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Abstract: We determine the quantum cohomology ring for hermitian symmetric spaces of type
DIII. Among the manifolds whose quantum cohomology ring has been rigorously computed, two
hermitian symmetric spaces have been reported so far. The one we show in this paper, following a
result of Sievert and Tian, is the third example. For this purpose encouting of the number of rational
curves over the spaces satisfying a certain dimension condition is needed and it is accomplished
by cell decomposition of hermitian symmetric spaces which are analogue of the Scubert cell for
complex Grassmann manifolds.
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1 Introduction

The correlation functions of topological σ-model
observed by Witten has a beautiful character
that it satisfies a recursion relation for genus.

By Ruan [2] it is shown that this is interpre-
tated as intersection number on moduli space of
J-holomorphic curves and has been formulated
in a mathematically rigorous way as invariants
of semipositive symplectic manifolds. They are
so called Gromov-Ruan-Witten invariants.

Moreover, Ruan-Tian [3] showed that the
quantum cup product can be defined on coho-
mology H∗(M,C) of a semi-positive symplectic
manifold (M,ω) in terms of the invariants. The
quantum cup product has such properties as
non-graded, associative, anticommutative and
so on, and it depends on the choice of Kähler
class [ω] ofM . Its homogeneous part, weak cou-
pling limit λ[ω] for λ→∞, is equal to the ordi-
nary cup product. We call quantum cohomology

ring H∗
[ω](M) a ring with a product structure on

H∗(M,C) defined by the quantum cup product.
However, as the delicate culculation to count

the number of rational curves is involved, at
present there are not so many examples of sym-
plectic manifolds whose quantum cohomology
ring are determined.

• complex Grassmann manifolds (Witten,
Vafa, Siebert-Tian, Piunikhin etc.)

• complete flag manifolds associated to U(n)
(Gevental-Kim)

• partial flag manifold associated to U(n)
(Kim, Astashkevich-Sadov)

• toric manifolds (Batyrev)
• Calabi-Yau manifolds (Via Mirror symme-
try by many physicists)

• complete intersection (Beauville)



• projective bundles on CP n (Qin-Ruan)

From these results we see that the quantum
cohomology ring is culculated only for two ex-
amples of Hermitian symmetric spaces of com-
pact type at present : complex Grassmann man-
ifolds SU(m+n)/S(U(m)×U(n)), complex hy-
perquadrics SO(n + 2)/SO(n) × SO(2). So in
this paper, following a result of Sievert and Tian
[4], we have determined the quantum cohomol-
ogy ring of classical Hermitain symmetric spaces
SO(2n)/U(n) of type DIII as the third exam-
ple. The result of Siebert and Tian says that if
H∗(M,C) is generated by α1, · · · ,αs with rela-
tion f 1, · · · , f t, then H∗

[ω](M,C) is a ring gener-
ated by α1, · · · ,αs with new relation f 1

ω, · · · , f tω.
Theorem 1 The quantum cohomology ring of
Hermitian symmetric space SO(2n)/U(n) of
type DIII is

H∗
[ω](SO(2n)/U(n))

∼= C[e2, e4, · · · , e2n−2]

/(e4k +
2k−1X
i=1

(−1)ie2ie4k−2i, e
2
2n−2 − e−λ)

Here k runs from 1 to n− 2.
Futhermore, if the corresponding σ-model has

a description of Landau-Ginzburg type, such as
in the case of complex Grassmann manifolds,
then the Gromov-Witten invariant of higher
genus can be expressed explicitly in terms of
higer order residue integrals of potential func-
tions, which is a formula of Vafa-Intriligator [4].
This can be considered as a kind of localization
theorem, and we can expect to obtain an anal-
ogous result also in our case.

Proposition 1 For any F ∈ C[X1, · · · , Xk],
the Gromov-Witten invariant of genus g for
SO(2n)/U(n) is given by

hF ig = c
X

dW [ω]=0

det(
∂2W [ω]

∂Xi∂Xj
)(x)F (x)

2 Gromov-Ruan-Witten

invariants and the quan-

tum cohomology ring

Let M be a 2n-dimensional compact symplec-
tic manifold with a symplectic form ω. (M,ω)
is called positive (resp. semipositive) if, for
any R = f∗[S2] ∈ H2(M ;Z) represented by
f : S2 −→ M with [ω](R) > 0, we have
c1(M)(R) > 0 (resp. c1(M)(R) ≥ 0 ). We know
that there exists an almost complex structure J
on M tamed by ω, that is, ω(X, JX) > 0 for
each nonzero X ∈ TM . Let Σ be a compact
Riemann surface of genus g with the complex
structure J . A smooth map f : Σ −→ M
is called a J-holomorphic curve if f satisfies
the equations J ◦ df = df ◦ j, or equivalently
∂̄f = 0, where we define the Cauchy-Riemann
operator ∂̄J as ∂̄J =

1
2
(df − J ◦ df ◦ j). For

γ ∈ C∞(T ∗Σ ⊗ f−1TM), we consider its per-
turbed version ∂̄f = γ to define a perturbed or
(J, γ)-holomorphic curve.

We recall the notion of the Gromov-Ruan-
Witten invariant (GRW-invariant) ([3]). Let
R ∈ H2(M ;Z) and [B1], [B2], · · · , [Bs] ∈
H∗(M ;Z). Here Bi (i = 1, 2, · · · , s) are pseudo-
manifolds.

The dimension condition is defined as

sX
i=1

(2n− degBi) = 2c1(M)(R) + 2n(1− g).
(dim)

If the dimension condition does not hold, then
we define

Φ̃(R,ω)([B1], [B2], · · · , [Bs]) = 0.

If we assume that the dimension condition (dim)
holds. For generic (J, γ), Bi (i = 1, · · · , s),
and x1, · · · , xs ∈ Σ, the number of (J, γ)-
holomorphic curves with f(xi) ∈ Bi (i =
1, · · · , s) and f∗[Σ] = R is finite. So we can



define the number

Φ̃(R,ω)([B1], [B2], · · · , [Bs])
as the algebraic sum of such f with appropriate
sign according to the orientation if the Bi (i =
1, 2, · · · , s) are transversal to the Gromov
boundary of the compactified moduli space of
(J, γ)-holomorphic curves. It is known that this
number Φ̃(R,ω)([B1], [B2], · · · , [Bs]) is indepen-
dent of the choices of J, γ, points x1, · · · , xs ∈
Σ, pseudo-manifolds [B1], [B2], · · · , [Bs], and
the complex structure on Σ.
If J is an almost complex structure tamed

by ω on M such that any J-holomorphic curve
f∗[Σ] = R is regular in the sense that the coker-
nel of the linearization operator of the Cauchy-
Riemann operator ∂̄J at f vanishes, then (J, 0)
is generic. In the case where J is integrable
and f is an immersion, the regularity at f is
equivalent to the vanishing ofH1(C;NC), where
C = f(Σ) and NC denotes the holomorphic nor-
mal bundle of C.
Let us consider the case where (M,ω) is a

compact Kähler manifold and R ∈ H2(M ;Z)
such that any holomorphic curve C inM homol-
ogous toR is non-singular and hasH1(C;NC) =
0. Suppose B1, · · · , Bs be compact complex
submanifolds inM transversal to the evaluation
map and the Gromov boundary. Then

Φ̃(R,ω)([B1], · · · , [Bs]) =X
C

](B1 ∩ C) · ](B2 ∩ C) · · · · · ](Bs ∩ C),

where the sum is taken over all holomorphic
curves C homologous to R.
To define the quantum multiplication on

H∗(M,Z), we define

Φ̃[ω]([B1], · · · , [Bs]) :=X
R∈H2(M ; )

Φ̃(R,ω)([B1], · · · , [Bs])e−[ω](R).

Suppose that (M,ω) is positive. We define the
quantum cup product on H∗(M ;Z) by

(α ∧Q β)[A] = Φ̃[ω](α
V , βV , A)

for each A ∈ H∗(M ;Z), where α,β ∈ H∗(M ;Z)
and αV denotes the Poincaré dual of α. If we let
{Ai} a basis of the torsion free part of H∗(M ;Z)
and {αi} the Poincaré dual basis of H∗(M ;Z),
then the quantum cup product can be expressed
as

αi ∧Q αj =
X
k,l

ηlkΦ̃[ω](Ai, Aj, Ak)αl,

where (ηlk) is an inverse matrix to the intersec-
tion matrix (ηij) = (Ai · Aj). Its homogeneous
part reduces to the cup product

αi ∧ αj =
X
k,l

ηlk(Ai · Aj · Ak)αl.

We can describe the quantum cohomology
ring by modifying generators and their relations
of the classical cohomology ring.
Let ChX1, · · · ,Xni be a graded anticommu-

tative C-algebra defined by a relation XiXj =
(−1)didjXjXi. Here Xi is an element of degree
di. If m elements of {Xi} are of odd degree,
then ChX1, · · · , Xni is isomorphic to

(Λ∗Cm)⊗ (Sym∗Cn−m).

An element of this C-algebra is called an ordered
polynomial. Assume that (M,ω) is a compact
symplectic manifold and its cohomology ring is
expressed as

H∗(M,C) = ChX1, · · · , Xni/(f1, · · · , fk),
where fi =

P
|J |=deg(fi)

aiJX
J , J = (j1, · · · , jn),

XJ = Xj1
1 ∧ · · · ∧ Xjn

n , |J | =
Pn

i=1 jidi. Here
we assume that each deg(fi) is even. We shall
denote by ˆ an element of the quantum coho-
mology ring.



Lemma 1 [4] X̂1, · · · , X̂n generate the quan-
tum cohomology ring H∗

[ω](M ;C).

Theorem 2 [4] The quantum cohomology ring
for M is expressed as

H∗
[ω](M ;C) = ChT1, · · · , Tni/(f [ω]

1 , · · · , f [ω]
k ).

3 Quantum cohomology

ring of SO(2n)/U (n)

It is known (cf.[6]) that the cohomology ring
H∗(SO(2n)/U(n);C) is described as follows :

H∗(SO(2n)/U(n),C) ∼=

C[e2, e4, · · · , e2n−2]/(e4k+
2k−1X
i=1

(−1)ie2ie4k−2i),

where e2j = 0 for j ≥ n.
The quantum cup product is defined by

αi ∧Q αj =
X
k,`

η`kΦ̃[ω](Ai, Aj , Ak)α`,

where {Ai} is a basis of the torsion free part for
H∗(M,Z).
We know that H2(SO(2n)/U(n);Z) is gener-

ated by a single class [C] over Z, which is rep-
resented by a rational curve C of degree 1 as
explained later. By the definition we have

Φ̃d[C](α
V , βV , γV ) = 0

unless

degαV + deg βV + deg γV =

2c1(M)(R) + 2 dim M.

All the cases where the dimension condition
(dim) are satisfied are as follows :

• d = 0
• d = 1, k = n− 1,

namely

degαV +deg βV = 4(n−1), deg γV = 2dim M.

Therefore we have only to determine the
quantum product e2n−2 ∧Q e2n−2. By the def-
inition it becomes

e2n−2 ∧Q e2n−2 = Φ̃[C](e
V
2n−2, e

V
2n−2, [∗])e−[ω](C).

We shall show that

Φ̃[C](e
V
2n−2, e

V
2n−2, [∗]) = 1.

Let Grk(E) be the complex Grassmann man-
ifold of all k-dimensional complex vector sub-
spaces of a complex vector space E. We use the
expression

SO(2n)/U(n) = {V ∈ Grk(C2n) | C2n = V⊕V̄ }
= {orthogonal complex structures of R2n}.

In the case where n = 2, SO(4)/U(2) ∼= CP 1.
We assume that n > 2.
The rational curves C of degree 1 in

SO(2n)/U(n) are described as follows. Set

Zn−2(C2n) = {W ∈ Grn−2(C2n) | (W,W ) = 0},
=

SO(2n)

U(n− 2)× SO(4) ,

where ( , ) denotes the standard symmetric
complex bilinear form of C2n. Hence the condi-
tion (W,W ) = 0 means thatW is perpendicular
to W̄ with respect to the standard Hermitian
inner product of C2n. Note that this space is
a twistor space over the real Grassmann man-
ifold G̃r4(R2n) = SO(2n)

SO(2n−4)×SO(4)
of oriented 4-

dimensional vector subspaces of R2n.
The space Zn−2(R2n) parametrizes the set of

all rational curves of degree 1 in SO(2n)/U(n).
We fix an arbitrary element W ∈ Zn−2(C2n).
Using the W , we take an Hermitian orthogonal
decomposition

C2n =W ⊕ W̄ ⊕ (W ⊕ W̄ )⊥.



Set

Z2((W ⊕ W̄ )⊥) = {V2 ∈ Gr2((W ⊕ W̄ )⊥) |
(V2, V2) = 0} ∼= SO(4)/U(2).

Hence, for each W ∈ Zn−2(C2n), we get the
canonical embedding

SO(4)/U(2) −→ {W ⊕ V ∈ SO(2n)/U(n) |
V ∈ Z2((W ⊕ W̄ )⊥)} ∼= SO(4)/U(2),

which gives a rational curve C = CW of degree 1
in SO(2n)/U(n). We can also express C = CW
as

CW = {V ∈ SO(2n)/U(n) | W ⊂ V }.
The complex hyperquadric is defined by

Q2n−2(C) = {` ∈ CP 2n−1 | (`, `) = 0}.
For each ` ∈ Q2n−2(C), we set

B = B` = {W ∈ SO(2n)/U(n) | ` ⊂W}
∼= SO(2(n− 1))/U(n− 1).

Then we have (cf.[5])

[B`] = e
V
2n−2 ∈ H(n−1)(n−2)(SO(2n)/U(n);C)

Now we fix `i ∈ Q2n−2(Z) (i = 1, 2), and set
B1 = B`1 , B2 = B`2, [∗] = V3 ∈ SO(2n)/U(n).
Then it follows eV2n−2 = [B1] = [B2].
Let Λi (i = 1, 2, 3) be the intersection points

of a rational curve C = CW with these three
cycles B1, B2, [∗]. We may assume that `1 ⊂
Λ1 ⊃ U and V3 6⊃ `1, `2. We have

`2 ⊂ Λ2 ⊃W, `1, `2 6⊃W.
and

W3 = Λ3 ⊃W, `i ∩W = {0}.
As Λi ⊃ W , we have Λi ⊂ W̄⊥. Thus we

have Λ1 +Λ2 +Λ3 ⊂ W̄⊥ and `1 ⊂ Λ1, `2 ⊂ Λ2,

V3 = Λ3. Hence we see that if `1, `2, V3 are lin-
early independent, then it follows Λ1+Λ2+Λ3 =
W̄⊥. In fact, we shall show that if `1, `2,W3 are
generic, then they become linearly independent.
Since `2 + V3 is an (n+1)-dimensional complex
subspace of C2n, P (`2 + V3) ⊂ CP 2n−1 is de-
fined as an n-dimensional complex projective
subspace consisting of all 1-dimensional com-
plex subspaces of `2+V3. As 2n−2 > n, we have
P (`2+V3)∩Q2n−2(C) $ Q2n−2(C). Thus we can
choose an element `1 ∈ Q2n−2(C)\{P (`2+V3)∩
Q2n−2(C)}. Then `1 satisfies `1 6⊂ `2 + V3 and
hence `1, `2, V3 are linearly independent. Since

W = (`1 + `2 + V3)
⊥ ⊂ V̄ ⊥3 = V3, we have

W ⊥ W̄ .
We choose a unique 1-dimensional vector sub-

space `0 of C2n compatible with the standard
orientation of R2n such that

(`1⊕W )⊕(`1 ⊕W )⊕(`0⊕ ¯̀0) = V3⊕ V̄3 = C2n.

Then we have

Λ1 = `1 ⊕W ⊕ `0,
Λ2 = `2 ⊕W ⊕ `0,
Λ3 = W3.

Therefore we obtain that the number of ratio-
nal curves of degree 1 through B1, B2, [∗] is
just one and the intersection number of the ra-
tional curve with each Bi (i = 1, 2, 3) is one. It
is easy to check that the transversality to the
evaluation map and the Gromov boundary are
satisfied in this case. We conclude that

Φ̃[L](e
V
2n−2, e

V
2n−2, [∗]) = 1.

From this we obtain the quantum cohomolgy
ring for the space SO(2n)/U(n) :

H∗
[ω](SO(2n)/U(n))

∼= C[e2, e4, · · · , e2n−2]

/(e4k +
2k−1X
i=1

(−1)ie2ie4k−2i, e
2
2n−2 − e−λ).

Here k runs from 1 to n− 2.
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