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Abstract: - Some principal characteristics of the time-optimal system design algorithm were studied. An 
additional acceleration effect of the design process serves as the basis of the time-optimal algorithm construction. 
The acceleration effect and the special selection of the start point of the design process were defined as the 
principal ideas to construct of the optimal algorithm. The process of the optimal trajectory construction can be 
obtained on the basis of the control functions optimal selection. The optimal positions of the control function 
switching points for the time-optimal algorithm construction were found on the basis of the special Lyapunov 
function of the design process. 
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1 Introduction 
The problem of the computer time reduction of a 
large system design is one of the essential problems 
of the total quality design improvement. Besides the 
traditionally used ideas of sparse matrix techniques 
and decomposition techniques some another ways 
were determine to reduce the total computer design 
time. The reformulation of the optimization process 
on heuristic level was proposed decades ago [1]. This 
process was named as generalized optimization and it 
consists of the Kirchhoff law ignoring for some parts 
of the system model. The special cost function is 
minimized instead of the circuit equation solve. This 
idea was developed in practical aspect for the 
microwave circuit optimization [2] and for the 
synthesis of high-performance analog circuits [3] in 
extremely case, when the total system model was 
eliminated. The last paper deals with homotopy how 
to tighten the dc constraints during the optimization 
process. Nevertheless all these ideas can be 
generalized to reduce the total computer design time 
for the system design. This generalization can be 
done on the basis of the control theory approach and 
includes the special control function to control the 
design process. This approach consists of the 
reformulation of the total design problem and 
generalization of it to obtain a set of different design 
strategies inside the same optimization procedure [4]. 
An additional acceleration effect [5] serves as the 
first principal component of the optimal algorithm 
construction. The second principal can be defined as 

the special start point selection [6] for design 
algorithm initialization. Nevertheless, the main 
problem of the time-optimal algorithm construction 
is the problem of the optimal switching point position 
for the control functions switching. This problem is 
discussed below on the basis of the ideas of the 
optimal control theory.  

 
2 Problem Formulation 
The design process for any analog system design can 
be defined [4] as the problem of the generalized 
objective function ( )UXF ,  minimization by 
means of the vector equation: 
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with the constraints: 
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where NRX ∈ , ( )XXX ′′′= , , KRX ∈′  is the vector of 

independent variables and the vector MRX ∈′′  is the 
vector of dependent variables ( MKN += ), ( )Xg j  

for all  j is the system model, s is the iterations 

number, st is the iteration parameter, 1Rt s ∈ , 

H ≡H(X,U) is the direction of the generalized 
objective function ( )UXF ,  decreasing, U is the 
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problem formulation permits to redistribute the 
computer time expense between the problem (2) 
solve and the optimization procedure (1) for the 
function ( )UXF , . The control vector U is the main 
tool for the redistribution process in this case. 
Practically an infinite number of the different design 
strategies are produced because the vector U depends 
on the optimization current step. The problem of the 
optimal design strategy search is formulated now as 
the typical problem for the functional minimization 
of the control theory. The functional that needs to 
minimize is the total CPU time T of the design 
process. This functional depends directly on the 
operation number and more generally on the design 
trajectory that has been realized. The main difficulty 
of this problem definition is unknown optimal 
dependencies of all control functions u j . This 

problem is the central for such type of the design 
process definition. 

 
3 Design Trajectory Subsets  
The idea of the system design problem definition as 
the problem of the control theory does not have 
dependency from the optimization method (the 
function H form) and can be embedded into any 
optimization procedure. The numerical results for the 
different electronic circuits show [4] that the optimal 
control vector optU  and the optimal trajectory 

optX  

exist and allow reducing the total computer time 
significantly. This optimal trajectory is differed from 
the traditional design strategy ( Mjju ,...2,1,0 =∀= ) and 

differed from the modified traditional design strategy 
( Mjju ,...2,1,1 =∀= ), i.e. the idea, which was realized in 

[2] and [3] is not optimal from the computer time 
point of view. The main problem is to construct the 
optimal algorithm, which permits to realize all 
advantage of the optimal strategy. The analysis of the 
different electronic systems gives the possibility to 
conclude that the potential computer time gain of the 
time-optimal design strategy relatively the traditional 

strategy increases when the size and complexity of 
the system increase.  

On the basis of the described methodology, by 
means of the start point of the vector X variation, an 
additional acceleration effect of the design process 
was discovered [5]. This effect appears for all 
analyzed circuits when al least one coordinate of the 
start point is negative and gives the possibility to 
reduce the total computer time additionally. This 
effect can serves as the basis for the optimal 
algorithm construction in case when the sequence of 
the switching points of the control functions u j  is 

founded. So, the main problem to construct the 
optimal algorithm is the problem of the optimal 
switching point of the control functions searching 
during the design process. 
 The analysis of some examples gives the 
possibility to conclude that all the trajectories that 
appear for the different control vector U can be 
separated in two subsets. In Fig. 1 there is a three-
node circuit that has four admittances 4321 ,,, yyyy  

(K=4) and three nodal voltages 321 ,, VVV  (M=3). The 

nonlinear elements of the circuit have been defined 

by the following dependencies: ( )2
21111 VVbay nnn −⋅+= , 

( )2
32222 VVbay nnn −⋅+= . The mathematical model 

(2) of this circuit includes now three equations and 
the optimization procedure (1) includes four 
equations. The one plane trajectory projections of the 
different design strategies, which correspond to the 
different control vector U are shown in Fig. 2. This 
projections correspond to the plane 34 Vy −   and the 

points S and F correspond to the start and the final 
points of the design process. The complete basis of 
the different design strategies includes eight 
strategies. 
 
 

 
 

Fig. 1. Circuit with four independent (K=4) and three 
dependent (M=3) variables. 



 
 

Fig. 2. 34 Vy −  plane trajectory projections for different 

control vector U. 
 
 
 We can define the two subsets of the trajectories: 
1) the trajectory projection, which corresponds to the 
traditional strategy U=(000) and the like traditional 
strategy projections (010), (100), (110) and 2) the 
trajectory projection, which corresponds to the 
modified traditional strategy (111) and the like 
modified traditional strategy projections (001), (011), 
(101). The main differences between two these 
groups are the different curve behavior and the 
different approach to the final point. The curves from 
two these groups draw to the finish point from the 
opposite directions. The time-optimal algorithm has 
includes one or some switching points where the 
switching is realized from the like modified 
traditional strategy to like traditional strategy with an 
additional adjusting. At least one negative 
component of the start value of the vector X is 
needed to realize the acceleration effect. In this case 
the optimal trajectory can be constructed. 
 The similar behavior of the complete basis of the 
different design strategies with the constant control 
vector is observed for all studied circuits. We can 
separate all the trajectories to two subsets. The first 
subset includes the traditional and like traditional 
design trajectories and the other one includes the 
modified and like modified traditional trajectories. 
We can conclude that the second groups trajectories 
can be serve as the first part for the optimal algorithm 
trajectory and the first group trajectories serve as the 
continuation. The next principal problem of the time-
optimal algorithm construction is the unknown 
optimal position of the control function switching 
points that provide the minimal computer time. This 
problem is discussed in the next section. 
 

4 Optimal Algorithm Structure Study 
To obtain the optimal sequence of the switching 
points during the design process, we need to define a 
special criterion that permits to find the optimal 
control vector U. The problem of the minimal time 
strategy searching is connected with the more general 
problem of the stability of each trajectory. There is a 
well known idea to study of any dynamic process 
stability properties by means of the Lyapunov direct 
method. We have been defined the system design 
algorithm as the dynamic controllable process. In this 
case we can study the stability of each trajectory and 
the design process transit time properties on the basis 
of the Lyapunov direct method. We propose now to 
use a Lyapunov function of the design process for the 
optimal algorithm structure revelation, in particular 
for the optimal switching points searching. There is a 
freedom of the Lyapunov function choice because of 
a non-unique form of this function.  Let us define the 
Lyapunov function of the design process (1)-(2) by 
the following expression: 
 
   ( ) ( )∑ −=
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where ia  is the stationary value of the coordinate ix , 

in other words the set of all the coefficients ia  is the 

one of the objectives of the design process. Let us 
define other variables iii axy −= . In this case the 

formula (3) can be rewritten as: 
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i
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The design process (1)-(2) can be rewritten by means 
of the variables iy  in the same form. The function 

(4) satisfies all of the conditions of the standard 
Lyapunov function definition. In fact the function 
V(Y) is the piecewise continue, and has piecewise-
continue first partial derivatives. Besides there are 
three characteristics of this function: i) V(Y) >0, ii) 
V(0)=0, and  iii) ( ) ∞→YV  when ∞→Y . In 

this case we can discuss the stability of the zero point 
solution. On the other hand, the stability of the point 
( )Naaa ,...,, 21  is analyzed by the definition (3). It is 

clear that the both problems are identical. 
Inconvenience of the formula (3) is an unknown 
point ( )Naaa ,...,, 21 , because this point can be 

reached at the end of the design process only. We can 
analyze the stability of all different design strategies 



on the basis of the formula (3) if we already found 
the design solution someway. On the other hand, it is 
very important to control the stability process during 
the design procedure. In this case we need to 
construct other form of the Lyapunov function that 
doesn’t depend on the unknown stationary point. Let 
us define the Lyapunov function by the next formula: 
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where F(X,U) is the generalized objective function of 
the optimization procedure. This function has the 
same properties as the function (3) for the 
sufficiently large neighborhood of the stationary 
point. Really, all derivatives ixF ∂∂ /  are equal to 

zero in the stationary point  a = ( )Naaa ,...,, 21 , so 

V(a,U)=0, on the other hand V(X,U)>0 for all X and 
at last, the function V(X) of the formula (5) is the 
function of the vector U  too, because all coordinates 

ix  are the functions of the control vector U. The 

property iii) is not proved only, because nobody 
know the function V(X,U) behavior when 

∞→X . However we can consider, from the 

practical experience, that the function V(X,U) 
increases in a sufficient large neighborhood of the 
stationary point. The direct calculation of the 
Lyapunov function time derivative gives the 
conditions of the process stability. The design 
process is stable if the Lyapunov function time 
derivative is negative. On the other hand, the direct 
method of Lyapunov gives the sufficient stability 
conditions but not necessary [7], so the process loses 
the stability (or not loses) if this derivative becomes 
positive. The stability of the different design 
strategies for three-transistor cells amplifier of Fig. 3 
was analyzed by the Lyapunov direct method. 
 

 
 
Fig. 3. Circuit topology for three-transistor cell amplifier. 

The Lyapunov function time derivative dV/dt is 
negative for all trajectories on the initial part of the 
design process; i.e. all admissible strategies are stable 
at the beginning. It is supposed that the integration 
step is sufficiently small. However, when the current 
point of the trajectory gets to the ε -neighborhood of 
the stationary point ( )Naaa ,...,, 21  some strategies 

can lose the stability because the Lyapunov function 
time derivative becomes positive. It means that all 
trajectories of this group do not guarantee the 
convergence from the ε -neighborhood. In fact, each 
of the trajectory of this group has own critical        
ε -neighborhood, which defines the maximum 
achievable precision (minimal achievable error). 
Another consideration is important too: the design 
process convergence slow down strongly before the 
ε -neighborhood reaching for all strategies of this 
group. It means that the derivative dV/dt is the 
negative but very small on the absolute value. It is 
interesting that the traditional design strategy belongs 
to this group. The critical ε  values of some design 
trajectories for the circuit of the Fig. 3 and two types 
of the optimization procedure are shown in Table 1.  
 
Table 1. Critical value of the ε -neighborhood for some 
design strategies. 

 
Three last strategies have the critical parameter ε  
practically on the boundary of the reachable 
computer precision. We used the double length 
words for all numbers during the computing. At the 
same time these strategies are characterized of the 
negative values of the derivative dV/dt during the all 
design process. This property guarantees the process 
stability. On the other hand, the first five design 
strategies have the critical ε -neighborhood, which 
depends on the intrinsic properties of the strategy. 
The derivative dV/dt is not negative when the current 
point approaches to the critical ε -neighborhood for 
all of these strategies. It results to relative instability 
and slowing down the design process. We can 
conclude that all strategies of this group, including 
the traditional one, have the problem with the 

N Control functions vector Critical  epsilon neighborhood
U (u1, u2, u3, u4, u5, u6, u7) Gradient DFP

  method method
1             ( 0 0 0 0 0 0 0 ) 9.85E-11 9.76E-11
2             ( 0 0 0 0 0 0 1 ) 5.92E-06 6.25E-07
3             ( 1 0 0 0 0 0 0 ) 9.51E-07 9.35E-07
4             ( 0 1 1 0 0 0 0 ) 6.88E-12 5.33E-12
5             ( 0 1 1 0 1 0 0 ) 7.55E-15 4.17E-15
6             ( 1 1 1 1 1 0 1 ) 3.94E-17 3.53E-17
7             ( 1 1 1 1 1 1 0 ) 9.15E-16 6.65E-16
8             ( 1 1 1 1 1 1 1 ) 8.15E-17 4.74E-17



stability when the high precision is needed and 
therefore the total design time for these strategies is 
very large. On the other hand there is a group of the 
strategies (for example 6,7 and 8 of the Table 1) that 
don’t lose the stability until practically any precision. 
The strategies of this group are characterized a large 
number of units in the corresponding control vector 
U and on the contrary, the strategies of the first group 
are characterized a large number of zeros as shown in 
Table 1. The time-optimal trajectory consists of the 
different design strategies in N-dimensional case, but 
it is very important that it includes strategies with the 
large number of units in the control vector on its final 
part. Therefore the time-optimal strategy has a very 
good stability and that’s why this strategy is more 
rapid than any other is. 
 Now the function (5) is used for the analysis of the 
design trajectory behavior with the different 
switching points. We can define the system design 
process as a dynamic transition process that provides 
the stationary point during some time. The problem 
of the time-optimal design algorithm construction is 
the problem of the transition process searching with 
the minimal transition time. There is a well-known 
idea [7]-[8] to minimize the transition process time 
by means of the special choice of the right hand part 
of the principal system of equations, in our case the 
form of the vector function ( )UXH , . By this 
conception it is necessary to change the functions 

( )UXH ,  by means of the control vector U selection 
to obtain the maximum speed of the Lyapunov 
function decreasing (the maximum of -dV/dt ) at each 
point of the process. Unfortunately the direct using of 
this idea does not serve well for the time-optimal 
design algorithm construction. It occurs because the 
change of the design strategy produces not only 
continuous design trajectories (when we change the 
strategy jju ∀= ,0  to the strategy jju ∀= ,1  for 

instance) but non-continuous trajectories too (in 
opposite case). Non-continues trajectories had never 
been appeared in control theory for the objects that 
are described by differential equations, but this is the 
ordinary case for the design process on the basis of 
the described design theory. In this case we need to 
correct the idea to maximize -dV/dt at each point of 
the design process. We define another principle: it is 
necessary to obtain the maximum speed of the 
Lyapunov function decreasing for that trajectory part 
which lies after the switching point. In this case the 
trajectories with the different switching points are 
compared to obtain the maximum value of -dV/dt. 

Technically this idea is realized by comparing some 
probes with the different switching points and 
selecting the one of them that provides the maximum 
of -dV/dt after the switching. Numerical results prove 
this idea. As shown in [6] the optimal design strategy 
for the circuit in Fig. 3 has the time gain near 600 
comparing with the traditional design strategy, 
providing the optimal algorithm in reality. The 
behavior of the function dV/dt for this circuit for three 
neighbor switching points 1, 2 and 3 that correspond 
to the five consecutive integration steps before (a), 
(b) in (c) and  after  (d), (e)  the  optimal  point  is 
shown in Fig. 4. The optimal switching point 
corresponds to the curve 3 of Fig. 4 (b), or curve 2 of 
Fig. 4 (c), or curve 1 of Fig. 4 (d). It is clear that this 
point corresponds to the maximum negative value of 
function dV/dt and at the same time corresponds to 
the minimum value of the total design steps. In this 
case the optimal switching points are found and serve 
as the basis to the time-optimal algorithm 
construction.  
 It is clear that we are forced to lose the computer 
time to do some probes and to look for the optimal 
position of the switching points. It means that we can 
never obtain the time gain, which characterizes the 
optimal strategy. The time loses can have the same 
order as the optimal algorithm computer time. So, 
the maximum time gain is equal 250-300 for the 
circuit in Fig. 3. This result worse than theoretic 
prediction, but this gain is significant too and the 
total design time reduction is the sufficient basis for 
the new design methodology development.  

 
5 Conclusion 
The problem of the time-optimal system design 
algorithm construction is solved more adequately as 
the functional optimization problem of the control 
theory. The three main components of the optimal 
algorithm construction can be picked out now: the 
additional acceleration effect of the system design 
process that appears when any quasi modified 
traditional design strategy is changed to any quasi 
traditional design strategy; the start point of the 
design process, which is selected with al least one 
negative component; and the optimal position of the 
necessary switching points that is defined by means 
of the careful current analysis of the time derivative 
of the special Lyapunov function of the system 
design process. These three ideas serve as the basis to 
the realistic time-optimal design algorithm 
construction. 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
Fig. 4. Time derivative of Lyapunov function behavior for 
three switching points 1,2,3 consecutive integration steps 
before (a), (b) in (c) and after (d), (e) the optimal point. 
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