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Abstract: - In this paper, we solve semiconductor device drift di®usion equations with

the Gummel's decoupling and monotone iterative methods. With monotone iterative

technique, we prove each Gummel's decoupled and ¯nite volume discretized device eq-

uation converges monotonically. The proposed method here provides an alternative in

the numerical solution of semiconductor device drift di®usion equations.
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1. Introduction

Numerical methods for the fundamental semicon-
ductor device equations provide an alternative
in the development of microelectronics [1, 2, 3,
4, 5, 6, 7, 8, 9]. The drift di®usion model con-
sists of the Poisson, electron current continuity,
and hole current continuity equations has been of
great studied for semiconductor device simulation
in the past years [10, 11, 12, 13, 14]. A widely
approach to solve these equations e± ciently is to
decoupled them ¯rstly with the Gummel's decou-
pling method [14, 13, 16]. Each decoupled equa-
tion is then discretized and solved with the New-
ton's iteration method subsequently. It is a tra-
ditional method for the solution of system of non-
linear algebraic equations and converges quadrat-
ically when the initial guess is in the neighbor-
hood of the exact solution. However, to simulate
the submicron and nano-scale semiconductor de-
vices with an accurate initial guess is a di± cult
task and has involved many engineering works.

The monotone iterative method is not only a
classical constructive technique for the solutions
of PDEs but also useful for the numerical solu-
tions of physical models [17, 18, 19]. In this work,
we use this method to simulate device character-
istics with exploiting the basic nonlinear property
in drift di®usion model. By considering the quasi-
Fermi levels in the approximation for carrier's
density and electrostatic potential, the drift dif-
fusion model in (Á; n; p) variables is transformed
into a self-adjoint model with variables (Á; u; v)
[11, 12, 13]. The transformed drift di®usion
model is decoupled into three independent PDEs
with the Gummel's decoupling scheme. The ba-
sic idea of this well-known Gummel's decoupled
method is that the device equations are solved
sequentially [14]. In the drift di®usion model,
Poisson's equation is solved for Á (g+1) given the
previous states u(g) and v(g). The electron cur-
rent continuity equation is solved for u(g+1) given
Á(g) and v(g). The hole current continuity equa-
tion is solved for v(g+1) given Á(g) and u(g). Each



decoupled PDE is discretized with ¯nite volume
method and then solved with the monotone iter-
ative method. We prove this approach converges
monotonically for all three decoupled equations.
It means that we can solve the device equations
with arbitrary initial guesses. Numerical results
for various devices have been reported to demon-
strate the robustness of the method in our earlier
work [2, 3, 4, 5, 6, 7, 8, 9].

In Sec. 2 we state the drift di®usion model.
Sec. 3 presents the monotone iterative meth-
ods for the Gummel's decoupled drift di®usion
model. For each decoupled equation, we prove
the convergence property for ¯nite volume ap-
proximated equation by using monotone iterative
method. Sec. 4 draws the conclusions and sug-
gests future works.

2.  Semiconductor Device Drift
Diffusion Model

The steady state drift di®usion model of semi-
conductor devices is [10, 11, 12, 13, 14]

¢ Á = q
"s

(n ¡ p + D);
1
qr ¢Jn = R(Á; n; p);
¡ 1
q r ¢Jp = R(Á; n; p);

where Á is the electrostatic potential, n and p
are the electron and hole concentrations, q is the
elementary charge, "s is the dielectric constant
of semiconductor, D are ionized impurities, Jn
and Jp are the electron and hole current densi-
ties, and R(Á; n; p) is the carrier recombination
rate. The Jn, Jp, and Shockley-Read-Hall recom-
bination rate R(Á; n; p) are as follows:

Jn = ¡ q¹nnrÁ + qDnrn;
Jp = ¡ q¹pprÁ ¡ qDprp;

R(Á; n; p) =
np¡ n2i

¿0n(p+pT )+¿
0
p (n+nT )

;

where ni is the intrinsic carrier concentration, ¿0n
and ¿0p are the electron and hole lifetimes, and pT
and nT are the electron and hole densities associ-
ated with energy levels of the traps. The ¹n and
¹p are the doping- and ¯eld-dependent electron

and hole mobilities [10, 11]. The di®usion coe± -
cients of electrons and holes are expressed in the
Einstein relations Dn = VT¹n and Dp = VT¹p,
where VT = kT

q is the thermal voltage, k is Boltz-
mann's constant, and T is temperature.
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Fig. 1. A 2D domain for a submicron
N-MOSFET device.

Using Boltzmann statistics, we write above
equations as

¢ Á = q(ni(ue
Á
VT ¡ ve

¡ Á
VT )+D)

"s
;

r ¢(Dnnie
Á
VT ru) = R (Á; u; v) ;

r ¢(Dpnie
¡ Á
VT rv) = R (Á; u; v) ;

(1)

where u = e
¡ 'n
VT , and v = e

'p
VT are the exponential

quasi-Fermi levels. The expressions for electrons
and holes in terms of the quasi-Fermi potentials
'n and 'p are

n = nie
Á ¡ 'n
VT ;

p = nie
'p ¡ Á
VT :

The carrier recombination rate R(Á; n; p) be-
comes a nonlinear function in terms of Á , u, and
v.

We have derived a self-adjoint semiconductor
device drift di®usion model (1) with the state



variables (Á; u; v) and it is favorable for the
monotone iterative method. As shown in Fig.
1, [10] the model (1) is subject to boundary con-
ditions on a rectangular domain ­ ½ R2. The
domain is formed by the ohmic contact parts:
source, gate, drain, and substrate and left and
right boundaries. By the charge neutrality condi-
tion and the mass action law, the boundary con-
ditions for three state variables are as follows [10].

The Dirichlet type boundary conditions are
[11]

Á = VO

+ VT ln(

N¡
A ¡ N

+
D

2 + (
(N¡

A ¡ N
+
D)

2

4 + n2i )
1=2

ni
);

u = e
¡ VO
VT , and v = e

VO
VT on @­ D;where @­ D

consists of source, drain, and substrate contacts,
VO = VS , VD, or VB, is the source, drain, or
substrate applied voltage, respectively. On the
left and right boundaries, we arti¯cially assume
that the normal components of the electric ¯eld
E = ¡ rÁ and current density are zero, and have
the Neumann type boundary conditions @Á

@¡!º = 0,
@u
@¡!º = 0, and @v

@¡!º = 0 on @­ N , where @­ N is the
union of the left and right boundaries, ¡!º is the
outward normal vector on @­ N . At the interface
between semiconductor and oxide, we derive the
Robin and Neumann types boundary conditions
tox"s
"
d

@Á
@º + Á = VG, @u@º = 0, and @v

@º = 0 on @­ R,

where @­ R is the interface between semiconduc-
tor and oxide, VG is the voltage applied on the
gate, tox is the gate oxide thickness, and "d is the
dielectric constant of the gate oxide.

3.  The Gummel's Decoupling and
Monotone Iterative Methods

In this section, we brie°y state the Gummel's de-
coupling method for the coupled drift di®usion
equations. The monotone iterative method is
then applied to compute the solution for each
decoupled and ¯nite volume discretized equa-
tion. In order to use the classical monotone it-
erative in the numerical solution for each decou-
pled and discretized equation directly, we state

the Gummel's decoupling method ¯rstly and the
monotone iterative method for each equation will
be addressed later on.

With a given initial guess
¡
Á (0); u(0); v(0)

¢
and

for each Gummel's iteration index g, g = 0; 1; : : :,
we ¯rst solve the nonlinear Poisson equation

¢ Á(g+1) = cRÁ (Á(g+1); :; :); (2)

for Á(g+1) where cRÁ is the right hand side func-
tion of the Poisson equation in (1). We then solve
the electron current continuity equation

r ¢(Dnnie
Á (g)

VT ru(g+1)) = cRu(:; u(g+1); :); (3)

with the known functions Á(g)and v(g) for u(g+1),
and the cRu is the right hand side function of the
electron current continuity equation. Finally we
solve the hole current continuity equation

r ¢(Dpnie
¡ Á (g)
VT rv(g+1)) = cRv(:; :; v(g+1)); (4)

with computed Á (g) and u(g) for v(g+1). The cRv
is the right hand side function of the hole cur-
rent continuity equation. The Gummel's itera-
tion loops will be terminated when a pre-speci¯ed
criterion for (Á; u; v) is satis¯ed. This method is
widely used in semiconductor device simulation
and some theoretical works for its convergence
could be found in [12, 13, 15, 16]. Each decoupled
equation in Gummel's algorithm leads to an in-
dependent nonlinear PDE to be solved. Conven-
tionally, these decoupled and discretized equa-
tions (by using ¯nite di®erence or ¯nite volume
methods) [20, 21] are solved with the Newton's it-
erative method. This method has quadratic con-
vergence rate, however it encounters many ini-
tial guess problems in submicron and nano-scale
semiconductor device simulation.

Our monotone iterative method is applied to
solve the nonlinear algebraic system resulting
from the discretization of each PDE. We prove
for each decoupled PDE the computed solution
with monotone iterative method converges to the
unique solution of the equation monotonically.



Theorem 1 For a ¯xed Gummel's index g, the
nonlinear terms bR(z); z = Á(g+1); u(g+1); and
v(g+1), in the Poisson and electron-hole current
continuity equations are monotone functions in

z, that is 9c > 0; ! @ bR(z)
@z ¸ c; 8z:

Remark 1 We note the applied voltage at de-
vice contacts is ¯nite, so the electrostatic poten-
tial Á is bounded function in device domain. In
addition, based on the physical de¯nition, the ex-
ponential quasi-Fermi levels u and v are positive
and bounded functions.

Proof. With Remark 1 and direct calculation
for these three functions, we have the results
directly.

We discertized nonlinear PDEs (2)-(4) with ¯-
nite volume method and approximate the integra-
tions with quadrature rule. The system of non-
linear algebraic equations for each PDE is then
solved by the monotone iterative method. We ¯x
the Gummel's iteration index g for the following
discussions. The three discretized systems can be
written as

¡ »i;j¡ 1zi;j¡ 1 ¡ »i¡ 1;jzi¡ 1;j + »i;jzi;j
¡ »i+1;jzi+1;j ¡ »i;j+1zi;j+1 = ¡ F (zi;j);

(5)

for all nodes (xi; yj) in the device domain, where
zi;j = z(xi; yj) represents the approximated value
Á i;j , ui;j , and vi;j of the function Á , u, and v at
(xi; yj) in Eqs. (2), (3), and (4), respectively.
The discretization coe± cients »i;j ; »i+1;j; »i¡ 1;j ;
»i;j¡ 1; and »i;j+1 are associated with the opera-
tors as well as their boundary conditions. Simi-
larly, the nonlinear function F is associated with
each nonlinear function bR and boundary condi-
tions. It can be veri¯ed that the coe± cients sat-
isfy the conditions:

»i;j ¸ 0; »i+1;j ¸ 0; »i¡ 1;j ¸ 0;
»i;j¡ 1 ¸ 0; »i;j+1 ¸ 0;
»i;j ¸ »i+1;j + »i¡ 1;j + »i;j¡ 1 + »i;j+1;

(6)

for all discretization index (i; j) in the device
domain. We write now Eq. (5) into a compact
form, the system of nonlinear algebraic equations,

AZ = ¡ F (Z): (7)

Theorem 2 The system of nonlinear algebraic
equations (7) has at most a solution.

Remark 2 The matrix A in Eq. (7) is an M-
matrix [20] and since @

@zi;j
bR(zi;j) > 0, the func-

tion F is uniformly bounded and @
@zi;j

F (zi;j) ¸ 0
.

Proof. It is a direct result with the monotone
property of F (Z).

The iterative scheme for each system are now
written explicitly in terms of nodal points (xi; yj)
in the device domain and the monotone iteration
index m, m = 0; 1; : : :. The ¯rst iterative scheme
is

Á
(m+1)
i;j =

LU(Á (m)i;j )¡ bR(Á (m)i;j )+¸
Á (m)

i;j
Á
(m)
i;j

»i;j+¸
Á (m)

i;j

;

cRÁ (Á(m)i;j ) = cRÁ (Á(m)i;j ; :; :);

¸
Á (m)

i;j
= @

@Á
(m)
i;j

cRÁ (Á(m)i;j );

(8)

for all nodes (xi; yj) in the device domain where

Á
(m+1)
i;j is an approximation of the potential func-

tion Á at the node (xi; yj) and LU(Á
(m)
i;j ) is the

sum of the corresponding coe± cients at m itera-
tion. Similarly, for all nodes (xi; yj) we can write
the iterative schemes

u
(m+1)
i;j =

LU(u(m)i;j )¡ bR(u(m)i;j )+¸
u (m)

i;j
u
(m)
i;j

»i;j+¸
u (m)

i;j

;

cRu(u(m)i;j ) = cRu(:; u(m)i;j ; :);

¸
u (m)

i;j
= @

@u
(m)
i;j

cRu(u(m)i;j );

(9)

and

v
(m+1)
i;j =

LU(v(m)i;j )¡ bR(v(m)i;j )+¸
v (m)

i;j
v
(m)
i;j

»i;j+¸
v (m)

i;j

;

cRv(v(m)i;j ) = cRv(:; :; v(m)i;j );

¸
v (m)

i;j
= @

@v
(m)
i;j

cRv(v(m)i;j );

(10)

for electron and hole current continuity equa-
tions. We express above Eqs. as

z
(m+1)
i;j =

1

¸
(m)
i;j + »i;j

f»i+1;jz
(m)
i+1;j + »i¡ 1;jz

(m)
i¡ 1;j

+ »i;j¡ 1z
(m)
i;j¡ 1 + »i;j+1z

(m)
i;j+1 ¡ bR(z

(m)
i;j )

+ ¸
(m)
i;j z

(m)
i;j g; (11)



for all nodes (xi; yj) in the device domain and for
all m.

Theorem 3 Let z
(0)
i;j be an arbitrary solution se-

quence and z¤i;j be the solution of Eq. (5). Letn
z
(m)
i;j

o1
m=1

be a solution sequence of Eq. (11).

Then z
(m)
i;j ¡! z¤i;j as m ¡! 1, for all (xi; yj)

in the device domain.

Proof. The nodal values ¯xed on boundary part
are uniquely determined by their associated val-
ues. We prove now the result for all interior nodes
of the device domain. De¯ne

!
(m)
i;j = z

(m)
i;j ¡ z¤i;j

for all (xi; yj) in the device domain. Since z¤i;j is
the solution of Eq. (5), we have

z¤i;j =
1

»i;j
f»i+1;jz¤i+1;j + »i¡ 1;jz¤i¡ 1;j

+ »i;j¡ 1z¤i;j¡ 1 + »i;j+1z
¤
i;j+1

¡ bR(z¤i;j)g: (12)

From Eqs. (10) and (11) we derive

!
(m+1)
i;j =

1

¸
(m)
i;j + »i;j

f»i+1;j!(m)i+1;j + »i¡ 1;j!
(m)
i¡ 1;j

+ »i;j¡ 1!
(m)
i;j¡ 1 + »i;j+1!

(m)
i;j+1 ¡ (z

(m)
i;j )

+ bR(z¤i;j) + ¸
(m)
i;j !

(m)
i;j g

=
1

¸
(m)
i;j + »i;j

f»i+1;j!(m)i+1;j + »i¡ 1;j!
(m)
i¡ 1;j

+ »i;j¡ 1!
(m)
i;j¡ 1 + »i;j+1!

(m)
i;j+1 + (¸

(m)
i;j

¡
bR(z

(m)
i;j ) ¡ bR(z¤i;j)

!
(m)
i;j

)!
(m)
i;j g: (13)

Since bR is increasing function, there exists a pos-
itive constant c such that

bR(z
(m)
i;j ) ¡ bR(z¤i;j)

!
(m)
i;j

¸ c > 0;

where the constant c can be calculated in The-
orem 1. We calculate the estimation from Eq.

(13) and note the Eq. (6), the following expres-
sion can be derived directly

°°°!
(m+1)
i;j

°°°
1

· °
°°°!

(m)
i;j

°°°
1

;

where the positive parameter ° is given by

° = max
i;j

(
¸
(m)
i;j + »i;j ¡ c

¸
(m)
i;j + »i;j

) < 1;

for all nodes (xi; yj) in the device domain. There-
fore,

°°°!
(m+1)
i;j

°°°
1

· °
°°°!

(m)
i;j

°°°
1

· °2
°°°!

(m¡ 1)
i;j

°°°
1

· ¢¢¢
· °m+1

°°°!
(0)
i;j

°°°
1

for all z
(0)
i;j and nodes (xi; yj) in the whole device

domain, and the result follows.

4.  Conclusions

Based on the Gummel's decoupling and
monotone iterative methods, we have presented
a numerical solution method for semiconductor
device drift di®usion equations. With monotone
iterative technique, we have proved each Gum-
mel's decoupled and ¯nite volume discretized de-
vice equation converges monotonically. The pro-
posed method here provided an alternative in the
numerical solution of semiconductor device equa-
tions. Computational results for PN diode, MOS-
FET, DTMOS devices have been reported in our
earlier work [2, 3, 4, 5, 6, 7, 8, 9] to demonstrate
the robustness of the method. This method is
inherently parallel and can be systematically ex-
tended to simulate not only VLSI circuit but also
biological transportation.

References

[1] R. W. Dutton, A. J. Strojwas, "Perspectives

on Technology and Technology- Driven CAD.,"

IEEE Trans. CAD., Vol. 19, No. 2, 2000, pp.

1544-1560.



[2] Y. Li, et al., "A new parallel adaptive ¯nite

volume method for the numerical simulation of

semiconductor devices," accepted for publication

in Computer Physics Communications.

[3] Y. Li, et al., "A Domain Partition Approach

to Parallel Adaptive Simulation of Dynamic

Threshold Voltage MOSFET," Abst. Book Con-

ference on Computational Physics 2001, Aachen,

2001, p. O38.

[4] Y. Li, et al., "Monotone Iterative Method for

Parallel Numerical Solution of 3D Semiconduc-

tor Poisson Equation," in "Advances In Scien-

ti¯c Computing, Computational Intelligence and

Applications" Edited by N. Mastorakis, et al.,

World Scienti¯c and Engineering Society Press

(WSES), July 2001, pp. 54-59.

[5] Y. Li, et al., "Adaptive ¯nite volume simula-

tion of semiconductor devices on cluster architec-

ture," in "Recent Advances in Applied and The-

oretical Mathematics" Edited by N. Mastorakis,

WSES Press, Dec. 2000, pp. 107-113.

[6] Y. Li, et al., "An Implementation of Parallel Dy-

namic Load Balancing for Adaptive Computing

in VLSI Device Simulation," IEEE 15th Proc.

Int. Parallel & Distributed Processing Sympo-

sium, San Francisco, 2001, pp. 702-707.

[7] Y. Li, et al., "Parallel Dynamic Load Balanc-

ing for Semiconductor Device Simulations on a

Linux Cluster," Tech. Proc. Fourth Inter.Conf.

Modeling and Simulation of Microsystem, South

Carolina, 2001, pp. 562-566.

[8] Y. Li, et al., "Parallel Dynamic Partition and

Adaptive Computation in Semiconductor Device

Simulation," Proc. 10th SIAM Conf. Paral-

lel Processing for Scienti¯c Computing, Virginia,

2001, pp. 685-694.

[9] Y. Li, et al, "A novel approach for the two-

dimensional simulation of submicron MOSFET's

using monotone iterative method," IEEE Proc.

Inter. Symp. VLSI-TSA, Taipei, 1999, pp. 27-

30.

[10] S. M. Sze, Physics of Semiconductor Devices,

2nd Ed., Wiley-Interscience, New York, 1981.

[11] S. Selberherr, Analysis and Simulation of Semi-

conductor Devices, Springer-Verlag, New York,

1984.

[12] P. A. Markowich, C. A. Ringhofer, and C.

Schmeiser, Semiconductor Equations, Springer-

Verlag, New York, 1990.

[13] J. W. Jerome, Analysis of Charge Transport: A

Mathematical Study of Semiconductor Devices,

Springer-Verlag, New York, 1996.

[14] H. K. Gummel, "A self-consistent iterative

scheme for one-dimensional steady state trans-

port calculations," IEEE Trans. Electron De-

vices, ED-11, 1964, pp 455-465.

[15] J. W. Jerome, "Consistency of semiconductor

modeling: An existence/stability analysis for the

stationary van Roosbroeck system," SIAM J.

Appl. Math., 45, 1985, pp. 565-590.

[16] T. Kerkhoven, "A spectral analysis of the decou-

pling algorithm for semiconductor simulation,"

SIAM J. Numer. Anal., 25, 1988, pp. 48-60.

[17] S. Heikkila and V. Lakshmikantham, Monotone

iterative techniques for discontinuous nonlinear

di®erential equations, Marcel Dekker, New York,

1994.

[18] C. V. Pao, Nonlinear Parabolic and Elliptic

Equations, Plenum Press, New York, 1992.

[19] C. V. Pao, "Block monotone iterative methods

for numerical solutions of nonlinear elliptic equa-

tions," Numer. Math., 72 (1995), pp. 239-262.

[20] R. S. Varga, Matrix Iterative Analysis, Prentice-

Hall, New Jersey, 2000.

[21] P. I. Crumpton, et al., "Cell Vertex Algorithms

for the Compressible Navier-Stokes Equations,"

J. Comp. Phys., Vol. 109, 1993, pp. 1-15.


