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Abstract: - In e-commerce applications, information contained in the objects delivered by the server to the 
clients can rapidly change with time.  Therefore, the challenge is not only to locate a cache that contains the 
required object but also to make sure that the contents of the object are consistent.  In this paper, we present a 
new mathematical model for cashing and analyse the push cashing.  We introduce two quantities called push 
radius and pull radius and show that to decrease the staleness of an object, we have to push that object to a 
cache within the pull radius by a special means of communication. 
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1 Introduction 
The rapid growth of the Internet users and the 
popularity of e-commerce increase the network and 
server loads and the latency of retrieving the 
requested objects.  To reduce these problems web 
caching was introduced. Caching stores frequently 
accessed objects in a location closer to the client.  If 
the same object is requested later, and the cached 
copy is still valid, it is delivered from the cache 
instead of the origin server.  Caching can 
significantly reduce latencies and network 
bandwidth.  There are two main types of web 
caches, namely browser caches and proxy caches. 
Browser caches are associated with the client 
applications whereas proxy caches are located at 
intermediate places between the client and the origin 
server. 
 
 It is possible to arrange caching proxies in 
hierarchical or distributed fashion.  Usually, an 
object is delivered to a cache from the origin server 
only after a client has made a request for that object.  
This is known as the client pulling.  Harvest or 
Squid cache [1] belongs to this category.  Recently, 
distributed caching (presented in [2]) that uses 
server pulling to distribute objects to the caches has 
been developed.  It is claimed that the server pulling 
has the benefit of reducing the latency of object 
retrieval as it places the objects closer to the clients.  

Moreover, it is believed that clients receive the 
most recent version of the object thereby increasing 
consistency. 
 
 In this paper, we develop a mathematical model 
for the client server communication via a set of 
proxy caches and systematically show what real 
advantages can be achieved by using server pushing 
in contrast to client pulling.  In Section 2, we 
discuss different proxy caching methods and 
investigate whether they use a pull technique or a 
push technique.  In Section 3, we construct our 
mathematical model and use it in Section 4, to 
analyse the two cases of pushing and pulling.  In 
light of this analysis, we discuss the advantages and 
disadvantages of the two techniques. The paper is 
concluded in Section 5. 
 
 
2 Background 
Traditionally, caches have been implemented in a 
hierarchy as in Harvest or Squid [1] cache. Here 
caches have parent and child relationships with 
each other, with the parent being one level up in the 
hierarchy [1].  A cache checks with its peers 
whether they have the requested object.  If a 
neighbour returns a ‘hit’, the object is retrieved 
from the neighbour.  If a request returns a ‘miss’, 
the cache requests the object from its parent.  The 



parent cache resolves the request recursively until 
the object is found.  Although a hierarchical cache 
system shares data among clients to improve hit 
rates, it increases load on the caches, number of 
levels in the hierarchy and the distance between the 
client and the cache [2].  As the requests pass from 
one cache to another in the hierarchy, the 
hierarchical caching system essentially belongs to 
client pulling. 
 
 In contrast, a distributed system of caches 
maximises hit rates, improves hit and miss times.  
Furthermore, it complies with basic cache design 
principles such as minimising the number of hops to 
locate data, ability to share data, scalability, and 
caching data closer to the client [2].  A distributed 
system of caches comprises of a group of caches 
with no hierarchy, allowing complex inter-cache 
relationships [2].  This system introduces the 
method of location hints.  Location hints allow 
caches to locate the presence of objects in nearby 
caches without much data.  Caches can then make a 
cache-to-cache transfer rather than through the 
hierarchy avoiding store and forward delays.  Misses 
are detected through the hints, so the requests can be 
sent directly to the origin server [2]. 
 
 This technique also pushes data closer to clients 
by guessing the future accesses of clients, thus 
avoiding the compulsory miss that occurs when an 
object that has not been requested previously or that 
is expired is requested.  Push caching method 
known as ‘push-on-update’ pushes the updated 
object to a list of caches that previously cached the 
old version whereas the method known as ‘push-
shared dynamically’ builds a distribution tree for 
popular objects.  Distributed caching has been found 
to provide speedups of 1.27 to 2.43 compared to the 
traditional cache hierarchy [2].  Distributed reverse 
proxy server caching allows many client server 
relationships and helps overcome delays due to 
congestion or routing over large distances. 
 
 Object search in a cache hierarchy can be 
improved by using cache digests.  Cache Digests 
allow proxies to make information about their cache 
content available to peers in a compact format. A 
peer uses digests to identify co-operating caches that 
are likely to have a given web object.  This is 

implemented in Summary Cache [3].  Super Proxy 
Cache [4] builds a simple hash code of the object 
and directs the request to a cache server that stores 
the objects of that particular hash code.  Both these 
techniques are very similar to cache hints. 
 
 There are several protocols used for inter-cache 
communication.  Internet Caching Protocol (ICP) 
[5] is used to resolve the objects in hierarchical 
caching.  In ICP, the objects are identified simply 
by their URLs and as a result, the contents of the 
object may be inconsistent.  That is, a retrieved 
object may be stale.  An ICP query/reply also adds 
an additional delay to the transaction.  Efficiency of 
ICP can be improved by forcing to resolve non-
cacheable and local URLs directly from the object’s 
origin server or by sending requests directly to 
parent caches bound to that URL’s domain [1]. 
 
 Unlike ICP, Hyper Text Caching Protocol 
(HTCP) permits caches to mark some objects as 
uncacheable [6].  For example, the object will not 
be cached if it is authenticated or secure.  HTCP 
supports ‘cache push’ by informing its neighbours 
about significant events (e.g. the expiry of a cached 
copy) without receiving a request for the object 
concerned.  Another protocol known as Cache 
Array Routing Protocol (CARP) is essentially free 
of protocol overhead [7].  It distributes load across 
an array of proxy servers.  CARP uses program 
code specific to the CARP-compliant proxy servers 
that causes the client to select a different server for 
each URL it requests, based on a hash function that 
takes into account the URL and the capabilities and 
configuration of the proxy servers. If the proxy 
servers are configured with a compatible algorithm, 
they can also infer from a given URL which other 
servers can deliver the object. 
 
 With Web Cache Coordination Protocol (WCCP), 
the clients send web requests directly to the origin 
server.  Cisco IOS routers intelligently intercept 
HTTP requests and transparently redirect them to a 
Cisco Cache Engine [8]. 
 
 There are other techniques that compliment 
caching.  Replication uses multicast to push data to 
‘mirror’ origin servers whenever the content 
changes.  As multicasting is used for replication, 



additional protocols are required to ensure recovery 
of lost packets. 
 
 Consistency mechanisms were designed to ensure 
that cached copies of data are up to date.  Several 
cache consistency mechanisms are currently used on 
the Internet such as time-to-live (TTL) fields, client 
polling, and invalidation protocols.  The ‘Expires 
HTTP header’ or TTL field tells all caches how long 
the object is fresh for [9].  After that time, caches 
will always contact the origin server.  Client polling 
is a technique where clients regularly check with the 
server to determine whether cached objects are still 
valid.  When a cache has an object containing a 
Last-Modified header, it can ask the server if the 
object has changed with an If-Modified-Since 
request.  The If-Modified-Since request header field 
indicates that the server should only return the 
requested information if the contents have been 
changed since the specified date. Most web proxies 
are using this field today.  Invalidation protocols are 
required when weak consistency is not sufficient.  
They rely on the server keeping track of cached 
data; each time an object changes, the server notifies 
caches by pushing the new version.  Problems of 
invalidation protocols are that they are often 
expensive and they need the servers to keep track of 
the cached objects introducing scalability problems.  
Moreover, they need modifications to the server and 
make the server to attempt repeatedly to contact 
unavailable clients. 
 
 All of the methods and protocols mentioned above 
claim their advantages and disadvantages based on 
simulations or real world implementations.  To the 
best of our knowledge, there is no mathematical 
model developed or the predictions of performance 
are based on such a model.  We recognise that an 
approach based on mathematical reasoning would 
lead to gaining better insight and the development of 
better caching techniques. 
 
 
3 Mathematical Model for Push 
Caching 
Our approach in constructing the model is to first 
build a simple model and after gaining some insight, 
to develop a more complete model.  Consider that 

we have an infinite number of proxy cache servers 
located in between the origin server and the client 
as shown in Fig 1.  These severs are connected 
serially by links that are infinitesimally short.  The 
origin server generates continuously a different 
version of the same object and sends it to the first 
proxy cache.  The first proxy sends it to the second 
and so on until it reaches the client. Assume that the 
time for caching a version of the object in a proxy 
and retrieving a version from a proxy is zero.  We 
denote different versions of the object by O(t).  
Thus, for example, if an object is generated at time 
t=0 and pushed directly to the client (no caches in 
between) who is t=T away (Fig 2), then the version 
of the object received by the client at time T is 
O(0).    The client sends the request at time t=T and 
receives the reply instantaneously.  Now as shown 
in Fig 3, if only the proxy at halfway between the 
server and the client can cache, we see that if the 
client sends the request at t=0, it receives the reply 
at t=T.  The version of the object that it receives is 
O(0). 
 
 We see that as far as the client is concerned, there 
are two time points involved, namely the time at 
which the request is sent and the time at which the 
reply is received.  The difference between these two 
time points is the latency in object retrieval and that 
is a parameter that the user perceives.  Shorter the 
latency the better, as the user has to wait only a 
short time to see the information requested.  Once 
the information is displayed on the screen, we 
should know whether it is consistent or not.  That 
is, the consistency of the object should be based on 
the time of arrival of the reply and not on the time 
of sending the request.  For example, if two users 
receive two different versions of the object at the 
same time, then the user who received the latest 
version has received more consistent information.  
Following this argument, the two cases shown in 
Fig 2 and Fig 3 have the same consistency as both 
clients receive identical versions of the object at the 
same time. 
 
 Now, let us consider the general case in 
continuous time and assume that only the proxy 
that is pT (0≤p≤1) away from the client can cache 
the object.  In this case, if the client sends the 
request at t=t0, the reply is received at t=2pT+ t0 



and the version of the object received is O(2pT-T+ 
t0).  We note that the object produced by the server 
at t=2pT+ t0 is O(t0+2pT) and therefore, the 
staleness of the version that the client receives is T. 
 
 In practice, the server generates different versions 
of an object at discrete time points (Fig 4).  The time 
difference between two consecutive versions of the 
objects O(ti) and O(ti-1) is known as the update 
interval (∆i).   
 
 As a result, if the client sends a request at tsent=t0, 
the time point of arrival of the reply is given by  
trcv=2pT+ t0  (1) 
and the version of the object received  
Orcv (trcv)= O(tc), (2) 
where tc ≤ 2pT-T+ t0  < tc+1.  
If we denote the version of the object residing in the 
origin server at 2pT+ t0 by O(ts), where ts ≤ 2pT+ t0 
< ts+1, the staleness of the object received by the 
client is given by tstale = ts – tc  (3) 
 
 In a real world scenario, there is a considerable 
amount of object insertion delay (the time required 
to cache the object) and removal delay (the time it 
takes to retrieve the copy) [2].  Let us denote the 
insertion delay by tin and the removal delay by tr.  
Therefore, the latency in retrieving a copy from the 
cache by the client has to be now modified to 2pT+ 
tr.  The different versions of the object have to be 
shifted in time to take into account the insertion 
delay.  The modified diagram is shown in Fig 4.  In 
this case, the above equations (1), (2) and (3) are 
modified as  
 
trcv=2pT+ t0 + tr  (4) 
Orcv (trcv) = O(tc),   (5) 
where tc ≤ 2pT-T+ t0 - tin < tc+1 
and  
tstale = ts – tc,  (6) 
where ts ≤ 2pT+ t0 + tr < ts+1. 
 
 
4 Analysis of Push Caching 
In this section, we analyse push caching 
systematically using the equations (4), (5) and (6).  
We also define a parameter called push radius which 
provides the boundary for push caching. 

 From equations (5) and (6), we see that for a 
given object produced by a given source, the 
staleness depends on the values of p, T, t0 , tin, tr and 
the update frequency of the object.  If this update 
frequency or corresponding update time interval (tu) 
is constant, from eqs (5) and (6) we can infer that, if 
tu ≥ tr + T + tin,  (7) 
the staleness is either tu or zero.  In fact, whether 
the staleness is zero or tu is determined by the 
position of 2pT+ t0 relative to the time series of the 
version of the object.  On the other hand, if tu < tr + 
T + tin, then the staleness will be more than tu. 
 
 The inequality (7) is a very important expression 
as it reveals that the popular belief that the push 
caching always reduces staleness is not correct.  By 
simply decreasing p, that is allowing more push 
caching, we cannot decrease the staleness. It is 
possible to achieve zero staleness even with p=1, 
i.e. without push caching.  On the other hand, as we 
see from the inequality (7), if the update interval is 
smaller than the time delay between the server and 
the client, there is always staleness.  If there is a 
number of caches between the server and the client 
that participates in the pushing, we have to modify 
inequality (7) as, 
tu ≥ T+Σ(tr + tin),  (8) 
where the summation is taken over all the caches.  
This shows that the staleness worsens with the 
increase of the sum of object insertion delay and the 
removal delay, and the number of caches in 
between the client and the server.  At the other 
extreme, if no server replication or caching at 
intermediate nodes is done (server replication is 
practically a form of pushing) the server load 
increases with the increased number of requests and 
ultimately server breakdown occurs.  The removal 
delay increases with the ratio load on the 
processor/processor power, and because of that 
reason, the removal delay is high closer to the 
server than closer to the client.  If there is server 
replication or intermediate caching, the load may 
increase at these mirror sites or at caching nodes 
and as a result, the object insertion delay as well as 
the object removal delay will increase.  Therefore, 
if we want to reduce staleness to a very low value, 
we have to push the corresponding objects beyond 
the region of the caches that are experiencing heavy 



loads using a method that bypasses the cache 
hierarchy. 
 
 We define the push radius (Rpush) as the distance 
from the origin server to the further most proxy 
server in the cache hierarchy along the path from the 
server to the client for which inequality (8) holds 
true.  At the client, we define a similar quantity 
called pull radius (Rpull) which is the distance from 
the client to the further most proxy server for which 
the latency is less than or equal to tlm, the maximum 
latency that the client can tolerate.  If the two 
regions formed by push radius and pull radius touch 
each other or intercept, we can achieve minimum 
staleness for the object retrieved, by pushing the 
object to a cache that is common to both regions.  
On the other hand, if the two regions do not 
intercept, we have to push the object to a cache 
within the pull radius by increasing the push radius.  
As we can see from the inequality (8), this can only 
be achieved by bypassing all the heavily loaded 
caches, either using a priority scheme such as 
Resource Reservation Protocol (RSVP) or following 
an alternative route or using private lines.  Pushing 
right through to the client’s network definitely 
reduces the retrieval delay much, but there will be 
additional traffic produced, as the server does not 
know which clients require a certain object.  A 
second disadvantage is that the caching server in the 
client’s network must be of high capacity and 
processing power, to store and process all the 
objects sent by the origin servers and this should be 
ruled out.  Therefore, for a given object, it is 
necessary to find an intermediate position to cache 
the object and the push radius and pull radius will 
determine this location. 
 
 In this section, we discuss the effect of 
randomness of the quantities involved on the 
staleness. We note that p, the request time point of 
the object, T, object insertion delay and the removal 
delay, and the update interval of the object are all 
random.  If we assume that p is a constant and t0 is 
fixed and all others are Poisson distributed with 
mean λ1, λ2, λ3 and λ4 respectively, using equations 
(4) through (8), we can write, 
trcv=2pλ1+ t0 + λ3  (9) 
Orcv (trcv) = O(tc),   (10) 

where tc ≤ 2pλ1 - λ1+ t0 - λ2 < tc+1, 
tstale = ts – tc  (11) 
where ts ≤ 2pλ1 + t0 + λ3 < ts+1 
and 
λ4≥ λ1+Σ(λ3+λ2)],  (12) 
Inequality (12) tells us that, if we can approximate 
the sum of object insertion delay and the removal 
delay, the update interval of the object and the 
delay from the server to the client with Poisson 
distributions with known mean, we can minimise 
the mean staleness of the retrieved object.  The 
server should take each proxy in its path to the 
client one by one, calculate the quantity on the right 
hand side of the inequality (12).  If the required 
delay in retrieval is known, the server can find a 
cache within the pull radius to minimize staleness. 
 
 
5 Conclusion  
We have developed a new mathematical model for 
push caching and analysed the influence of push 
caching on object retrieval time and staleness.  We 
have shown that the popular belief that staleness 
can be reduced by simply pushing the object from 
the origin server to an intermediate cache is a little 
illusive.  In fact, if proper pushing mechanisms are 
not adopted or proper intermediate caches are not 
selected, we may increase the staleness.  We have 
introduced a new quantity called push radius, that 
tells the server how far it should push an object 
using special methods in order to reduce the 
staleness close to zero.  Pushing definitely reduces 
the retrieval time if the removal time for the copy 
of the object is small compared to the delay from 
the server to the client.  
 
 We believe that this model and the analysis will 
help the cache designers design web caching in a 
more systematic manner.  We are presently 
investigating the possibility of server determining 
the push radius in a real life situation. 
 
 In the years to come, browser set-up and support 
will be completely automated.  A typical browser 
will automatically find whatever resources it needs, 
including caches, each time it begins operation.  
Then, the proxy caches will be completely 
transparent to the browser user. 
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Fig 1: Continuous time representation of versions of 
objects and proxies 
 
 
 

 
Fig2: A request fetches the object from the cache at 
the client 

 
Fig 3 A request fetches the object from a cache half 
way between the client and the server 
 

 
Fig 4: Time series of the versions of the object and 
the versions of the object in the cache and in the 
server 



 

 
Fig 5: As in Fig 3, but object insertion delay and 
removal delay included 
 

 
Fig 6: Region of tr + T + tin if staleness is zero 
 

 
Fig 7: Region of tr + T + tin if staleness is tu 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


