actual weight-voltage across the terminals of the 
synaptic transistor can be found in [5]. Although the 
resultant relationship is nonlinear it can be 
approximated with linear. We believe it will be best 
described by a graphic plot, shown in Figure 2. 

2.1.2 Current summing node voltage drop 
compensation 

The overall synaptic current collected in node N0 
creates a voltage drop on the active load M0. To 
compensate for this drop and to maintain the weight 
voltage across synaptic transistor channel independent 
of this change we use a current feedback on M3, M5 
and M4. We do this by mirroring the overall synaptic 
current with the current through the matched active load 
M2. Each such current mirror of every synapse has a 
ratio of k. This ratio is determined by: 

 1
1k

N
= +   (5) 

where N is the number of synapses attached to node N0. 
This ratio is 2.0 for N = 1 and approaches 1.0 with 
increasing number of synapses. For N = 17 (our case), 
this ratio is 1.059. In this way, for each synapse, 
equality (1) can be maintained. Any change in any 
individual synaptic current, now, would create the same 
amount of change in the overall synaptic current, and 
then through the current feedback all synapses 
compensate the voltage drop of node N0 by lowering 
their respective VB node voltages.  

2.1.3 Output current hard-limitation 
There are two factors, beside many others4, which 
contribute to a natural hard-limiting function to be 
inherently implemented by the circuit. These are – first, 
power and ground limitation, and, second – MOSFET 
devices leaving their normal mode of operation (from 
saturation to non-saturation). Upper current limit: due to 
the current-feedback compensation circuit, any increase 
of the total synaptic current causes voltages VB to drop 
with the same amount as the common node voltage VA 
drops. At the same time gate voltage of M5 increases 

                                                                                     
3 see section 2.1.2 
4 Weight-setting circuitry includes static registers and down-
counters limited to 9-bit by design. Similarly, input DAC 
limits input vectors to 9-bit (in digital-input mode). 

due to increase of its drain current. At certain point, M4 
leaves non-saturated mode due to its drain voltage 
dropping below VDSAT. Any further increase of its drain 
current will be linear and not exponential. Any further 
increase of the overall synaptic current will not be 
compensated which leads to gradual decrease in the 
weight voltage across the synaptic transistor. This 
decrease in the weight voltage, along with VB voltage 
dropping to almost ground, creates a hard-limited upper 
boundary for the increase of the overall synaptic 
current. Similarly, for very small synaptic currents, the 
drain current of M5 would be insufficient to generate 
drain voltage large enough to open M4 (VD4 < VT5). This 
means that VB and VA nodes are going to be at close to 
VDD potential and the neuron load M0 is going to be in 
under-threshold region, which will create almost zero 
lower boundary for the overall synaptic current. 

Also, the weight-setting voltage on CW, hence VW, is 
limited, naturally, by the forward-bias source-bulk 
current of M3. Synapse input voltage, VX , is also 
ultimately bound by the neuron’s power supply ( �� ) 
and current sink transistor (input switch SXi) shut-off 
voltage due to drain-source voltage approaching zero.  

2.2 Weight range and resolution 
Synaptic weights are first read-in and stored as 9-bit 
numbers in the 19K SRAM array. 9-bit weight words 
pre-load 9-bit down-counters for each synaptic weight, 
which determine the duration (0 to 512TCLK i.e. 0 to 
2.56µs) of the fixed-amplitude5 current pulses that 
charge each synapse’s weight. The latter pulses charge 

                                                 
5 The weight-setting current is fixed at about 80��by a chip-
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Figure 3 Curves of weight and weight-capacitor voltage derivatives with 
respect to charge preservation duration (no ‘compensation’) 



 

 

each synaptic weight capacitor to a voltage, VWSET. 
Weight-setting voltage VWSET, stored on each weight 
capacitor, offsets the threshold voltage of the current-
sensing FET of each synapse, and subsequently offsets 
the currents through M2-M0 pair of matching active 
load transistors. This offset creates weight voltage 
VW=VA-VB.  Curves of weight capacitor voltage, VWSET, 
and weight voltage, VW, derivatives with respect to 
charge or preservation duration time, are shown on 
Figure 3. Ideally, these quantities have to be zero during 
charge retention (no change in stored charge) and 
should be constant with respect to the amount of charge 
stored (independent of charge or conservation duration). 
In practice, these quantities are not zero during charge 
conservation, and not constant for different weight-
setting voltages. In charge conservation mode, the 
curves show worst nonlinearity for very small and very 
large amounts of charge stored. The first is, most likely 
determined by increased leakage through the reverse-
biased bulk-substrate junction of M3 (iBSUB3) including 
capacitor oxide and open-switch leakage (iCWLEAK), 
while the second – is most likely determined by the 
increased sub-threshold forward-bias current through 

source-bulk junction of the same device (iSB3 on Figure 
5). In the middle of the weight-setting voltage range the 
curves are almost flat (constant). From these curves, the 
maximum dynamic range is determined such that to 
allow less than 0.5VLSB error– 0 to 400mV for VWSET and 
0 to 120mV for VW, respectively. The weight resolution 
achieved is 9-bit on a poly-silicon-gate n-well capacitor 
of 500��. One Least-Significant-Bit voltage (VLSB) is 
0.78mV.  
Capacitor recharge current is estimated to be close to 
5.5pA (worst case – due to forward-bias source-bulk 
current). This corresponds to worst-case change in 
weight-setting voltage of about: 
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With this rate of change, in charge conservation mode, 
we will be able to keep the charge from degradation of 
less than half of least-significant-bit (0.5VLSB=390µV) 
for not more than: 
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Since one full scan-region is processed in only 8µs, we 
believe that 9-bit resolution is completely feasible, 
provided the actual leakage current does not exceed the 
estimated with more than 500%.  

In practice, to avoid much larger leakage currents due to 
impurities and other fabrication non-idealities, a 
nonlinearity charge preservation minimization scheme 
is used (Figure 5).  

Nonlinearity charge preservation minimization is 
implemented through the weight-capacitor zeroing 
complementary MOSFET switch6. In charge-
preservation mode, injection of very small (leakage) 
current into the bulk of the current-sensing MOSFET 
M3, approximately equal to half of the worst-case 
capacitor leakage current, shifts the derivative curves 
down, thus providing for a smaller absolute value of 
weight-capacitor charge degradation across the whole 
range of voltages stored on the capacitor. 

Since the leakage current is different for different 
weight-capacitor voltages, complete compensation is 
not possible, but rather minimization of the absolute 
error due to this nonlinearity in the leakage current is in 
place. The plot of the rate of change of weight-setting 
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Figure 5 Weight leakage current compensation – drain currents of 
(51) and (52) balance off open-switch and bulk leakage of (43) 
which would otherwise sink current through CW 

 
Figure 4 Curves of weight and weight-capacitor voltage derivatives 
with respect to charge preservation duration - with leakage current 
error “compensation”. 



 

 

and weight voltages, with 
charge preservation error 
minimization is shown in 
Figure 4. 

Mismatch in M9 and M10 
between different synapses 
could lead to issues with 
this compensation. In the 
current design, these 
devices are effectively in 
‘off’ state and provide only 
their channel-leakage 
current as injection current 
which seems to be not as 
much sensitive to 
mismatch. 

With leakage current 
“compensation”, weight 
capacitor charge 
degradation of one LSB or 
less is observed only after 
about 260µs, which allows 
for a refresh cycle to be run less often than every 8µs7. 
Since only a total of 159µs are spent in refreshing 
weight capacitors during the processing of one complete 
CIF frame, processing speed of up to 30 frames/s is 
feasible.  

2.3 Synapse Physical Layout Topology 
The primary focus in building synapse’s layout 
topology is on minimization of silicon area, through 
techniques for sharing well and diffusion regions; and 
avoiding current switching noise by layout symmetry 
and shielding.  

Matching techniques are used to layout and route 
matched-pair devices. The synapse circuit topology is 
shown in Figure 6. The silicon area for the synapse, 
weight-capacitor, weight-current switch, input capacitor 
and weight-control circuit is under 700µm2. This 
translates into a theoretical density of more than 1,400 
synapses per square millimeter. In practice, however, 
this is only feasible for processes with four or more 
layers of metal interconnect (TSMC 0.35µm). For 
fabrication processes with three metal layers, or less, 
this number will be decreased due to interconnect and 
shielding of sensitive signal-lines. 2,176 synapses 
occupy area of approximately 3 mm2, which is less than 
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six percent of the total chip area (7.3x7.3µm2). The 
remaining area is occupied by (in decreasing order of 
area) synapse-weight counters and SRAM, input DAC 
and digital control logic. The Neural Matrix, digital 
weight storage, weight control and input sample-and-
hold switches, not counting control logic and the input 
DAC consists of more than 1,260,000 MOSFET gates. 

2.4 System-Level 
Neuro-Matrix-1 is a SOC comprised of: a matrix of 
16x8 neurons of sixteen inputs each interconnected with 
sixteen system inputs by the “all-to-all” method. The 
system’s sixteen analog-current inputs and outputs are 
provided for system expandability and cascaded 
connection between same products.  The analog-current 
inputs are multiplexed with sixteen digital-inputs for 12-
bit weight address/9-bit weight programming and 9-bit-
digital input data loading. After POR (power-on-reset) 
the system reads-in a series of address-value pairs, 
which either pre-load weight values into the 19K on-
chip SRAM, or set internal control registers (input-
current-conversion interval programmable timer etc). 
After the programming is complete (EN high at next 
positive clock edge), the matrix is put in one of two 
feed-forward modes – digital-input or analog-current-
input mode. Then, input processing is started. In digital-
input mode, the system receives a series of sixteen 9-bit 

 
 

Figure 6 Physical layout of 
the synapse circuit. Size is in 
microns. 
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Figure 7 System-level diagram of NEURO-MATRIX-1 



 

 

input-data words, which are converted into input pre-
synaptic current by the on-chip 9-bit DAC.  Next, the 
input feed-forward processing is performed, 
simultaneously, for all inputs. In the case of analog-
current input mode, the signal is processed by the neural 
matrix immediately after the input-current-to-voltage 
conversion time interval is over. This mode benefits the 
most from the speed of the analog signal processing 
technologies used and makes this ANN design a 
feasible choice in building analog front-end 
applications. A system-level diagram is shown in Figure 
7.  

3 Implementation Notes 

3.1 Chip Training 
At the present stage of the design, the training of the 
Neural Matrix is done externally by a general purpose 
digital computer (PC). The SoC, however, is included in 
the forward computational data path and although each 
update to the weights is controlled externally, the actual 
weight value is generated internally to the matrix. Thus 
final weight values are not simply computed, at the end 
of the training, by the external PC and then “uploaded” 
into the matrix, but rather obtained inside matrix circuit 
itself. What is externally available, at the end of 
training, are the digital weight control numbers which 
produce internally the weight quantities. These weight 
numbers could be stored externally for subsequent 
upload or programming of other chips. These numbers, 
however, do not necessarily have straightforward 
interpretation in terms of charge or voltage quantities 
since they do include SoC implementation non-
idealities and nonlinearity built-into them. Since the 
actual internal charges on the weight capacitors as well 
as produced weight voltage across synaptic transistor 
terminals could only be estimated/simulated but not 
really extracted or measured without significant signal 
degradation and information loss, we have not carried 
any analysis or comparison for the differences that can 
occur when the weights are externally computed by a 
digital computer and simply loaded into the network as 
opposed to weights obtained in our training procedure. 
In this way, our choice for training procedure eliminates 
first the difficulty in trying to match the performance of 
the chip in real silicon with a specific computer model 
of the same, and second, the problem of the weights, 
possibly, being “different” after upload into the chip due 
to non-idealities. Instead, we do guarantee that the 
externally generated weight control numbers, when 

uploaded, will produce the same result as the result 
obtained during training. 

3.2 Weight-charge refresh 
Extra refresh circuits at each synapse weight are not 
needed since the weights are refreshed by first zeroing 
weight capacitor charges and then recharging them 
according to the weight pulse duration values stored for 
each synapse in the on-chip SRAM. Currently, weight 
refresh is performed every 8µs. For the refresh 
procedure two cases were considered. First, to use a 
“wave” refresh pattern, refreshing the weights layer by 
layer. And second, to refresh all weights of the matrix 
simultaneously. Due to issues with processing 
synchronization and noise encountered in the original 
design of Neuro-Matrix, in the current design, the 
second method was chosen. In this way processing 
synchronization is needed only for the input signal path 
which simplifies signal flow and increases significantly 
the speed of the overall input-output processing. This 
method, however, has the disadvantages of slightly 
increased silicon area and peaking of current 
consumption during the refresh of all weights. 

Once weight control values are uploaded into SRAM, it 
is feasible to refresh all weights of the matrix in only 
2.56µs. This is possible due to the completely parallel 
and distributed construction of the SRAM – each 
synapse has its own weight pulse counter which has a 
static input register keeping the weight control number 
for that synapse. All counters/registers are topologically 
located in four separate SRAM blocks away from the 
analog circuitry of the Neural-Matrix. Although each 
such register is addressed individually and could be 
loaded independently as a typical RAM would allow, 
the construction of the SRAM does not involve cell 
arrays and/or shared resources as address or data buss 
lines. This makes it possible for all weight counters to 
be triggered at once, and each of them simultaneously to 
control the charge pulse of its own synapse. 

3.3 Input error accumulation due to leakage 
Small errors due to charge degradation in the input 
sample-and-hold capacitors could accumulate during the 
forward computation and cause a noticeable error in the 
output. Therefore, the input signal is processed through 
the network in a “wave” pattern. Sampling and holding 
each previous layer input (output) current signal into 
input current to voltage conversion capacitors of each 
synapse eliminates this issue almost completely since 
the signal has to be stored for only a relatively short 



 

 

period of time equal to synapse propagation delay plus 
input conversion time of the next layer. 

4 Summary and Conclusion 
We show that it is feasible to implement an analog 
synapse, a neuron and a complete ANN using only basic 
properties of MOSFETs in a standard CMOS 
fabrication process. Further, we demonstrate that the 
inherent quadratic non-linearity with respect to synapse 
weight is not detrimental to the ability of the synapse to 
function in feed-forward and LMS training modes of 
operation [1].  We do so by offering results from both 
theoretical and experimental research we have 
conducted [2][3][4][5]. We show that this simple 
synapse circuit proves useful in VLSI systems-on-a-
chip and we demonstrate its feasibility for on-chip 
integration with other CMOS products. We describe a 
specific VLSI system implemented on TSMC 0.35µm 
using 2176 such synapses. We report successful results 
as well as shortcomings in the design and 
implementation of the system in support of the 
feasibility claims we make.  Therefore, we believe that 
the described implementation is, in fact, valuable, 
especially where ANN integration with standard CMOS 
product is desired. 
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1 Introduction 
The signal processing speed, scale of integration, low 
power consumption and manufacturability of 
nowadays ANNs determine their feasibility and usage 
in real-life applications. Due to conflicting 
requirements in lowering the supply voltages and 
increasing clock speeds of the digital circuits, many 
researchers consider analog implementations of neural 
networks as a way to carry over signal processing 
functions with fewer numbers of active semi-
conductor devices. The integration of large numbers 
of neurons in a single chip is beneficial since it 
increases the VC-dimension[1][2]. It requires the 
minimization of the synapse area and a more efficient 
way of data exchange between neurons to be devised. 
In this respect, analog implementations offer certain 
benefits making them good contenders for real-time 
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applications. First, they offer high processing speed 
since the analog signal processing is carried out 
through summation and multiplication of continuous 
current or voltage signals with virtually no delay. 
Second, analog implementations, typically, can have 
larger scale of integration since they avoid data-path 
organization which often requires data multiplexing, 
bus sharing, and data-flow control logic, further 
limiting the effective rate at which digital neural 
circuits can process input signals. The main 
disadvantages of the analog-based designs of ANNs 
are considered to be their lower accuracy and the 
difficulties with linearity in the computations. These 
two factors are challenged in this article. First, it is 
demonstrated that the term “absolute accuracy” is 
often of lower significance with respect to the ability 
of a neural network to function in many practical 
applications. Second, it is demonstrated that ideal 
linearity in the multiplication computations is not 
necessarily desirable or even required In most cases, 
nonlinearity in the synapse transfer function is, in fact, 
beneficial[11][12][13]. This article is limited to the 
discussion of the quadratic nonlinearity in the synapse 
multiplication function of a specific analog 
implementation. 
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Abstract: A simple analog-signal synapse model is developed and afterward implemented on a standard 0.35µm 
CMOS process to provide for large scale of integration, high processing speed and manufacturability of a multi-layer 
artificial neural network. Synapse non-linearity with respect to synapse weight is studied. Demonstrated is the 
capability of the circuit to operate in both feed-forward and learning (training) mode. The effect of the synapse’s 
inherent quadratic nonlinearity on learning convergence and on the optimization of weight vector update direction is 
analyzed and found to be beneficial. The suitability of the proposed implementation for very large-scale artificial 
neural networks is confirmed. 
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The paper is structured as follows. Section 2 describes 
the proposed analog, nonlinear, one-transistor synapse 
model, explains the motivation behind avoiding use of 
floating-gate devices. Section 3 examines the inherent 
nonlinearity of the synapse with respect to its weight. 
Synapse model functional verification results follow 
brief extracts from our analytical research on the 
effects of the quadratic nonlinearity on the feed-
forward and LMS training. Results of our circuit 
simulations and system-level MatLab™ verification 
of an artificial neuron acting as linear classifier are 
presented next. Summary and conclusions wrap up the 
paper. 

2 Model overview 
By using the physics of analog devices, analog 
implementations of ANNs offer the advantage to carry 
out synaptic function with only a small number of 
transistors. In order to benefit fully from the simple 
current summing law and avoid parasitic capacitive load 
delays, we chose pre- and post-synaptic activity signal to 
be represented by analog current. To simplify synapse 
design and minimize synapse silicon layout area, as well 
as to allow for ANN on-chip integration with other 
standard CMOS products,  it is decided to implement 
synapse multiplication function by a simple single 
semiconductor device—a MOSFET.  

From the first-order DC, large-signal low frequency 
approximation9 model (1) of a MOSFET’s drain current 
in non-saturated region of operation � ���	 
	

� � �� � , 
after simplification10[3][4],  

� �� ���
� �� �

�� 
	 �	 �	 �	
� � � � � �� �� � � 	  (1) 

we use the product of the gate-source and drain-
source voltage to produce one of the components of 
the synaptic activity value defined by[5]: 

                                                 
9 For VGS � 1.0 V, VDS �100mV and VSB = 0V, second-order 
effects, including channel-length modulation, short-channel 
and temperature effects are estimated to contribute an 
average error of -5.1%. This error, however, is considered 
included in the overall nonlinearity of 

�
� and does not 

change the applicability of the considerations given.  
10 For typical operating drain-source voltage 
( ���
�	
� ��
 ) in non-saturated mode of operation, 

channel-length modulation contributes error of no more than 
0.02% which is ignored in further consideration. 
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Summing the currents of those “partial products”, we get 
the complete “sum of the weighted products”. To express 
this, we consider a single synapse, k, and define: 
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Next, from (1), we derive a generic form of the quadratic 
nonlinearity of the synapse’s internal activity field with 
respect to its weight: 

�
� � � �
�� �� �� �                                  (3) 

where �  is a constant ( �
�� � ). We chose the above 
definitions due to practical considerations- to provide for 
signal values that are of the same or close order of 
magnitude. Nevertheless, the results in this text are more 
generic and can be applied to other, similar to expression 
(3), non-linear relationships, provided that the 
relationship can be approximated linearly within a certain 
operational range.   

For 
 -number of synapses, the overall synaptic activity 
is: 

�

� � �
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� � �
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� � �

� � �� � �                   (4) 

Based on these considerations, a single MOSFET 
device offers a simple way of constructing a “linear 
combiner” in hardware. Its main advantage over 
single-transistor synapses, implemented in analog-
floating-gate capable technologies, is that it does not 
require any special fabrication technology, and thus it 
is easily integrated with other standard CMOS 
applications to build a complete system-on-a-chip 
(SoC). Floating-gate technology is available in most 
“standard” CMOS processes; however, it is most 
often used for binary information storage. In order to 
reach a 9-bit or better analog storage resolution more 
specialized and expensive floating-gate fabrication 
technology is required. Additionally, analog floating-
gate control circuits are complicated and small weight 
updates are difficult [14].  

The proposed synapse model is inherently nonlinear 
but simple enough in its implementation to occupy a 
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Figure 8 Modified weight vector update diagram due to ‘residual 
weight vector’ term 

very small silicon area, making it very useful in VLSI 
systems. Further, we show that this nonlinearity is not 
detrimental to the qualities of the proposed synapse 
but, in fact, could be beneficial. We also include 
circuit simulation and system-level behavioral 
simulation results that support the feasibility of using 
such nonlinear synapses as building blocks of ANNs. 

3 Effects of the nonlinearity 

3.1 Effect of synapse quadratic nonlinearity 
in feed-forward mode 

To show the effect of the quadratic nonlinearity with 
respect to synapse weight, due to the described 
implementation, we evaluate the error defined by: 
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Expressed in terms of synapse transistor quantities: 
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 (6) 

From (6) we note that the linearity error does not 
depend on transistor transconductance parameters i.e., 
on process or geometrical parameters. For a typical 
signal range ( T100 ,  1.0 ,  V 0.65DS GSmV V Vυ υ= = = ), 
we estimate this nonlinearity “error” to be less than 
15% (14.29% worst-case). We could apply an input 
bias  
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to an extra synapse (theta-synapse) to eliminate this 
“offset” error11 in feed-forward mode if needed. In 
feed-forward mode this bias term is a known constant, 
thus we could eliminate this term after network 
training is complete and weights are known. Such 
correction, however, is not applied in the experiments 
shown since it is our belief that this inherent offset 
term is accounted for by the Back-Propagation 
algorithm during training and, thus, it can be treated 
by the adaptive process as “constant input noise”. 

                                                 
11 in several applications, this nonlinearity in feed-forward 
mode proved not relevant to the success of the network for 
correct classification due to flexibility in the output space 
definition and, therefore, correction was not necessary  

3.2 Effect of synapse quadratic nonlinearity 
in least-mean-square (LMS) training 

To study the effects of the “offset” term in (4), we use 
the instantaneous estimate of the gradient and the 
method of steepest descent in LMS training: 
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Using equation (4) for the method of steepest descent 
we obtain weight update rule in vector format: 
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A corresponding weight-update vector diagram is 
shown in Figure 8. We define the difference between 
the update vector in the case of an ideally linear 
synapse output and the case of a nonlinear synapse 
with quadratic weight-nonlinearity as a ‘residual 
weight gradient vector’: 

 �
�
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� �

� ��  (12) 

We then define a ‘modified’12 instantaneous error 
gradient vector estimate:  

 �
� � � � �

�
��� � � 	�  (13) 

and then re-write the weight update rule(11): 

�� ���� 	 �
��� � � �
� � � �           (14) 

We have analyzed the effect of the modified gradient 

                                                 
12 Compared to original LMS steepest descent method 



 

 

vector in two ways: effect on the direction of the 
weight-vector update, and effect on the magnitude 
(norm) of the update. We have concluded that: 

1. The modified weight update vector due to (12) is 
always rotated in the direction of the input vector 
regardless of the input or weight vectors relative 
position or size. Thus, in both angle and 
Euclidean-distance sense the new weight-update 
vector is closer to the input vector when compared 
to traditional LMS with gradient descent. 

a) An angle exists between the input and weight vectors 
 �

�� �	 
�	�
�������� ��������

���� � � 	� �  (15) 

for which: 

• magnitude of the modified update is larger than the 
norm of the update in the original LMS steepest descent 
method13 if � ��� �� �

��������
���  

• magnitude of the modified update vector is smaller 
compared to the norm of the original method if 

� ��� �� �
��������
�
�  

Therefore, the effect of the ‘residual weight gradient 
vector’ on the adaptation is considered beneficial – 
increasing the amount of update, hence, speeding up 
the convergence of the weight vector when it is ‘far’ 
from the steepest descent direction and decreasing the 
amount of update for weight vectors close to the 
direction of steepest descent [6][10]. The latter is 
considered helpful in avoiding weight-vector 
oscillations around the optimum solution for increased 
learning-rates, thus, again providing faster 
convergence conditions.  

Additionally, by expanding the error cost function in a 
Taylor series around the weight vector at any given 
time, it has been proven that the error is minimized 
with every step of the iterative descent regardless of 
the modification due to the residual weight gradient 
vector i.e. synapse quadratic nonlinearity with respect 
to its weight. A comparative analysis was also 
conducted between the modified update(11) and the 
generalized ‘delta rule’ including the ‘momentum 
term’ as it is known by Rumelhart et al [7]. It was 
concluded that, while the use of the momentum term 
can decrease the stable range of the learning rate 
parameter and lead to instability [8][9], the effect of 
the residual weight vector, in contrast, does not 
decrease the learning rate range and is stabilizing 

                                                 
13 For same learning rate and instantaneous error amount 

inside the 
��������
� -determined spatial cone. The details 

of this research, however, are outside of the scope of 
the present article and are not included here. More 
information on training ANNs with non-linear 
synapses can be found in [15][16]. 

3.3 Experimental data 
To verify and support the theoretical findings, a 
number of circuit-level and system-level simulations 
were carried out. Circuit level simulation results and 
plots for nonlinear synapse operation, weight-
charging, input-signal conversion and others are 
exhaustive and available from the author upon 
request[17][19]. System-level simulations were 
conducted using MatLab™ software to train and test a 
neuron using synapses with quadratic nonlinear 
synapses as modeled by (3) to perform a linear 
classifier function.  Sets of 2D linearly separable 
clusters of random vectors were generated and then 
LMS steepest descent training was performed over the 
same data twice – once for a neuron having ideally 
linear synapses and again for the described model of a 
neuron with nonlinear synapses. More than 200 
simulation runs over clusters of 100 vectors with 
varying cluster size and dispersion were evaluated. 
The results showed [10] that the classification success 
of the neuron using nonlinear synapses modeled by 
(4) was, generally, not lower than the success rate of 
the correct classification of the neuron with linear 
synapses, and in many instances was better. 
Additionally, in most cases, convergence during the 
training of the neuron using nonlinear synapses was 
reached in fewer epochs than for the case of the 
neuron with ideally linear synapses. The results for 
the original neuron with ideally linear synapse are 
depicted by an ‘o’-symbol and the results of the 
neuron with quadratic nonlinearity in the synapses are 
shown with an ‘x’-symbol. Selected plots showing the 
final MSE, the number of epochs in which 
convergence was reached, final learning rate 
parameters and rate of successful classification for the 
training and test runs in the two cases are shown in 
Figure 9 through Figure 13. 



 

 

 
Figure 9 Final MSE vs. training/test run number 

 

 
Figure 10 Relative deviation in percent of the output response of a 
neuron using nonlinear synapses with quadratic nonlinearity vs the 
response of a neuron with linear synapses 

 

Figure 11 Number of epochs in which convergence was reached in the 
case of the original linear synapse neuron model and neuron using 
nonlinear synapses 

 
Figure 12 Final learning rate parameter for each training run 

 

 

Figure 13 Rate of successful classification of the neuron with linear 
synapses -‘o’ and with non-linear synapses -‘x’  

4 Summary and Conclusion 
We show that it is feasible to implement an analog 
synapse using only basic properties of MOSFETs in a 
standard CMOS fabrication process. We describe the 
model and investigate its operation in feed-forward 
and learning modes of operation. Due to limited size 
of this presentation, we show the complete design of 
the synapse circuit, a neuron and ANN based on this 
model in [5] and [19]. We demonstrate that not only is 
the inherent quadratic non-linearity with respect to 
synapse weight not detrimental to the ability of the 
synapse to function in LMS training mode, but also 
that the latter can offer distinct advantages in learning 
convergence. We do so by offering results from both 
theoretical and experimental research we have 
conducted. We suggest that a simple synapse circuit, 
based on this synapse model can prove useful in VLSI 
systems-on-a-chip and we further exploit this topic in 



 

 

[19] to demonstrate its feasibility for on-chip 
integration with other CMOS products.  
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