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Abstract: - An image halftoning technique that uses a simple GA has proven to be effective generating bi-level
halftone images with quality higher than conventional techniques. Many devices are designed to handle more than
two halftone levels and a GA based multi-level halftoning technique is desirable. In this paper we extend the
bi-level halftoning technique to generate multi-level halftone images. Also we introduce an improved GA (GA-
SRM) into the proposed multi-level halftoning technique. Experimental results show that the proposed technique
can effectively generate high quality multi-level halftone images and that the inclusion of GA-SRM substantially
contributes reducing memory usage and accelerating image generation.
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1 Introduction

Recently, Genetic Algorithms[1] (GAs) and their
practical application to the solution of problems in
various engineering domains are increasingly being
investigated[2],[3]. In our work, we focus on the im-
age haltoning technique that is one of the applications
of GAs to signal processing.
In [4], a GA is used to generate halftone images with

quality higher than conventional techniques such as
ordered dithering, error diffusion and so on[5]. It is
known that an increase on the number of halftone lev-
els to be displayed contributes to improve the quality
of halftone images and many devices are designed to
handle more than two levels. The technique mentioned
above, however, can generate only bi-level halftone im-
ages.
From this point of view, in this paper we extend

the bi-level halftone image technique to generate multi-
level halftone images to achieve higher quality images.
The proposed GA in [4] is a simple GA with an spe-
cialized two dimensional crossover. This GA uses a
substantial amount of computer memory and process-
ing time. Therefore, we also introduce an improved
GA[6],[7] (GA-SRM) into the scheme and try to re-
duce memory usage and accelerate high quality image
generation.

2 Multi-level Halftoning Tech-
nique Using GA

2.1 Preparation

In halftoning techniques with GAs the task of the GA
is to find the optimum n-gray level pixel pattern cor-
responding to a given N -gray level input image, where
n < N . If we try to search for the optimum pixel pat-

tern on the whole image, the chromosome length gets
too large and the search space becomes too extensive.
For example, for a 256 × 256 pixels image the chro-
mosome length and search space size would be 65536
and n65536, respectively. A GA is incapable of dealing
with these numbers. Therefore, a practical approach
is first to divide an input N -gray level image into non-
overlapped blocks of r× r pixels and then use a GA to
search the optimum n-level pixel pattern for each im-
age block[4]. Consequently, the GA uses this r× r two
dimensional representation for the chromosome and in
the case of bi-level (n=2) halftoning each element of the
chromosome x(i, j) ∈ {0, 1}. Since we try to generate
multi-level halftone images, in this case each element
of the chromosome x(i, j) ∈ {0, 1, · · ·, n-1}. Fig.1
illustrates the block division of an input image and an
example of chromosome’s representation for n=3.
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Fig.1 Input image block division and
chromosome’s representation (n=3, r=8)

2.2 Evaluation

In order to obtain visually high quality halftone im-
ages, we evaluate chromosomes with two kinds of eval-
uation criteria. (i) One is high gray level resolution
(local mean gray levels close to the original image),
and (ii) the other is high spatial resolution (appropriate
contrast near edges)[4]. The bi-level image halftoning



technique calculates a gray level resolution error by

Em =
∑

(i,j)∈block

1
r2

|g(i, j)− ĝ(i, j)| (1)

where g(i, j) (i, j=0, 1 , · · ·, r-1) is the gray level of
the (i, j)-th pixel in the input image block, and ĝ(i, j)
is the estimated gray level associated to the (i, j)-th
pixel of the generated halftone block (x(i, j)). To ob-
tain ĝ(i, j) a reference region around x(i, j) is convo-
luted by a gaussian filter that models the correlation
among pixels. Similar to the bi-level image halfton-
ing technique, Eq.(1) is used to generate multi-level
halftone images. As mentioned before, however, in this
case x(i, j) ∈ {0, 1, · · ·, n-1} to support the multi-level
representation.
In order to preserve the edge information of the input

image well, the spatial resolution error in the bi-level
image halftoning technique is calculated by

Ec =
∑

(i,j)∈block

1
r2

|G(i, j)−B(i, j)| (2)

G(i, j) = g(i, j)− ḡ(i, j)

B(i, j) = (x(i, j)− 1
2
)N

where G(i, j) is the difference between the gray level
g(i, j) of the (i, j)-th pixel in the input image block
and its neighboring local mean value ḡ(i, j). A pos-
itive G(i, j) marks one possible kind of contrast (i.e.
a dark pixel on a lighter background) and a negative
G(i, j) the other one (i.e. a light pixel on a darker back-
ground). The difference between G(i, j) and B(i, j)
expresses whether the pixel x(i, j) of the generated
block captures the appropriate background of the cor-
responding pixel g(i, j) of the input image block.
An input gray level pixel g(i, j) can take any value

on the range [0, N ]. The bi-level halftoning technique
interprets this range of values as the sole interval I1
in which the pixel g(i, j) lies and its extremes as the
two gray values g(i, j) could map to. In the case of
the multi-level halftoning technique, the number of lev-
els an input pixel could map to increases from 2 to n.
Therefore, as shown in Fig.2, the range [0, N ] is split
into n-1 intervals and their extremes become the pos-
sible values the g(i, j) could map to. The Ik interval
is defined by k−1

n−1N ≤ Ik ≤ k
n−1N, where k=1, 2, · · ·,

n-1.

The B(i, j) term of Eq.(2) is accordingly modified
to generate multi-level halftone images as shown by

B(i, j) = (x(i, j)− 2k − 1
2

)
N

n− 1
. (3)

Note that before applying Eq.(3) we must first deter-
mine the interval Ik the pixel g(i, j) belongs to.
The two errors Em and Ec are combined into one

single objective function as

E = αmEm + αcEc (4)

N

0

N
4

3

3level

2

N

g
g

B(i , j)

G(i , j)

2
I

1
I

0

N

g

2

N

2level

g

B(i , j)

G(i , j)
1

I

N

0

N
4

3

3level

2

N

g
g

B(i , j)

G(i , j)

2
I

1
I

N

0

N
4

3

3level

2

N

g
g

B(i , j)

G(i , j)

2
I

1
I

0

N

g

2

N

2level

g

B(i , j)

G(i , j)
1

I

0

N

g

2

N

2level

g

B(i , j)

G(i , j)
1

I

Fig.2 Extension to multi-level halftoning

where αm and αc are weighting parameters of Em and
Ec, respectively. The chromosome’s fitness is assigned
by

F = Emax − E (5)

where Emax is the error associated with the worst chro-
mosome in a population. The GA is used to find the op-
timum compromise between (i) and (ii) with the above
fitness function.

3 Improved GA-SRM

The improved GA-SRM for the halftoning problem[6] is
based on a model of GA that puts genetic operators in a
cooperative-competitive stand with each other[7]. The
main features of the model are (i) two genetic operators
to create offspring: Self Reproduction with Mutation
(SRM) that puts emphasis on mutation, and Crossover
and Mutation (CM) that puts emphasis on recombina-
tion, (ii) an extinctive selection mechanism, and (iii)
an adaptive mutation schedule that varies SRM’s mu-
tation rates from high to low values based on SRM’s
own contribution to the population. The block diagram
of the improved GA-SRM is shown in Fig.3.

λ

µ

λCM λSRM

Extinctive Selection

Proportional Selection

CM SRM

P(t)

λ

µ

λCM λSRM

Extinctive Selection

Proportional Selection

CM SRM

P(t)

Fig.3 Block diagram of improved GA-SRM

3.1 CM and SRM for Halftoning
Problem

In the halftoning problem an individual is represented
as a r × r two dimensional structure. The implemen-
tation of CM’s and SRM’s mutation take into account
this two dimensional structure.
CM first crosses over two previously selected parents

from P (t) interchanging either their rows or columns
at a random chosen position similar to [4]. Then it ap-
plies standard bit flipping mutation inverting bits with



a small mutation probability per bit, p(CM)
m , analogous

to canonical GAs. Thus, mutation in CM is of a quan-
titative nature after which the number of bits 0s, 1s,
· · ·, n-1s may change. CM creates λCM individuals at
each generation.
SRM, on the other hand, creates an exact copy of

a previously selected parent from P (t) and then ap-
plies mutation only to the bits inside a mutation block
(square region). SRM creates λSRM individuals at each
generation.
SRM is provided with an Adaptive Dynamic-Block

(ADB) mutation schedule. With ADB the mutation
block area � × � is dynamically adjusted every time a
normalized mutants survival ratio falls under a thresh-
old, γ < τ , following a decreasing approach as shown
in Fig.4. The offset position S=(a, b) of the mutation
block for each chromosome is chosen at random. The
normalized mutant survival ratio is specified by

γ =
µSRM

λSRM
· λ
µ

(6)

where µ is the number of individuals in the parent pop-
ulation P (t), µSRM is the number of individuals cre-
ated by SRM present in P (t) after selection and λ is
the total offspring number, λCM+λSRM (see Fig.3).
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Fig.4 Adaptive Dynamic-Block mutation(ADB)

Two kinds of mutation schemes are investigated
for ADB: (i) quantitative and (ii) qualitave mutation.
Quantitative mutation in ADB is implemented as the
standard bit flipping process. Mutation probability for
the bits inside the segment is p(SRM)

m =α. After this
kind of mutation has been applied, the contrast near
edges and the local mean average might change in an
individual affecting both Ec and Em in Eq.(1),(2).
Quantitative mutation would allow to observe the gen-
eral effect of parallel mutation in this problem.
On the other hand, qualitative mutation in ADB is

implemented as a bit swapping process. First, a set
Z is initialized with every bit in the mutation block.
A pair of bits are randomly marked and then swapped.
The marked bits are removed from Z and the process is
repeated until there are no remaining bits in Z. Fig.5
enlarges a 4 × 4 mutation block to illustrate the bit
swapping process for two of the bits. Note that it is not
necessary to set a mutation probability in qualitative
mutation since all pairs of bits within the mutation
block are simply swapped.

select any two pixels
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swap(z’, z’’)
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mark(Z)
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Fig.5 bit swapping process

3.2 Selection

(µ, λ) Proportional Selection[8] implements the re-
quired extinctive selection mechanism. Selection prob-
abilities are computed by

p(x(t)
i ) =




f(x(t)
i )

µ∑
j=1

f(x(t)
j )

(1 ≤ i ≤ µ)

0 (µ < i ≤ λ)

(7)

where x
(t)
i is an individual at t-th generation which has

the i-th highest fitness value f(x(t)
i ), µ is the number of

parents and λ is the number of offspring. Also, selection
is reinforced to assure that the two parents selected
for crossover are different avoiding that an individual
crosses with itself,1 i.e. the parents for crossover are
x

(t)
i and x

(t)
j (i 	= j).

The extinctive nature of this selection mechanism
subjects SRM’s and CM’s offspring to compete for sur-
vival.

4 Results and Discussion

4.1 Experimental Setup

A simple GA similar to the one proposed in [4] (CM and
Proportional Selection) denoted as cGA and the im-
proved GA (CM, SRM, and (µ, λ) Proportional Selec-
tion) denoted as GA-SRM are used to generate multi-
level halftone images. In the case of the simple GA
the crossover probability is set to pc=1.0 and muta-
tion probability to pm=0.001. In the case of GA-SRM,
mutation probability for CM is set to p

(CM)
m =0.001,

the ratio for offspring creation to λCM : λSRM=1 :
1, and the extinctive ratio to µ : λ=1 : 2. Also, we
use a τ=0.40 as a threshold for the normalized mutant
survival ratio. Mutation probability for ADB when it
is implemented with quantitative mutation is set to
p
(SRM)
m =0.125. Again, note that it is not necessary
to set a mutation probability in qualitative mutation.
To test the algorithms we use SIDBA’s benchmark

images in our simulation. The size of the original image
is 256×256 pixels with N=256 gray levels. An image is
divided into 256 blocks, each one of size 16× 16 pixels.
For each block, the algorithms were set with different
seeds for the random initial population.

1We do not check whether two individuals have identical ge-
netic information.



Halftone images are generated for n={3, 4, 8, 16}
levels with the weighting parameters set to αm=0.2 and
αc=0.8. Unless indicated otherwise, results presented
here are for the experimental image “Lenna” generated
with n=3 levels.

4.2 Performance by Simple GA and Im-
proved GA-SRM

We set the cGA with a population size of 200 individ-
uals and run the algorithm until visually high quality
images are achieved. The image quality achieved by
the cGA and the number of evaluations it expends (see
4.4) are used as a reference for comparison in our study.

In order to observe the performance by the proposed
algorithm GA-SRM, i.e. the evolution of image quality
and its convergence speed, we set the population size to
µ=λCM=λSRM=100. With this values GA-SRM cre-
ates the same number of offspring (200 offspring from
100 parents) as cGA does (200 offspring from 200 par-
ents) to attain high qualtiy images. Fig.6 shows the
image’s average-error transition, calculated as the av-
erage of the best chromosomes’ error in the 256 im-
age blocks, by the two schemes. From Fig.6 it can be
seen that GA-SRM converges faster and reaches bet-
ter quality than cGA. Also, qualitative mutation per-
forms better than quantitative mutation. Under this
population configuration, GA-SRM needs only 0.17T
evaluations to surpass the final image quality obtained
by cGA when qualitative mutation is used (GA-SRMs)
whereas 0.25T evaluations are needed in the case of
quantitative mutation (GA-SRMf).

cGA 200
GA-SRMs 100
GA-SRMf 100

0 0.5T T
Evaluations

E(error)

0.17T

50

60

70

80

Fig.6 cGA and GA-SRM’s performance

SRM’s behavior can be observed from Fig.7, which
presents the block’s side length reduction, �, and the
number of individuals produced by SRM-ADB that
survive selection, µSRM , for one image block. From
this figure it is clear that (i) SRM contributes with
beneficial mutations (carried by mutants that survive
selection) in every generation of the search process, and
(ii) the key factor for SRM to be an effective operator
lies in its own regulation mechanism: mutation block
adjusted every time the number of mutants that sur-
vive selection falls under a minimum level τ .

T0.5T0
Evaluations

µµµµ

µµµµ

γγγγ    ====    ττττ

llll

llll

γγγγ    <<<<    ττττ
SRM

25

50

75

100

0

4

8

12

16

Fig.7 Mutation block’s side length reduction and
SRM-ADB offspring that survive selection

4.3 Effect of Population Size Reduction

GAs with bigger populations would converge in the
long run to lower errors than GAs with smaller pop-
ulations. From a practical application point of view,
however, rather than achieving the minimum possible
error we are interested in finding timely and efficiently
an upper bound of the minimum error such that i) it
guarantees visually high quality images, and ii) further
error reductions, although possible, are no longer vi-
sually significant. Thus, since reducing memory is an
important issue in this application we also observe the
performance of the GAs with smaller populations. The
error achieved by cGA using a 200 population after T
evaluations (cGA 200) satisfies our criteria and is used
as the minimum error upper bound in our analysis of
population size reduction.

Fig.8 show results by cGA using {200, 100, 20,
4} population configurations. Fig.9 and Fig.10
present results for equivalent configurations µ=λCM=
λSRM={100, 50, 10, 2} by GA-SRMf and GA-SRMs,
respectively, along with those obtained by cGA 200.
From Fig.8 we can see that the cGA with a pop-

ulation of 100 speeds up convergence and can achieve
similar image quality than the cGA 200. When the
population is further reduced to 20 or 4, however, the
algorithm converges to an error higher than cGA 200
and ends with a poor image quality. A population size
of 2 individuals was tried for cGA obtaining a final
image’s average-error above 93.

Fig.9 shows that the introduction of quantitave mu-
tation allows us to considerably reduce population sizes
from 100 to 10 and still obtain a gain on search speed
to generate images with quality better than cGA 200.
However, a further reduction in population sizes from
10 to 2 is not effective. In this minimum configuration
the levels of mutation introduce by GA-SRMf are too
high, which does not allow SRM’s offspring to compete
properly against CM’s offspring.
In Fig.10 we observe that GA-SRMs using qualita-

tive mutation with smaller populations converge faster
and produce better image quality than the one obtained
by cGA 200. In this case, qualitative mutation allows
to reduce the population configuration to its minimum
level. This is because SRM with this kind of muta-



tion always contributes to introduce diversity in levels
such that SRM could be competitive with CM regard-
less of the population size, avoiding premature conver-
gence.2 It should be noticed that the probability of
cloning with this operator is higher when the muta-
tion block’s length has reached its minimum length. In
this way qualitative mutation also introduces a kind of
implicit elitism. These characteristic explains the GA-
SRM’s robust performance even with tiny populations
and allows us to choose the smallest memory config-
uration for n=3 to generate halftone images without
compromising the image quality. In fact, for “Lenna”
the improved GA-SRM using qualitative mutation with
µ=2 and λ=4 configuration attained after only 0.08T
evaluations the same image quality obtained by cGA
200 after T evaluations.

cGA 200
cGA 100
cGA 20
cGA 4

0 0.5T T
Evaluations

E(error)

50

60

70

80

Fig.8 Performance by cGA with different
population sizes

cGA 200
GA-SRMf 100
GA-SRMf 50
GA-SRMf 10
GA-SRMf 2

0 0.5T T
Evaluations

E(error)

50

60

70

80

Fig.9 Performance by GA-SRMf with different
population sizes

4.4 Effect of Increasing the Number of
Halftone Levels (n)

The search space for each image block is nr×r. Thus,
keeping constant the image block size (r × r), the sole
increase of the number of halftone levels (n) substan-
tially enlarges the size of the search space. A larger
search space, in turn, affects the performance of the
genetic algorithms.
On the one hand, an increase on n implies an aug-

ment on the number of evaluations the algorithms per-
form to achieve high quality images. For example, from

2All the individuals are trapped on local optima in earlier
generations.

cGA 200
GA-SRMs 100
GA-SRMs 50
GA-SRMs 10
GA-SRMs 2

0 0.5T TEvaluations

E(error)

0.08T

50

60

70

80

Fig.10 Performance by GA-SRMs with different
population sizes

our visual subjective assesment the cGA 200 would re-
quire about T={T3, T4, T8, T16}={1.6×105, 2×105,
4×105, 6 × 105} evaluations to generate halftone im-
ages with n={3, 4, 8, 16} levels, respectively.
On the other hand, the quality of image achieved

by reduced population GAs may also be affected by
an increase of n. For example, A GA-SRMs with a
minimum memory configuration of µ=2 and λ=4 is ef-
fective for n={2, 3, 4, 8}. However, for n={16} GA-
SRMs with this memory configuration approaches but
can not achieve the same image quality as cGA 200. A
cGA with a population of 20 individuals even for n=3
does not reach the image quality of the cGA 200.
As mentioned above, the number of evaluations T

used as an stopping criteria are obtained after a sub-
jective assesment of the image quality achieved by cGA
200 and are useful to study the general behavior of
cGA and GA-SRM. An objective method for quality
assesment should be incorporated within the method
to provide precise values of T for this and other images
with different characteristics.
After observing the performance of cGA and GA-

SRM with various population configurations generat-
ing halftone images for n={3, 4, 8, 16} levels we ob-
served that GA-SRM significantly contributes reduc-
ing memory usage and accelerating image generation,
which are important issues in this application. With
regard to memory usage, the cGA can be used with
an smaller population configuration. A configuration
of 100 parents and 100 offspring for cGA (cGA 100) is
enough for any value of n={3, 4, 8, 16}. In the case of
GA-SRM, however, a µ=4 parents and λ=8 offspring
configuration (GA-SRM 4) would be sufficient. Con-
cerning processing time, for the values of T chosen for
cGA 200, Table 1 illustrates the number of evalua-
tions that GA-SRMs 2 and GA-SRM 4 would require
to generate images with quality similar to cGA 200.

Table 1 Evaluations performed by GA-SRMs 2 and 4
to match cGA 200’s image quality (“Lenna”)

n 3 4 8 16
Search Space 316×16 416×16 816×16 1616×16

cGA 200 T3 T4 T8 T16

GA-SRMs 2 0.08T3 0.10T4 0.30T8 −
GA-SRMs 4 0.07T3 0.09T4 0.09T8 0.09T



n=3, 0.07 T3 n=4, 0.09 T4 n=8, 0.09 T8 n=16, 0.09 T16

(a)cGA (200 parent individuals)

n=3, 0.07 T3 n=4, 0.09 T4 n=8, 0.09 T8 n=16, 0.09 T16

(b)GA-SRMs (4 parent individuals)

Fig.11 Halftone images generated by cGA and GA-SRM

Fig.11 shows for each n={3, 4, 8, 16} the im-
ages generated by GA-SRMs 4 and cGA 200 after the
fraction of evaluations required by GA-SRMs 4 have
elapsed. Note that the images generated by GA-SRMs
4 at the respective fraction of T have achieved high
quality. On the other hand, the images generated by
cGA 200 still require further refinement. It should also
be noted that as n increases the difference between im-
ages becomes less apparent.

5 Conclusions

In this paper, we have extended a bi-level halftoning
technique with GA to a multi-level halftoning technique
with GA. Also, an improved GA (GA-SRM) was intro-
duced within the multi-level halftoning technique.
High quality images were generated for n={3, 4,

8, 16} halftone levels. We observed that an increase
on the number of levels improves the quality of the
halftone image. However, it also has an impact on the
performance of the algorithms.
The improved GA-SRM outperforms the simple GA.

GA-SRM allows to reduce significantly processing time
and memory usage to generate multi-level halftoning
images.
As future works, an objective stopping criteria

should be designed and introduced in the multi-level
halftoning technique. Also, the application to color
halftone image and the introduction of multi-objective
GA to this scheme should be investigated.
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