
The evolution of a single species food-limited population model with delay:
A numerical study

ERIC AVILA-VALES, ANGEL ESTRELLA GONZALEZ, PEDRO SANCHEZ SALAZAR
Facultad de Mateḿaticas
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MEXICO

Abstract: In this work we model and numerically analyse, the dynamics of a single species food-limited model with delay,
we focus in the asymptotic behavior. We use the sub and supersolutions method to provide some numerical simulations of the
asymptotic behavior for several cases, autonomous, periodic, almost periodic concluding with a model that incoporates nonlocal
delays as well as a continuous delay.
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1 Introduction.

Food limited population models have been around since the
work of [1] and [2] back to the sixties. To have a more real-
istic model, several reserchers have used a reaction-diffusion
equation in order to incorporate spatial dispersal and envi-
romental heterogeneity [3] and [4]. A detailed account can
also be found in the recent work, [5]. In [6], [7], [8], [9] and
[10], we have seen a delay effect incorporated in the reaction-
diffusion model as well as non local delay effect.

We consider the equation

ut −αuxx = F(x, t,u, f ∗u), x∈ [0,1], t ∈ R (1)

for different families of functionsF . We will deal with the
cases ofF being autonomous, periodic, quasiperiodic and
f ∗ u depends on values on the past as well as on the non
local variation.

We will be dealing with the unidimensional caseΩ =
[0,1]. The functionu is also subject to a Dirichlet condition

u(0, t) = 0, u(1, t) = 0, t ∈ R (2)

and the values foru in negative time are given as initial con-
dition

u(x,s) = η(x,s), x∈Ω, s∈R−, η(x,s) known. (3)

The numerical solutions will be found using the method
constructed in [11].

2 Problem Formulation.

2.1 Discrete delay.

The general form for the functionF that models the discrete
delay is

F(x, t,u, f ∗u) =

r(x, t)u(x, t)
K(x, t)− (au(x, t)+bu(x, t− τ))

K(x, t)+c(x, t)(au(x, t)+bu(x, t− τ))
(4)

wherea,b are non negative constants such thata+b = 1.
The parameterτ is the delay, which allows us to model de-

pendency on the actual state as well as some state in the past.
We will useτ = 1. Varying the parametersa,b allows us to
put more weight on the actual state versus the delayed. Also
notice that ifa= 1,b= 0 then the delay effect dissapears. We
will treat three different cases

i. Autonomous case

ii. Periodic case

iii. Almost periodic case

2.2 Continuous delay.

The previous model can be improved in several ways. First, it
can be noted that populations not only depend on the current
state and some previous fixed delay, but depend on the previ-
ous states. So instead of taking a constant delayτ, we allow
it to run from−∞ to the present timet.

Also, species do not remain still on some location as time
changes, but they move within their habitat. This introduces
non locality in our model.

In order to take these two considerations into account, we
use the model presented by Gourley in [10], for constant co-
efficients. The functionF has now the form

F(x, t,u, f ∗u) =

r(x, t)u(x, t)
K(x, t)− (au(x, t)+b( f ∗u)(x, t))

K(x, t)+c(x, t)(au(x, t)+b( f ∗u)(x, t))
(5)

where f ∗u is the following convolution

( f ∗u)(x, t) =
∫ t

−∞

∫
Ω

G(x,y, t−s) f (t−s)u(y,s) dyds. (6)

Here f is such that
∫ ∞

0 f (x) = 1 and represents the cor-
responding weight for each of the past states into the model.
Following [10], we use the strong generic kernel

f (t) =
te−t/τ

τ2 , (7)
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and

G(x,y, t) =
2
π

∞

∑
n=1

e−αn2t sin(nx)sin(ny) (8)

3 Problem Solution

We will numerically solve the equations (5)-(6) using the
method of sub and supersolutions [11].

In order to do that, we first describe Pao’s process [11].
We consider the following continuous parabolic boundary-
value problem in a bounded domainΩ in Rp (p = 1,2, . . .):

ut −α∇2u = f (x, t,u), x∈ Ω,0 < t ≤ T,

B[u(x0, t)] = h(x0, t), x∈ ∂Ω,0 < t ≤ T

u(x,0) = ψ(x), x∈ Ω.

(9)

Then, by using the standard second order difference notation

∆(ν)ui, j ≡
u(xi +hνeν , t j)−2u(xi , t j)+u(x1−hνeν , t j)

h2
ν

(10)

the finite difference version of the continuous system (9) is
given by1

L[u,0] = fi, j(ui, j), (i, j) ∈ Λp, (11)

B[u0, j ] = h0, j , i = 0∈ Sp, j = 1, . . . ,M, (12)

ui,0 = ψi , i ∈ Ωp (13)

wherehνeν ≡ (0, . . . ,0,hν ,0, . . . ,0) ∈ Rp andΩp, Λp, Sp are
the sets of all mesh points inΩ,Ω× (0,T] and∂Ω respec-
tively, andΛp is the set of all mesh points inΩ× [0,T].

We will construct a monotone sequence for the finite dif-
ference system (11)-(13) in a multidimensional domain. We
first choose a suitable functionγi, j ≡ γ(xi , t j)≤ 0 and add the
term γi, j on both sides of (11). The choice ofγ depends on
the reaction functionf . Then by starting from a suitable ini-

tial iterationu(0)
i,0 we successively construct a sequence{u(m)

i, j }
from the linear system

L[u(m),γ] = γi, ju
(m−1)
i, j + fi, j(u

(m−1)
i, j ), (i, j) ∈ Λp

B[u(m)
0, j ] = h0, j i = 0∈ Sp, j = 1, . . . ,M,

u(m)
i,0 = ψi i ∈ Sp,

(14)

for m= 1,2, . . .. The main idea for this construction is to char-
acterize a class of initial iterations so that the corresponding
sequence obtained from (14) converges monotonically to a
solution of the system (11)-(13).

Definition 1 A functionũi, j defined onΛp is called upper so-
lution of (11)-(12) if it satisfies the inequalities

L[u,0]≥ fi, j(ũi, j), (i, j) ∈ Λp,

B[ũ0, j ]≥ h0, j , i = 0∈ Sp, j = 1, . . . ,M,

ũi,0 ≥ ψi , i ∈ Ωp

(15)

Similarly, ûi, j is called a lower solution of (11)-(12) if it sat-
isfies all the reversed inequalities in (15).

It is clear from the above definition that every solutionui, j

is an upper solution as well as a lower solution. Suppose up-
per and lower solutions exist and ˆui, j ≤ ũi, j on Λp. Then by

usingu(0)
i, j = ũi, j andu(0)

i, j = ûi, j we can obtain two sequences

from (15). Denote these two sequences by{u(m)
i, j } and{u(m)

i, j }
respectively, and refer to them as maximal and minimal se-
quences. It can be shown that under some one-sided Lipschitz
condition of f , the maximal and minimal sequences converge
monotonically to a solution of (11)-(13).

The conditions imposed onf are given as follow:
There exist functionsγi,m j ≥ 0, σi, j ≥ 0 onΛp such that

fi, j(w)− fi, j(w)≥−γi, j(w−v) for û≤ v≤ w≤ ũ
(16)

fi, j(w)− fi, j(w)≤−σi, j(w−v) for û≤ v≤ w≤ ũ.
(17)

Notice that if f satisfies the Lipschitz condition

| fi, j(w)− fi, j(v)| ≤ ki,k|w−v| for û≤ v≤ w≤ ũ

then both (16) and (17) are satisfied withγi, j = σi, j = ki, j . The
following theorem is proved in [11]:

Theorem 1 Let ũi, j andûi, j be a pair of upper and lower so-
lutions such that̂ui, j ≤ ũi, j on Λp and let f satisfy condition

(16). Then the maximal sequence{u(m)
i, j } converges monoton-

ically from above to a solutionu≡ ui, j and the minimal se-

quence{u(m)
i, j } converges monotonically from below to a so-

lution u≡ ui, j of (11)-(13). Moreover,u and usatisfy the
relation

û≤ u(1) ≤ u(2) ≤ ·· · ≤ u≤ u≤ ·· · ≤ u(2) ≤ u(1) ≤ ũ. (18)

If, in addition, f satisfies condition (17) withσi, j ≤ k−1
j then

u = u and is the unique solution such that (18) holds.

3.1 Discrete delay.

For this case, in [8] was considered autonomous coefficients
depending on the space variable and they prove that as long as
a > b, that is, the weight of the population at present time is
larger that the weight at the delayed time, then both ecuations,
with delay and with no delay, have the same steady state. This

1L[u,γ] = k−1
j (ui, j −ui, j−1)−∑p

ν=1 di, j ∆(ν)ui, j + γi, j ui, j

2



behavior could be reproduced with several functions, among
others

r(x, t) = 6+3sin(πx)
K(x, t) = 10.3−5sin(πx)
c(x, t) = 5.3−2cos(πx)

η(x,s) = 0.2e0.1ssin(πx)

(19)

In a similar way, [9] considered heterogeneous coeffi-
cients periodic in the time variable. They showed that for
a > b, the cases with delay and with no delay have the same
global attractor, this could be reproduced with

K(x, t) = 15+2sin(2πt) (20)

with r,c andη as in the autonomous case mentioned above.
Moreover, it could be noticed that asa decreases, the ir-

regularities become more prominent and fora < b we see
the presence of an oscillating behaviour, more prominent asa
becomes smaller. Population seems to suddenly increase by
large amounts just to decrease soon near zero for some time,
after a while the sudden increase-decrease occurs followed by
some low period and so on. We found that the times at which
the oscillations appear does not depend on the values fora,b
but rather on the values of the delay. A smaller delay makes
such waves to appear earlier, whereas a larger value will delay
their presence.

When the current state weight becomes null, that is, giv-
ing the full weight to the delay by settinga = 0 andb = 1
the periodic behaviour given byF has dissapeared leaving
only the oscillations caused by the delay (sudden increases
followed by some very low ranges).

3.1.1 Almost periodic case.

The next step consists on taking almost periodic functions.
For this case, no analytical results are known yet. These func-
tions do not present a period but their behaviour is somehow
regular. Examples of almost periodic functions are sums of
periodic functions with noncommesurable periods. The sim-
ulations were done using

K(x, t) = 15+2sin(2πt)+sin(
√

2t) (21)

Starting with no delay, we see that the functions behaves
similarly to the periodic case, but we see the effect of both
periods in action.

The effect of putting more weight to the delay than the
current state is similar to the effect seen in the previous cases.
The case with no delay is illustrated in the following figure.

Parametera = 1.0, no delay.

For large values ofa, delay introduces a small disturbance
but the current state dominates in the long term but asa de-
creases andb increases, the solutions become less regular and
for even smaller values fora, the periods seen in the non delay
solution dissapear and the strange oscillations appear again.

Parametera = 0.6, discrete delay.

Changing the other functions,r(x, t) andc(x, t), we have
similar effects to the ones shown here.

3.2 Continuous delay and non local effect.

For this case, few results are known comparing the asymp-
totic behavior of the case with delay and the one without it
like those presented in [10] in which they work with constant
coefficients. For the following cases no analytical results are
known yet.
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3.2.1 Heterogenous coefficients

These two graphs, the first one witha = 1, that is, with no
delay nor local effect, and the second one witha = 0.6, show
that they have the same steady state. To compute them we
took the same coefficients as in the same case for discrete de-
lay, see (19).

Parametera = 1.0, no delay.

Parametera = 0.6, continuous delay.

3.2.2 Periodic coefficients

For this case, the graphs seem to approximate to the same
global attractor. They were computed with the same func-
tionsK,c, r,η as in the discrete delay case.

Parametera = 1.0, no delay.

Parametera = 0.6, continuous delay.

When the coefficients are almost periodic, the same behaviour
was observed.

4 Conclusion.

As we mentioned before, [8], [9] and [10] studied the asymp-
totic behavior of equation (refequno) with and without delay.
They proved for some particular cases for the coefficients, that
as long as the weight of the instantaneous population is larger
that that of the delayed population (a> b), the asymptotic be-
havior is the same, that is, they have the same steady state or
the same global attractor. In [8] a discrete delay was consid-
ered without non-local effect and coefficients depending only
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on the space variable, in [9] they also work with discrete de-
lay and no non-local effect but with coefficients depending on
thex variable and periodic ont. Finally [10] considered con-
tinuous delay with non-local effect with constant coefficients.
The examples we showed in 3.1.1 and 3.2 had not been con-
sidered yet and no analytical results have been obtained as
the ones by Feng-Lu and Gourley-So. In all of these cases
we notice that as long as the weight of the instantaneous pop-
ulations is larger than the weight of the delay and non-local
effect(a > b), then both cases have the same asymptotic be-
havior. Based on the examples we have studied numerically,
we expect that such result will hold in general for these three
cases.
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