
1 Introduction 
The signal processing speed, scale of integration, low 
power consumption and manufacturability of nowadays 
ANNs determine their feasibility and usage in real-life 
applications. Due to conflicting requirements in 
lowering the supply voltages and increasing clock 
speeds of the digital circuits, many researchers consider 
analog implementations of neural networks as a way to 
carry over signal processing functions with fewer 
numbers of active semi-conductor devices. The 
integration of large numbers of neurons in a single chip 
is beneficial since it increases the VC-dimension[1][2]. 
It requires the minimization of the synapse area and a 
more efficient way of data exchange between neurons to 
be devised. In this respect, analog implementations offer 
certain benefits making them good contenders for real-
time applications. First, they offer high processing 
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speed since the analog signal processing is carried out 
through summation and multiplication of continuous 
current or voltage signals with virtually no delay. 
Second, analog implementations, typically, can have 
larger scale of integration since they avoid data-path 
organization which often requires data multiplexing, bus 
sharing, and data-flow control logic, further limiting the 
effective rate at which digital neural circuits can process 
input signals. The main disadvantages of the analog-
based designs of ANNs are considered to be their lower 
accuracy and the difficulties with linearity in the 
computations. These two factors are challenged in this 
article. First, it is demonstrated that the term “absolute 
accuracy” is often of lower significance with respect to 
the ability of a neural network to function in many 
practical applications. Second, it is demonstrated that 
ideal linearity in the multiplication computations is not 
necessarily desirable or even required In most cases, 
nonlinearity in the synapse transfer function is, in fact, 
beneficial[11][12][13]. This article is limited to the 
discussion of the quadratic nonlinearity in the synapse 
multiplication function of a specific analog 
implementation. 
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The paper is structured as follows. Section 2 describes 
the proposed analog, nonlinear, one-transistor synapse 
model, explains the motivation behind avoiding use of 
floating-gate devices. Section 3 examines the inherent 
nonlinearity of the synapse with respect to its weight. 
Synapse model functional verification results follow 
brief extracts from our analytical research on the effects 
of the quadratic nonlinearity on the feed-forward and 
LMS training. Results of our circuit simulations and 
system-level MatLab™ verification of an artificial 
neuron acting as linear classifier are presented next. 
Summary and conclusions wrap up the paper. 

2 Model overview 
By using the physics of analog devices, analog 
implementations of ANNs offer the advantage to carry out 
synaptic function with only a small number of transistors. 
In order to benefit fully from the simple current summing 
law and avoid parasitic capacitive load delays, we chose 
pre- and post-synaptic activity signal to be represented by 
analog current. To simplify synapse design and minimize 
synapse silicon layout area, as well as to allow for ANN 
on-chip integration with other standard CMOS products,  it 
is decided to implement synapse multiplication function by 
a simple single semiconductor device—a MOSFET.  

From the first-order DC, large-signal low frequency 
approximation2 model (1) of a MOSFET’s drain current in 
non-saturated region of operation � �
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� � �� � , after 

simplification3[3][4],  
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we use the product of the gate-source and drain-source 
voltage to produce one of the components of the 
synaptic activity value defined by[5]: 
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effects, including channel-length modulation, short-channel 
and temperature effects are estimated to contribute an average 
error of -5.1%. This error, however, is considered included in 
the overall nonlinearity of 
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applicability of the considerations given.  
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in non-saturated mode of operation, channel-length 
modulation contributes error of no more than 0.02% which is 
ignored in further consideration. 

Summing the currents of those “partial products”, we get 
the complete “sum of the weighted products”. To express 
this, we consider a single synapse, k, and define: 
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Next, from (1), we derive a generic form of the quadratic 
nonlinearity of the synapse’s internal activity field with 
respect to its weight: 
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where �  is a constant ( ���� � ). We chose the above 
definitions due to practical considerations- to provide for 
signal values that are of the same or close order of 
magnitude. Nevertheless, the results in this text are more 
generic and can be applied to other, similar to expression 
(3), non-linear relationships, provided that the relationship 
can be approximated linearly within a certain operational 
range.   

For � -number of synapses, the overall synaptic activity is: 
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Based on these considerations, a single MOSFET device 
offers a simple way of constructing a “linear combiner” 
in hardware. Its main advantage over single-transistor 
synapses, implemented in analog-floating-gate capable 
technologies, is that it does not require any special 
fabrication technology, and thus it is easily integrated 
with other standard CMOS applications to build a 
complete system-on-a-chip (SoC). Floating-gate 
technology is available in most “standard” CMOS 
processes; however, it is most often used for binary 
information storage. In order to reach a 9-bit or better 
analog storage resolution more specialized and 
expensive floating-gate fabrication technology is 
required. Additionally, analog floating-gate control 
circuits are complicated and small weight updates are 
difficult [14].  

The proposed synapse model is inherently nonlinear but 
simple enough in its implementation to occupy a very 
small silicon area, making it very useful in VLSI 
systems. Further, we show that this nonlinearity is not 
detrimental to the qualities of the proposed synapse but, 
in fact, could be beneficial. We also include circuit 
simulation and system-level behavioral simulation 
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Figure 1 Modified weight vector update diagram due to ‘residual 
weight vector’ term 

results that support the feasibility of using such 
nonlinear synapses as building blocks of ANNs. 

3 Effects of the nonlinearity 

3.1 Effect of synapse quadratic nonlinearity in 
feed-forward mode 

To show the effect of the quadratic nonlinearity with 
respect to synapse weight, due to the described 
implementation, we evaluate the error defined by: 
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Expressed in terms of synapse transistor quantities: 
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From (6) we note that the linearity error does not depend 
on transistor transconductance parameters i.e., on 
process or geometrical parameters. For a typical signal 
range ( T100 ,  1.0 ,  V 0.65DS GSmV V Vυ υ= = = ), we 
estimate this nonlinearity “error” to be less than 
15% (14.29% worst-case). We could apply an input bias  

 
�

�
�

�

�

	

	

� 
��

�

�

� �� � � � � �� �
	  (7) 

to an extra synapse (theta-synapse) to eliminate this 
“offset” error4 in feed-forward mode if needed. In feed-
forward mode this bias term is a known constant, thus 
we could eliminate this term after network training is 
complete and weights are known. Such correction, 
however, is not applied in the experiments shown since 
it is our belief that this inherent offset term is accounted 
for by the Back-Propagation algorithm during training 
and, thus, it can be treated by the adaptive process as 
“constant input noise”. 

3.2 Effect of synapse quadratic nonlinearity in 
least-mean-square (LMS) training 

To study the effects of the “offset” term in (4), we use 
the instantaneous estimate of the gradient and the 
method of steepest descent in LMS training: 

                                                 
4 in several applications, this nonlinearity in feed-forward 
mode proved not relevant to the success of the network for 
correct classification due to flexibility in the output space 
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Using equation (4) for the method of steepest descent 
we obtain weight update rule in vector format: 
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A corresponding weight-update vector diagram is 
shown in Figure 1. We define the difference between 
the update vector in the case of an ideally linear synapse 
output and the case of a nonlinear synapse with 
quadratic weight-nonlinearity as a ‘residual weight 
gradient vector’: 
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We then define a ‘modified’5 instantaneous error 
gradient vector estimate:  
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and then re-write the weight update rule(11): 
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We have analyzed the effect of the modified gradient 
vector in two ways: effect on the direction of the 
weight-vector update, and effect on the magnitude 
(norm) of the update. We have concluded that: 

1. The modified weight update vector due to (12) is 
always rotated in the direction of the input vector 
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regardless of the input or weight vectors relative 
position or size. Thus, in both angle and Euclidean-
distance sense the new weight-update vector is 
closer to the input vector when compared to 
traditional LMS with gradient descent. 

a) An angle exists between the input and weight 
vectors 
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for which: 

• magnitude of the modified update is larger than the 
norm of the update in the original LMS steepest 
descent method6 if  �� 	� �

��������
���  

• magnitude of the modified update vector is smaller 
compared to the norm of the original method if 
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Therefore, the effect of the ‘residual weight gradient 
vector’ on the adaptation is considered beneficial – 
increasing the amount of update, hence, speeding up the 
convergence of the weight vector when it is ‘far’ from 
the steepest descent direction and decreasing the amount 
of update for weight vectors close to the direction of 
steepest descent [6][10]. The latter is considered helpful 
in avoiding weight-vector oscillations around the 
optimum solution for increased learning-rates, thus, 
again providing faster convergence conditions.  

Additionally, by expanding the error cost function in a 
Taylor series around the weight vector at any given 
time, it has been proven that the error is minimized with 
every step of the iterative descent regardless of the 
modification due to the residual weight gradient vector 
i.e. synapse quadratic nonlinearity with respect to its 
weight. A comparative analysis was also conducted 
between the modified update(11) and the generalized 
‘delta rule’ including the ‘momentum term’ as it is 
known by Rumelhart et al [7]. It was concluded that, 
while the use of the momentum term can decrease the 
stable range of the learning rate parameter and lead to 
instability [8][9], the effect of the residual weight 
vector, in contrast, does not decrease the learning rate 
range and is stabilizing inside the 

��������
� -determined 

spatial cone. The details of this research, however, are 
outside of the scope of the present article and are not 
included here. More information on training ANNs with 
non-linear synapses can be found in [15][16]. 
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3.3 Experimental data 
To verify and support the theoretical findings, a number 
of circuit-level and system-level simulations were 
carried out. Circuit level simulation results and plots for 
nonlinear synapse operation, weight-charging, input-
signal conversion and others are exhaustive and 
available from the author upon request[17][19]. System-
level simulations were conducted using MatLab™ 
software to train and test a neuron using synapses with 
quadratic nonlinear synapses as modeled by (3) to 
perform a linear classifier function.  Sets of 2D linearly 
separable clusters of random vectors were generated and 
then LMS steepest descent training was performed over 
the same data twice – once for a neuron having ideally 
linear synapses and again for the described model of a 
neuron with nonlinear synapses. More than 200 
simulation runs over clusters of 100 vectors with 
varying cluster size and dispersion were evaluated. The 
results showed [10] that the classification success of the 
neuron using nonlinear synapses modeled by (4) was, 
generally, not lower than the success rate of the correct 
classification of the neuron with linear synapses, and in 
many instances was better. Additionally, in most cases, 
convergence during the training of the neuron using 
nonlinear synapses was reached in fewer epochs than 
for the case of the neuron with ideally linear synapses. 
The results for the original neuron with ideally linear 
synapse are depicted by an ‘o’-symbol and the results of 
the neuron with quadratic nonlinearity in the synapses 
are shown with an ‘x’-symbol. Selected plots showing 
the final MSE, the number of epochs in which 
convergence was reached, final learning rate parameters 
and rate of successful classification for the training and 
test runs in the two cases are shown in Figure 2 through 
Figure 6. 

 
Figure 2 Final MSE vs. training/test run number 



 

 
Figure 3 Relative deviation in percent of the output response of a neuron 
using nonlinear synapses with quadratic nonlinearity vs the response of a 
neuron with linear synapses 

 

Figure 4 Number of epochs in which convergence was reached in the case 
of the original linear synapse neuron model and neuron using nonlinear 
synapses 

 
Figure 5 Final learning rate parameter for each training run 

 

 

Figure 6 Rate of successful classification of the neuron with linear 
synapses -‘o’ and with non-linear synapses -‘x’  

4 Summary and Conclusion 
We show that it is feasible to implement an analog 
synapse using only basic properties of MOSFETs in a 
standard CMOS fabrication process. We describe the 
model and investigate its operation in feed-forward and 
learning modes of operation. Due to limited size of this 
presentation, we show the complete design of the 
synapse circuit, a neuron and ANN based on this model 
in [18] and [19]. We demonstrate that not only is the 
inherent quadratic non-linearity with respect to synapse 
weight not detrimental to the ability of the synapse to 
function in LMS training mode, but also that the latter 
can offer distinct advantages in learning convergence. 
We do so by offering results from both theoretical and 
experimental research we have conducted. We suggest 
that a simple synapse circuit, based on this synapse 
model can prove useful in VLSI systems-on-a-chip and 
we further exploit this topic in [19] to demonstrate its 
feasibility for on-chip integration with other CMOS 
products.  
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