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Abstract

In this paper, dynamic neural networks are used for en-
gine model at idle speed on-line identification. Passivity
approach is applied to access several stability properties
of the neuro identifier. The conditions for passivity, sta-
bility, asymptotic stability and input-to-state stability
are established. We conclude that the commonly-used
backpropagation algorithm with a modification term
which is determined by off-line learning may make the
neuro identification algorithm robust stability with re-
spect to any bounded uncertainty.

Keywords: system identification, dynamic neural net-
works, engine model at idle speed

1 Introduction

Many applications show that neuro identification has
emerged as a effective tool for unknown nonlinear sys-
tems. This model-free approach uses the nice features
of neural networks, but the lack of model makes it hard
to obtain theoretical results on stability and perfor-
mance of neuro identifiers. It is very important for
engineers to assure the stability of neuro identififiers
in theory before they apply them to real systems. Two
kinds of stability for neuro identifiers have been stud-
ied. The stability of neuro identifier may be found in
[17] and [20]. The stability of learning algorithms was
discussed by [16] and [8]. We will emphasize this pa-
per on deriving novel stable learning algorithms of the
multilayer neuro identifier.

The global asymptotic stability (GAS) of dynamic neu-
ral networks has been developed during the last decade.
Diagonal stability [6] and negative semi-definiteness [7]
of the interconnection matrix may make Hopfield-Tank
neuro circuit GAS. Multilayer perceptrons (MLP) and
recurrent neural networks can be related to the Lur’e
systems, the absolute stabilities were developed by [15]
and [9]. Lyapunov-like analysis is suitable for dynamic

neural network, signal-layer networks were discussed in
[12] and [19], high-order networks and multilayer net-
works could be found in [8] and [10]. Input-to-state
stability (ISS) method [14] is another effective tool for
dynamic neural networks. [13] concluded that recurrent
neural networks are ISS and GAS with zero input if the
weights are small enough.

The stability of learning algorithms can de derived by
analyzing the identification or tracking errors of neu-
ral networks. [5] studied the stability conditions of the
updating laws when multilayer perceptrons are used to
identify and control a nonlinear system. In [16] the
dynamic backpropagation was modified with NLq sta-
bility constraints. Since neural networks cannot match
the unknown nonlinear systems exactly, some robust
modifications [4] should be applied on normal gradient
or backpropagation algorithm [5], [12], [15], [19].

Passivity approach may deal with the poorly defined
nonlinear systems, usually by means of sector bounds,
and offers elegant solutions for the proof of absolute
stability. It can lead to general conclusion on the sta-
bility using only input-output characteristics. The pas-
sivity properties of static multilayer neural networks
were examined in [2]. By means of analyzing the in-
terconnected of error models, they derived the relation-
ship between passivity and closed-loop stable. Passiv-
ity technique can be also applied on dynamic neural
networks. Passivity properties of dynamic neural net-
works may be found in [20]. We concluded that the
commonly-used learning algorithms with robust modi-
fications such as dead-zone [5] and σ−modification [12]
are not necessary.

In this paper, we will extend our prior results of single
layer dynamic neural networks [20][?] to the multilayer
case.To the best of our knowledge, open loop analysis
based on the passivity method for multilayer dynamic
neural networks has not yet been established in the lit-
eratures.



2 Neuro Identification via Passivity Technique

Consider a class of nonlinear systems described by

·
xt = f(xt, ut)
yt = h(xt, ut)

(1)

where xt ∈ <n is the state, ut ∈ <m is the input vector,
yt ∈ <m is the output vector. f : <n × <m → <n is
locally Lipschitz, h : <n×<m → <m is continuous. Fol-
lowing to [1], let us now recall some passivity properties
as well as some stability properties of passive systems.

Definition 1 A system (1) is said to be passive if there
exists a Cr nonnegative function S (xt) : <n → <,
called storage function, such that, for all ut, all ini-
tial conditions x0 and all t ≥ 0 the following inequality
holds

·
S(xt) ≤ uTt yt − εuTt ut − δyTt yt − ρψ (xt)

where ε, δ and ρ are nonnegative constants, ψ (xt) is
positive semidefinite function of xt such that ψ (0) = 0.
ρψ (xt) is called state dissipation rate.

Furthermore, the system is said to be strictly passive if
there exists a positive definite function V (xt) : <n → <
such that

·
S(xt) ≤ uTt yt − V (xt)

Property 1. If the storage function S(xt) is differen-
tiable and the dynamic system is passive, storage func-

tion S(xt) satisfies
·
S(xt) ≤ uTt yt.

Definition 2 A system (1) is said to be globally input-
to-state stability if there exists a K-function γ(s) (con-
tinuous and strictly increasing γ(0) = 0) and KL -
function β (s, t) (K-function and for each fixed s0 ≥ 0,
lim
t→∞β (s0, t) = 0 ), such that, for each ut ∈ L∞
(ku(t)k∞ <∞) and each initial state x0 ∈ Rn , it holds
that °°x(t, x0, ut)°° ≤ β

¡°°x0°° , t¢+ γ (kutk∞)
for each t ≥ 0.

Property 2. If a system is input-to-state stability, the
behavior of the system should remain bounded when
its inputs are bounded.

We construct the following dynamic neural network:

·bxt = Abxt +W1,tσ(V1,tbxt) +W2,tφ(V2,tbxt)π (ut) (2)

where bxt ∈ <n is the state of the neural network, A
∈ <n×n is a stable matrix . W1,t ∈ <n×m,W2,t ∈ <n×m
are weight matrices of output layers, V1,t ∈ <m×n,

V2 ∈ <m×n are weight matrices of hidden layers. The
vector field σ(xt) : <n → <m is assumed to have the
elements increasing monotonically. The function φ(·) is
a map from <m → <m×m. π(ut) ∈ <m, is selected as
saturation function: kπ(ut)k2 ≤ u. The typical presen-
tation of the elements σi(·) and φii(.) are as sigmoid
functions

σi(xi,t) = ai/
¡
1 + e−bixi,t

¢− ci

Remark 1 The neural networks have been discussed
by many authors, for example [12], [8], [10] and [19].
It can be seen that Hopfield model [3] is the special case
of this networks with A = diag {ai} , ai := −1/RiCi,
Ri > 0 and Ci > 0. Ri and Ci are the resistance and
capacitance at the ith node of the network respectively.

Generally, the nonlinear system (1) may be represented
as following

·
xt = Axt+W

∗
1 σ(V

0
1 xt)+W

∗
2 φ(V

0
2 xt)π (ut)− eft ¡V 0

1 , V
0
2

¢
(3)

where W ∗1 and W
∗
2 are optimal matrix which may min-

imize modelling error eft, they are bounded as
W ∗1Λ

−1
1 W ∗T1 ≤W 1, W ∗2Λ

−1
2 W ∗T2 ≤W 2 (4)

V 0
1 and V 0

2 are prior given matrices which are ob-
tained from off-line learning. Let us define identifica-
tion error as ∆t = bxt − xt, eσt = σ(V 0

1 bxt) − σ(V 0
1 xt),eφt = φ(V 0

2 bxt)π (ut) − φ(V 0
2 xt)π (ut) , eσ0t = σ(V1,tbxt) −

σ(V 0
1 bxt), eφ0t = φ(V2,tbxt)π (ut) − φ(V 0

2 bxt)π (ut) , eV1,t =
V1,t − V 0

1 , eV2,t = V2,t − V 0
2 , fW1,t = W1,t − W ∗1 ,fW2,t = W2,t −W ∗2 . Because σ(·) and φ(·) are chosen

as sigmoid functions, clearly they satisfy Lipschitz con-
dition

eσTt Λ1eσt ≤ ∆T
t Λσ∆t, eφtTΛ2eφt ≤ u∆T

t Λφ∆teσ0t = Dσ
eV1,tbxt + νσ, eφ0t = Dφ

eV2,tbxt + νφ
(5)

where

Dσ =
∂σT (Z)
∂Z |Z=V1,txt , kνσk2Λ1 ≤ l1

°°°eV1,tbxt°°°2
Λ1

Dφ =
∂[φ(Z)π(ut)]

T

∂Z |Z=V2,txt , kνφk2Λ2 ≤ l2

°°°eV2,tbxt°°°2
Λ2

l1 > 0, l2 > 0, Λ1, Λ2, Λσ and Λφ are positive def-
inite matrices. The dynamic of identification error is
obtained from (2) and (3)

·
∆t = A∆t +fW1,tσ(V1,tbxt) +fW2,tφ(V2,tbxt)π (ut)
+W ∗1 eσt +W ∗1 eσ0t +W ∗2 eφt +W ∗2 eφ0t + eft ¡V 0

1 , V
0
2

¢
(6)

From [18] we know if matrices A, R and Q satify the
following conditions

(a) the pair (A,R1/2) is controllable, the pair (Q1/2, A)
is observable,



(b) local frequency condition

ATR−1A−Q ≥ 1
4

£
ATR−1 −R−1A

¤
R
£
ATR−1 −R−1A

¤T
(7)

the matrix Riccati equation

ATP + PA+ PRP +Q = 0 (8)

has a positive solution P = PT > 0.

If A is a stable diagonal matrix, R and Q are positive
defined matrices, the conditions (a) and (b) are easy to
be satisfied. Now we define

R = 2W 1 + 2W 2, Q = Λσ + uΛφ +Q0 (9)

We assume the following assumption can be established.

A1: There exist a stable matrix A and a strictly pos-
itive defined matrix Q0 such that (8) has a positive
solution.

Next theorem give a stable learning procedure of neuro
identifier.

Theorem 1 If the weightsW1,t, W2,t, V1,t and V2,t are
updated as

·
W 1,t = −K1Pσ(V1,tbxt)∆T

t +K1PDσ
eV1,tbxt∆T

t·
W 2,t = −K2Pφ(V2,tbxt)π (ut)∆T

t +K2PDφ
eV2,tbxtπ (ut)∆T

t·
V 1,t = −K3PW1,tDσ∆tbxTt − l1

2K3Λ1 eV1,tbxtbxTt·
V 2,t = −K4PW2,tDφbxt∆T

t − l2
2K4Λ2 eV2,tbxtbxTt

(10)
where P is the solution of Riccati equation (8), eV2,t =
V2,t − V 0

2 , then the dynamic of identification error (6)
is strictly passive from eft ¡V 0

1 , V
0
2

¢
to the identification

error 2P∆t

Remark 2 Since the updating gain is KiP (i = 1 · · · 4)
and Ki can be any positive matrix, the learning process
of dynamic neural network (10) dose not depend on the
solution P of Riccati equation (8). So the assumption
A1 is to select A such that (8) has positive solution. R
is related to the upper bounds of the unknown optimal
matrices W ∗1 and W ∗2 , we assume we know the upper
bounds. Q is free to chose because of Q0. For matrix
equation (8) we may change A, R and Q such that P is
positive, so it is almost always possible to satisfy A1.

Remark 3 W1,tDσ∆t is the error backpropagation for
the hidden layer, bxTt is the input to the hidden layer;
σ(V1,tbxt) is the input for the output layer, so the first
parts K1Pσ(V1,tbxt)∆T

t and −K3PW1,tDσ∆tbxTt are the
same as the backpropagation scheme of multilayer per-
ceptrons. The second parts are used to assure the pas-
sivate properties of identification error.

Corollary 1 If neural networks (2) can match nonlin-
ear plant (1) exactly, i.e., only parameters uncertainty
present ( eft = 0), then the updating law as (10) can
make the identification error asymptotic stable,

lim
t→∞∆t = 0 (11)

Theorem 2 Using the updating law as (10), the dy-
namic of neuro identifier (6) is input-to-state stability
(ISS).

Proof: In view of the matrix inequality

XTY +
¡
XTY

¢T ≤ XTΛ−1X + Y TΛY

2∆T
t P

eft ≤ ∆T
t PΛfP∆t + efTt Λ−1f eft (12)

St = ∆
T
t P∆t + tr

nfWT
1,tK

−1
1
fW1,t

o
+ tr

nfWT
2,tK

−1
2
fW2,t

o
+tr

neV T
1,tK

−1
3
eV1,to+ tr

neV T
2,tK

−1
4
eV2,to

(13)
·
St = −∆T

t Q0∆t + 2∆
T
t P

eft ≤ −λmin (Q0) k∆tk2
+∆T

t PΛfP∆t + efTt Λ−1f eft
≤ −αk∆tk k∆tk+ βkftk

°°° eft°°°
where αk∆tk := [λmin (Q0)− λmax (PΛfP )] k∆tk , βkftk :=
λmax

³
Λ−1f

´°°° eft°°° . We can select a positive defined

matrix Λf such that

λmax (PΛfP ) ≤ λmin (Q0) (14)

So α and β are K∞ functions, St is an ISS-Lyapunov
function. Using Theorem 1 of [14], the dynamic of iden-
tification error (6) is input to state stable.

Corollary 2 If the modelling error eft is bounded, then
the updating law as (10) can make the identification
procedure stable

∆t ∈ L∞, W1,t ∈ L∞, W2,t ∈ L∞

Remark 4 It is well known that structure uncertain-
ties will cause parameters drift for adaptive control, so
one has to use robust modification to make identifica-
tion stable [4]. Robust adaptive methods may be ex-
tended to neuro identification directly [5][10] [12]. But
neuro identification is a kind of ”black-box” method,
nobody needs structure information and all of uncer-
tainties are inside the black-box. Although robust adap-
tive algorithms are suitable for neuro identification,
they are not the simplest one. By means of passiv-
ity technique, we success to prove our conclusion: the
backpropagation-like algorithm (10) is robust with re-
spect to all kinds of bounded uncertainties for multilayer
neuro identification.



The condition (14) can be established if Λf is selected
as a small matrix. Since the state and output vari-
ables are physically bounded, the modelling error eft
can be assumed to be bounded too ( see, for example
[5][10][12]).

For model matching case, Lyapunov-like analysis [19]
can reach the same result as Corollary 1. But in the
case of modeling error ( eft 6= 0), robust modification
terms have to be added in the updating law in order
to assure stability [5][10] [12]. The robust modification
usually depends on the upper bound of modeling erroreft. Unlike robust adaptive laws, such as dead-zone [10]
and σ−modification [8], the updating law does not need
the upper bound of uncertainties.

Theorem 3 If the modelling error eft ¡V 0
1 , V

0
2

¢
is

bounded as efTt Λf eft ≤ η
¡
V 0
1 , V

0
2

¢
, P is the solution of

the Riccati equation (8) with

R = 2W 1 + 2W 2 + Λf , Q = Dσ + uDφ +Q0 (15)

then the updating law (10) may make the identification
error converge to

lim sup
T→∞

1

T

Z T

0

k∆tk2Q0
dt ≤ η

¡
V 0
1 , V

0
2

¢
(16)

Proof: Let define a Lyapunov function as (13), in
view of the matrix inequality (12)

2∆T
t P

eft ≤ ∆T
t PΛfP∆t + efTt Λ−1f eft

≤ ∆T
t PΛfP∆t + η

¡
V 0
1 , V

0
2

¢
Using the updating law (10), the derivative of the Lya-
punov function (13) is

·
St ≤ ∆T

t [PA+ATP + P
¡
2W 1 + 2W 2 + Λf

¢
P

+(Dσ + uDφ +Q0)]∆t −∆T
t Q0∆t + η

From (15) we have

·
St ≤ −∆T

t Q0∆t + η
¡
V 0
1 , V

0
2

¢
(17)

Integrating (17) from 0 up to T yields

VT − V0 ≤ −
Z T

0

∆T
t Q0∆tdt+ ηT

So Z T

0

∆T
t Q0∆tdt ≤ V0 − VT + ηT ≤ V0 + ηT

(16) is established

Remark 5 The identification error will converge to the
ball radius the upper bounded of eft, and it is influenced
by the prior known matrices V 0

1 and V 0
2 . Theorem 2

shows that V 0
1 and V 0

2 do not influence the stability
property, we may select any values for V 0

1 and V 0
2 at

first. From Theorem 3 we know the algorithm (10) can
make the identification error convergent. V 0

1 and V 0
2

may be selected by following off-line steps:

1. Start from any initial values for V 0
1 and V 0

2

2. Do on-line identification with V 0
1 and V

0
2

3. Let V1,t and V2,t as new initial conditon, i.e.,
V 0
1 = V1,t, V

0
2 = V2,t

4. If the identification error decreses, repeat the
identification process, goto 2. Otherwise, stop off-
line identification, now V1,t and V2,t are final val-
ues for V 0

1 and V 0
2 .

After we get these finial V 0
1 and V 0

2 , we may start on-
line identification with them.

Remark 6 Since the updating rate in the learning al-
gorithm (10) is KiP (i = 1 · · · 4), and Ki can be selected
as any positive matrix, the learning process of the dy-
namic neural network (10) is free of the solutions of the
two Riccati equations (8) and (15). These two Riccati
equations are proposed in order to prove the stability re-
sults. When we use the update law for the weights, we
only need to select good updating rates ki = KiP .

3 Simulation

The engine operation at idle is a nonlinear process that
is far from its optimal range. We assume that the oc-
currence of plant disturbances, such as engagement of
air conditioner compressor, shift from neutral to drive
in automatic transmissions, application and release of
electric loads, and power steering lock-up, are not di-
rectly measured. The dynamic engine model a two in-
puts and two outputs system [11]:

·
P = kP

³ ·
mai − ·

mao

´
,

·
N = kN (Ti − TL)

·
mai =

¡
1 + km1θ + km2θ

2
¢
g (P )

·
mao = −km3N − km4P + km5NP + km6NP 2

The engine model parameters are for a 1.6 liter, 4-
cylinder fuel injected engine

g (P ) =

½
1 P < 50.6625

0.0197
√
101.325P − P 2 P ≥ 50.6625

Ti = −39.22 + 325024mao − 0.0112δ2 + 0.635δ
+2π
60 (0.0216 + 0.000675δ)N −

¡
2π
60

¢2
0.000102N2

TL =
¡

N
263.17

¢2
+ Td, mao =

·
mao(t− τ)/ (120N)



kP = 42.40, kN = 54.26,
km1 = 0.907, km2 = 0.0998

km3 = 0.0005968, km4 = 0.0005341,
km5 = 0.000001757, τ = 45/N

The system outputs are manifold press P (kPa) and
engine speed N (rpm). The control inputs are thottle
angle θ (degree) and the spark advance δ (degree). Dis-
turbances act to the engine in the form of unmeasured
accessory torque Td (N-m). The variable

·
mai and

·
mao

refer to the mass air flow into and out of the manifold.
mao is the air mass in the cylinder. The parameter τ is
a dynamic transport time delay. The function g (P ) is a
manifold pressure influence function. Ti is the engine’s
internally developed torque, TL is the load torque. If we
define x = (P, N)T , u = (θ, δ)

T
, then the dynamic

of vehicle idle speed are
·
xt =

µ
ẋ1
ẋ2

¶
=

µ
f1(x, u)
f2(x, u)

¶
.

f1 and f2 are assumed to be unknown and only x and u
are measurable. In order to do the simulation, we select
input as δ = 30 sin t

2 , θ is sawtooth wave with ampli-
tude 10, frequency 1

2 , Td is square wave with amplitude
20, frequency 1

4 , x0 = [10, 500]
T
.

Let us select dynamic neural network as

·bxt = Abxt +W1,tσ(V1,tbxt) +W2,tφ(V2,tbxt)π (ut)
where A =

∙ −2 0
0 −2

¸
, bx0 = [0, 0]T , W1,t and

W2,t ∈ <2×3, V1,t and V2,t ∈ <3×2. The sigmoid func-
tions are σ (xi) = 2

1+e−2xi − 0.5, φ (xi) = 0.2
1+e−0.2xi −

0.05. π (ut) = ut. Dσ = diag [Dσ1 ,Dσ2Dσ3 ] , Dφ =
diag

£
Dφ1 ,Dφ2 ,Dφ3

¤
, u3 = 0,

Dσi =
4e−2Z1,i

(1+e−2Z1,i)2
, Z1,i = (V1,tbx)i

Dσi =
0.04e−0.2Z2,i

(1+e−0.2Z2,i)
2ui, Z2,i = (V2,tbx)i

We select K1P = K2P = K3P = K4P = 2I.

We choose the initial V 0
1 = V 0

2 =

⎡⎣ 1 1
1 1
1 1

⎤⎦, using the
learning law (10) we can get V1,20 =

⎡⎣ 0 0.94
0.45 0.25
−0.44 0.49

⎤⎦ ,
V2,20 =

⎡⎣ 0.25 0.83
0.68 0.36
0.29 0.52

⎤⎦ after 20s. Now we use

them as the new V 0
1 and V 0

2 , training the neural net-
works 30s with learning law (10), we have V1,30 =⎡⎣ 0.001 0.94

0.47 0.23
−0.45 0.43

⎤⎦ , V2,30 =
⎡⎣ 0.25 0.80
0.71 0.35
0.28 0.48

⎤⎦ . We can
see that V1,t and V2,t do not change a lot, so stop our
searching procedure forV 0

1 and V 0
2 , we use V1,30 and

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

 time(second)

 manifold press(kPa)

P̂

P

Figure 1: Manifold press

0 5 10 15 20 25 30 35 40
-800

-600

-400

-200

0

200

400

600

800

 time(second)

 engine speed error (rpm)

with modified 0V

with initial 0V

Figure 2: Engine speed error with different V 0
1 and V 0

2

V2,30 as the newest V 0
1 and V 0

2 . The identification re-
sults are shown in Figure 1.

Figure ?? shows how V 0
1 and V 0

2 influence the iden-
tification error, the dash lines are corresponded V 0

1 =

V 0
2 =

⎡⎣ 1 1
1 1
1 1

⎤⎦ , the solid lines are the identification
error with V 0

1 = V1,30 and V 0
2 = V2,30. So we can see

that suitable V 0
1 and V 0

2 may be found by the training
procedure. Now let compare the multilayer networks
with the single layer networks as following

·bxt = Abxt +W1,tσ(bxt) +W2,tφ(bxt)π (ut)
all of conditions are the same as multilayer neural net-
works, the learing law is used as in [?]. Figure 3 shows
the compensation of the identification error with single
layer and multilayer neural networks. One can see that
the multilayer dynamic neural networks are more pow-
erful than single-layer dynamic neural networks, and
they are robust with respect to bounded uncertainties.
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Figure 3: Manifold press error with single layer and mul-
tilayer networks

4 Conclusion

By means of passivity technique, we give some new re-
sults on neuro identification with multilayer dynamic
neural networks . Compared with other stability anal-
ysis of neuro identifications, our algorithm is more sim-
ple because robust modifications are not applied, so the
algorithm proposed in this paper is more suitable for
engineering application. We success to prove that even
the backpropagation learning algorithm may guarantee
the identification error robust stable.
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