
Modelling and Analysis of Push Caching

R. G. DE SILVA
School of Information Systems, Technology & Management

University of New South Wales
Sydney 2052
AUSTRALIA

Abstract: - In e-commerce applications, information contained in the objects delivered by the server to the
clients can rapidly change with time. Therefore, the challenge is not only to locate a cache that contains the
required object but also to make sure that the contents of the object are consistent. In this paper, we present a
new mathematical model for cashing and analyse the push cashing. We introduce two quantities called push
radius and pull radius and show that to decrease the staleness of an object, we have to push that object to a
cache within the pull radius by a special means of communication.

Key-Words: - Web caching, server pushing, dynamic objects, staleness, push radius, pull radius

1 Introduction
The rapid growth of the Internet users and the
popularity of e-commerce increase the network and
server loads and the latency of retrieving the
requested objects. To reduce these problems web
caching was introduced. Caching stores frequently
accessed objects in a location closer to the client. If
the same object is requested later, and the cached
copy is still valid, it is delivered from the cache
instead of the origin server. Caching can
significantly reduce latencies and network
bandwidth. There are two main types of web
caches, namely browser caches and proxy caches.
Browser caches are associated with the client
applications whereas proxy caches are located at
intermediate places between the client and the origin
server.

 It is possible to arrange caching proxies in
hierarchical or distributed fashion. Usually, an
object is delivered to a cache from the origin server
only after a client has made a request for that object.
This is known as the client pulling. Harvest or
Squid cache [1] belongs to this category. Recently,
distributed caching (presented in [2]) that uses
server pulling to distribute objects to the caches has
been developed. It is claimed that the server pulling
has the benefit of reducing the latency of object
retrieval as it places the objects closer to the clients.

Moreover, it is believed that clients receive the
most recent version of the object thereby increasing
consistency.

 In this paper, we develop a mathematical model
for the client server communication via a set of
proxy caches and systematically show what real
advantages can be achieved by using server pushing
in contrast to client pulling. In Section 2, we
discuss different proxy caching methods and
investigate whether they use a pull technique or a
push technique. In Section 3, we construct our
mathematical model and use it in Section 4, to
analyse the two cases of pushing and pulling. In
light of this analysis, we discuss the advantages and
disadvantages of the two techniques. The paper is
concluded in Section 5.

2 Background
Traditionally, caches have been implemented in a
hierarchy as in Harvest or Squid [1] cache. Here
caches have parent and child relationships with
each other, with the parent being one level up in the
hierarchy [1]. A cache checks with its peers
whether they have the requested object. If a
neighbour returns a ‘hit’, the object is retrieved
from the neighbour. If a request returns a ‘miss’,
the cache requests the object from its parent. The

parent cache resolves the request recursively until
the object is found. Although a hierarchical cache
system shares data among clients to improve hit
rates, it increases load on the caches, number of
levels in the hierarchy and the distance between the
client and the cache [2]. As the requests pass from
one cache to another in the hierarchy, the
hierarchical caching system essentially belongs to
client pulling.

 In contrast, a distributed system of caches
maximises hit rates, improves hit and miss times.
Furthermore, it complies with basic cache design
principles such as minimising the number of hops to
locate data, ability to share data, scalability, and
caching data closer to the client [2]. A distributed
system of caches comprises of a group of caches
with no hierarchy, allowing complex inter-cache
relationships [2]. This system introduces the
method of location hints. Location hints allow
caches to locate the presence of objects in nearby
caches without much data. Caches can then make a
cache-to-cache transfer rather than through the
hierarchy avoiding store and forward delays. Misses
are detected through the hints, so the requests can be
sent directly to the origin server [2].

 This technique also pushes data closer to clients
by guessing the future accesses of clients, thus
avoiding the compulsory miss that occurs when an
object that has not been requested previously or that
is expired is requested. Push caching method
known as ‘push-on-update’ pushes the updated
object to a list of caches that previously cached the
old version whereas the method known as ‘push-
shared dynamically’ builds a distribution tree for
popular objects. Distributed caching has been found
to provide speedups of 1.27 to 2.43 compared to the
traditional cache hierarchy [2]. Distributed reverse
proxy server caching allows many client server
relationships and helps overcome delays due to
congestion or routing over large distances.

 Object search in a cache hierarchy can be
improved by using cache digests. Cache Digests
allow proxies to make information about their cache
content available to peers in a compact format. A
peer uses digests to identify co-operating caches that
are likely to have a given web object. This is

implemented in Summary Cache [3]. Super Proxy
Cache [4] builds a simple hash code of the object
and directs the request to a cache server that stores
the objects of that particular hash code. Both these
techniques are very similar to cache hints.

 There are several protocols used for inter-cache
communication. Internet Caching Protocol (ICP)
[5] is used to resolve the objects in hierarchical
caching. In ICP, the objects are identified simply
by their URLs and as a result, the contents of the
object may be inconsistent. That is, a retrieved
object may be stale. An ICP query/reply also adds
an additional delay to the transaction. Efficiency of
ICP can be improved by forcing to resolve non-
cacheable and local URLs directly from the object’s
origin server or by sending requests directly to
parent caches bound to that URL’s domain [1].

 Unlike ICP, Hyper Text Caching Protocol
(HTCP) permits caches to mark some objects as
uncacheable [6]. For example, the object will not
be cached if it is authenticated or secure. HTCP
supports ‘cache push’ by informing its neighbours
about significant events (e.g. the expiry of a cached
copy) without receiving a request for the object
concerned. Another protocol known as Cache
Array Routing Protocol (CARP) is essentially free
of protocol overhead [7]. It distributes load across
an array of proxy servers. CARP uses program
code specific to the CARP-compliant proxy servers
that causes the client to select a different server for
each URL it requests, based on a hash function that
takes into account the URL and the capabilities and
configuration of the proxy servers. If the proxy
servers are configured with a compatible algorithm,
they can also infer from a given URL which other
servers can deliver the object.

 With Web Cache Coordination Protocol (WCCP),
the clients send web requests directly to the origin
server. Cisco IOS routers intelligently intercept
HTTP requests and transparently redirect them to a
Cisco Cache Engine [8].

 There are other techniques that compliment
caching. Replication uses multicast to push data to
‘mirror’ origin servers whenever the content
changes. As multicasting is used for replication,

additional protocols are required to ensure recovery
of lost packets.

 Consistency mechanisms were designed to ensure
that cached copies of data are up to date. Several
cache consistency mechanisms are currently used on
the Internet such as time-to-live (TTL) fields, client
polling, and invalidation protocols. The ‘Expires
HTTP header’ or TTL field tells all caches how long
the object is fresh for [9]. After that time, caches
will always contact the origin server. Client polling
is a technique where clients regularly check with the
server to determine whether cached objects are still
valid. When a cache has an object containing a
Last-Modified header, it can ask the server if the
object has changed with an If-Modified-Since
request. The If-Modified-Since request header field
indicates that the server should only return the
requested information if the contents have been
changed since the specified date. Most web proxies
are using this field today. Invalidation protocols are
required when weak consistency is not sufficient.
They rely on the server keeping track of cached
data; each time an object changes, the server notifies
caches by pushing the new version. Problems of
invalidation protocols are that they are often
expensive and they need the servers to keep track of
the cached objects introducing scalability problems.
Moreover, they need modifications to the server and
make the server to attempt repeatedly to contact
unavailable clients.

 All of the methods and protocols mentioned above
claim their advantages and disadvantages based on
simulations or real world implementations. To the
best of our knowledge, there is no mathematical
model developed or the predictions of performance
are based on such a model. We recognise that an
approach based on mathematical reasoning would
lead to gaining better insight and the development of
better caching techniques.

3 Mathematical Model for Push
Caching
Our approach in constructing the model is to first
build a simple model and after gaining some insight,
to develop a more complete model. Consider that

we have an infinite number of proxy cache servers
located in between the origin server and the client
as shown in Fig 1. These severs are connected
serially by links that are infinitesimally short. The
origin server generates continuously a different
version of the same object and sends it to the first
proxy cache. The first proxy sends it to the second
and so on until it reaches the client. Assume that the
time for caching a version of the object in a proxy
and retrieving a version from a proxy is zero. We
denote different versions of the object by O(t).
Thus, for example, if an object is generated at time
t=0 and pushed directly to the client (no caches in
between) who is t=T away (Fig 2), then the version
of the object received by the client at time T is
O(0). The client sends the request at time t=T and
receives the reply instantaneously. Now as shown
in Fig 3, if only the proxy at halfway between the
server and the client can cache, we see that if the
client sends the request at t=0, it receives the reply
at t=T. The version of the object that it receives is
O(0).

 We see that as far as the client is concerned, there
are two time points involved, namely the time at
which the request is sent and the time at which the
reply is received. The difference between these two
time points is the latency in object retrieval and that
is a parameter that the user perceives. Shorter the
latency the better, as the user has to wait only a
short time to see the information requested. Once
the information is displayed on the screen, we
should know whether it is consistent or not. That
is, the consistency of the object should be based on
the time of arrival of the reply and not on the time
of sending the request. For example, if two users
receive two different versions of the object at the
same time, then the user who received the latest
version has received more consistent information.
Following this argument, the two cases shown in
Fig 2 and Fig 3 have the same consistency as both
clients receive identical versions of the object at the
same time.

 Now, let us consider the general case in
continuous time and assume that only the proxy
that is pT (0≤p≤1) away from the client can cache
the object. In this case, if the client sends the
request at t=t0, the reply is received at t=2pT+ t0

and the version of the object received is O(2pT-T+
t0). We note that the object produced by the server
at t=2pT+ t0 is O(t0+2pT) and therefore, the
staleness of the version that the client receives is T.

 In practice, the server generates different versions
of an object at discrete time points (Fig 4). The time
difference between two consecutive versions of the
objects O(ti) and O(ti-1) is known as the update
interval (∆i).

 As a result, if the client sends a request at tsent=t0,
the time point of arrival of the reply is given by
trcv=2pT+ t0 (1)
and the version of the object received
Orcv (trcv)= O(tc), (2)
where tc ≤ 2pT-T+ t0 < tc+1.
If we denote the version of the object residing in the
origin server at 2pT+ t0 by O(ts), where ts ≤ 2pT+ t0
< ts+1, the staleness of the object received by the
client is given by tstale = ts – tc (3)

 In a real world scenario, there is a considerable
amount of object insertion delay (the time required
to cache the object) and removal delay (the time it
takes to retrieve the copy) [2]. Let us denote the
insertion delay by tin and the removal delay by tr.
Therefore, the latency in retrieving a copy from the
cache by the client has to be now modified to 2pT+
tr. The different versions of the object have to be
shifted in time to take into account the insertion
delay. The modified diagram is shown in Fig 4. In
this case, the above equations (1), (2) and (3) are
modified as

trcv=2pT+ t0 + tr (4)
Orcv (trcv) = O(tc), (5)
where tc ≤ 2pT-T+ t0 - tin < tc+1
and
tstale = ts – tc, (6)
where ts ≤ 2pT+ t0 + tr < ts+1.

4 Analysis of Push Caching
In this section, we analyse push caching
systematically using the equations (4), (5) and (6).
We also define a parameter called push radius which
provides the boundary for push caching.

 From equations (5) and (6), we see that for a
given object produced by a given source, the
staleness depends on the values of p, T, t0 , tin, tr and
the update frequency of the object. If this update
frequency or corresponding update time interval (tu)
is constant, from eqs (5) and (6) we can infer that, if
tu ≥ tr + T + tin, (7)
the staleness is either tu or zero. In fact, whether
the staleness is zero or tu is determined by the
position of 2pT+ t0 relative to the time series of the
version of the object. On the other hand, if tu < tr +
T + tin, then the staleness will be more than tu.

 The inequality (7) is a very important expression
as it reveals that the popular belief that the push
caching always reduces staleness is not correct. By
simply decreasing p, that is allowing more push
caching, we cannot decrease the staleness. It is
possible to achieve zero staleness even with p=1,
i.e. without push caching. On the other hand, as we
see from the inequality (7), if the update interval is
smaller than the time delay between the server and
the client, there is always staleness. If there is a
number of caches between the server and the client
that participates in the pushing, we have to modify
inequality (7) as,
tu ≥ T+Σ(tr + tin), (8)
where the summation is taken over all the caches.
This shows that the staleness worsens with the
increase of the sum of object insertion delay and the
removal delay, and the number of caches in
between the client and the server. At the other
extreme, if no server replication or caching at
intermediate nodes is done (server replication is
practically a form of pushing) the server load
increases with the increased number of requests and
ultimately server breakdown occurs. The removal
delay increases with the ratio load on the
processor/processor power, and because of that
reason, the removal delay is high closer to the
server than closer to the client. If there is server
replication or intermediate caching, the load may
increase at these mirror sites or at caching nodes
and as a result, the object insertion delay as well as
the object removal delay will increase. Therefore,
if we want to reduce staleness to a very low value,
we have to push the corresponding objects beyond
the region of the caches that are experiencing heavy

loads using a method that bypasses the cache
hierarchy.

 We define the push radius (Rpush) as the distance
from the origin server to the further most proxy
server in the cache hierarchy along the path from the
server to the client for which inequality (8) holds
true. At the client, we define a similar quantity
called pull radius (Rpull) which is the distance from
the client to the further most proxy server for which
the latency is less than or equal to tlm, the maximum
latency that the client can tolerate. If the two
regions formed by push radius and pull radius touch
each other or intercept, we can achieve minimum
staleness for the object retrieved, by pushing the
object to a cache that is common to both regions.
On the other hand, if the two regions do not
intercept, we have to push the object to a cache
within the pull radius by increasing the push radius.
As we can see from the inequality (8), this can only
be achieved by bypassing all the heavily loaded
caches, either using a priority scheme such as
Resource Reservation Protocol (RSVP) or following
an alternative route or using private lines. Pushing
right through to the client’s network definitely
reduces the retrieval delay much, but there will be
additional traffic produced, as the server does not
know which clients require a certain object. A
second disadvantage is that the caching server in the
client’s network must be of high capacity and
processing power, to store and process all the
objects sent by the origin servers and this should be
ruled out. Therefore, for a given object, it is
necessary to find an intermediate position to cache
the object and the push radius and pull radius will
determine this location.

 In this section, we discuss the effect of
randomness of the quantities involved on the
staleness. We note that p, the request time point of
the object, T, object insertion delay and the removal
delay, and the update interval of the object are all
random. If we assume that p is a constant and t0 is
fixed and all others are Poisson distributed with
mean λ1, λ2, λ3 and λ4 respectively, using equations
(4) through (8), we can write,
trcv=2pλ1+ t0 + λ3 (9)
Orcv (trcv) = O(tc), (10)

where tc ≤ 2pλ1 - λ1+ t0 - λ2 < tc+1,
tstale = ts – tc (11)
where ts ≤ 2pλ1 + t0 + λ3 < ts+1
and
λ4≥ λ1+Σ(λ3+λ2)], (12)
Inequality (12) tells us that, if we can approximate
the sum of object insertion delay and the removal
delay, the update interval of the object and the
delay from the server to the client with Poisson
distributions with known mean, we can minimise
the mean staleness of the retrieved object. The
server should take each proxy in its path to the
client one by one, calculate the quantity on the right
hand side of the inequality (12). If the required
delay in retrieval is known, the server can find a
cache within the pull radius to minimize staleness.

5 Conclusion
We have developed a new mathematical model for
push caching and analysed the influence of push
caching on object retrieval time and staleness. We
have shown that the popular belief that staleness
can be reduced by simply pushing the object from
the origin server to an intermediate cache is a little
illusive. In fact, if proper pushing mechanisms are
not adopted or proper intermediate caches are not
selected, we may increase the staleness. We have
introduced a new quantity called push radius, that
tells the server how far it should push an object
using special methods in order to reduce the
staleness close to zero. Pushing definitely reduces
the retrieval time if the removal time for the copy
of the object is small compared to the delay from
the server to the client.

 We believe that this model and the analysis will
help the cache designers design web caching in a
more systematic manner. We are presently
investigating the possibility of server determining
the push radius in a real life situation.

 In the years to come, browser set-up and support
will be completely automated. A typical browser
will automatically find whatever resources it needs,
including caches, each time it begins operation.
Then, the proxy caches will be completely
transparent to the browser user.

References:
[1] A Chankhunthod et al, A Hierarchical Internet
Object Cache, http://catarina.usc.edu/
danzig/cache/cache.html
[2] R. Tewari, M. Dahlin, H. M. Vin and J. S. Kay,
Design Considerations for Distributed Caching on
the Internet, Proceedings of ICDCS 99, Austin, May
1999,
[3] Fan Li et al, Summary cache: a scalable wide-
area Web cache sharing protocol, IEEE/ACM
Transactions on Networking, Vol 8, Issue 3, June
2000, pp 281 –293.
[4] Hash Routing Architecture: Briefing on Super
Proxy Script, http://naragw.sharp.co.jp/ sps/sps-
e.html
[5] D. Wessels and K. Claffy, Internet Cache
Protocol (ICPv2), http://ds.internic.net/rfc/rfc21
86 .txt
[6] P. Vixie and D. Wessels, Hyper Text Caching
Protocol (HTCP/0.0), Request for Comments RFC
2756, http://www.faqs.org/rfcs/ rfc2756.html
[7] K.W. Ross, Distribution of Stored Information in
the Web, http://www.eurecom.
fr/~ross/CacheTutorial2/sld001.htm
[8] Web Cache Communication Protocol,
http://www.cisco.com/warp/public/732/wccp/
[9] A. Dingle, Cache Consistency in the HTTP 1.1
Proposed Standard, http://w3cache.icm.edu.
pl/workshop/talk4/

Fig 1: Continuous time representation of versions of
objects and proxies

Fig2: A request fetches the object from the cache at
the client

Fig 3 A request fetches the object from a cache half
way between the client and the server

Fig 4: Time series of the versions of the object and
the versions of the object in the cache and in the
server

Fig 5: As in Fig 3, but object insertion delay and
removal delay included

Fig 6: Region of tr + T + tin if staleness is zero

Fig 7: Region of tr + T + tin if staleness is tu

