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Abstract: - A modification and efficient implementation of the SKHNE (Sugiyama, Kasahara, Hirasawa, 
Namekawa, Euclid) algorithm for a class of BCH codes is proposed. Envisaged as part of an adaptive data 
protection (ADP) software application it is designed to operate (decode and error correct) for binary “narrow-
sense” BCH(8,t) codes providing increasing level of protection against error in accordance with user choices. 
While such codes cause loss of compression the improvement in error probability is dramatic, e.g. from 10-5 to 
10-41 approximately for BCH(8,10), with a 42% loss of compression. It may function in applications requiring a 
supplemental inner code or a stand alone data protection shield. 
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1 Introduction 
Coding to protect against errors arising in the 
electronic archival writing or retrieving process or 
in the archive itself, fig. 1, is an important field e.g. 
c.f. [1], [2], [3], [4] and [5]. Some coding schemes 
are built into the archiving software. Of these some 
are error detecting only, e.g. the popular CRC-32. 
Others attempt to recover corrupted data e.g. the 
ARJ and JAR programs [4], which can be made to 
repair up to 4 damaged 1kbyte long sections in a 
1Mbyte block and 28 kbytes of damaged section(s) 
on a 1.44 Mbytes volume resp. Other schemes are 
embedded into the hardware or the firmware. In 
CD-ROM and DVD firmware implemented (right 
of 'A', fig.1), powerful, Cross-Interleaved Reed-
Solomon Code (CIRC) and Reed-Solomon Product 
Code (RS-PC) are used resp., e.g. [5], [6], [7] and 
[8]. The latter can cater for 6.0mm burst error and 
both add c. 34% and 13% overhead resp., [9]. 
However regardless of the in-built error protection 
power in any archive system, requirements will 
continue to change as a function of service 
application, user needs and so forth, e.g. [5], [10]. 
Thus there is room for optional, supplemental, 
software-based schemes –adaptive data protection  

(ADP) applications– for multiple error protection, 
with levels of protection being chosen by the user 
and traded against increased storage requirements.  
Such a scheme would be inserted at 'A' in fig. 1. 
Existing error protection, if present –to the right of 
'A'– becomes an outer layer of protection. An ADP 
has been developed based on Bose-Chaudhuri-
Hocquenghem (BCH) codes, [11], [12]. These 
codes have the attraction of flexibility in the choice 
of those parameters, which dictate their multiple 
error-correcting power. Also at block lengths of a 
few hundred or less, many of them are among the 
most efficient codes known, [13]. 

 
 

2 BCH Encoding/Decoding Process 
 
2.1 Definition of Terms 
Letting G(x) be the characteristic unique generator 
polynomial for a BCH code. Its polynomial 
coefficients are required to be elements of a finite 
Galois field, GF(q). The BCH codes are most 
easily defined in terms of the roots of G(x). Thus a 
primitive t-error-correcting BCH(m,t) code over 



 

GF(q) of block length n=(qm-1) has 
121 000 ,...,, −++ tmmm ααα  as roots of  G(x) for any 

m0, where αα is a primitive element of GF(qm). 
Those codes with m0=1 are called "narrow-sense” 
BCH codes and those defined over GF(2) are called 
binary codes. These only are considered here. The 
choice of αα for GF(2m) is immaterial, [14]. Of 
course the encoder and decoder should use the 
same αα . 

2.2  BCH Encoding 
A systematic n-tuple BCH(m,t) codeword c(x) for 
the input k-tuple message b(x) may be obtained via, 
e.g. [14]:  

c(x) = b(x)x n-k + h(x), 

where  h(x) = {b(x) x n-k }modulo{G(x)}, n = 2m-1,  
and  k=n-{degree of G(x)}. 
The code's minimum Hamming distance (HD) is 
d=2t+1.     

 

2.3  BCH Decoding  
The BCH decoding process operates on the 
minimum distance decoding principle, i.e. choosing 
as the valid corrected codeword vector, c, that one 
nearest –HD– to the retrieved data vector, r. It does 
this by  finding that error vector e of minimum 
Hamming weight such that c=r⊕⊕e (⊕⊕ denoting 
modulo-2 sum). Figure 2 shows the block diagram 
of the binary BCH decoder implemented as a part 
of the general structure for time domain BCH 
decoders, [13]. 
It comprises the following phases: 
i)  Computing the syndromes and obtaining the 
syndrome polynomial )(zS  
The syndromes Si of r, =rj, j=0,…,(n-1) may be 
defined, [14], as the values 
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If Si=0 for i=1,…, 2t, then c=r. The syndrome 
polynomial can be obtained as: 
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ii)  Solving the key equation and finding the error 
locator polynomial )(zΛ  

If r has νν errors in error locations j1, j2, …, jνν , (with 
νν ≤ 2t)  then its error locator polynomial ΛΛ(z) and 
error evaluator polynomial Ù(z) can be written 
[14]: 
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When t or less errors occur in r, then the following 
key equation holds, [14]:  

(4)                   Λ(z)S(z) ≡ Ω(z)mod(z2t). 

iii)  Finding error locations and obtaining the 
error vector e 
The reciprocals of the roots of ΛΛ(z), i.e. 

νααα jjj −−− ,...,, 21  (eq. 3), correspond to the 
error locations. That is an error is found in position 
j iff ΛΛ(αα-j)=0. From here e is obtained. The roots 
themselves may be found by simply checking 
which elements  y of GF(2m) satisfy the equation  
ΛΛ(y) =0. If αα p(ô) is such a root then the location jô , 

(ô � νν), of the corresponding error location in 
 r is (counting from the right starting with 0): 
(5)                         jô = 2m - 1 - p(ô) 
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3 Error Correction with the 
SKHNE Algorithm 

 
 
3.1 Finding ΛΛ(z)   
Berlekamp [15] developed an algorithm to find the 
minimum-degree ΛΛ(z), which satisfies eq.4. 
Though efficient, it was later improved by Massey 
[16]. The technique used here adapts and 
implements a simpler algorithm, reported by 
Sugiyama, Kasahara, Hirasawa & Namekawa, [17], 
based on Euclid's algorithm [for finding the 
greatest common divisor of two polynomials a(z) 
and b(z)]. For brevity it is called here the SKHNE 
algorithm. The useful aspect of the Euclid’s 
algorithm is not in the final answer but in the 
partial results, as shown in the following. At each 
iteration i a set of polynomials fi(z), gi(z) and çi(z) 
are generated such that 

(6)      )()()()()( zzbzgzazf iii η=+ . 

In noting that eq.6 may also be written 

(7)        )(mod)()()( zazzbzg ii η≡  

then if a(z) is set to z2t  and  b(z) to S(z), this 
becomes 

(8)        )mod()()()( 2t
ii zzzSzg η≡ . 

At some stage in the iterative process, say stage 
i=n, when deg[çn(z)]<t, eq. 8 becomes identical to 
eq. 4, with çn(z)=Ù(z) and  gn(z) being the desired 
polynomial Ë(z) .  

 

3.3 The SKHNE Steps in 'Finding Ë(z) '  
i) Set the initial conditions: 

( ) 01 =− zg ,   ( ) 10 =zg ,    

( ) ( ) tzzaz 2
1 ==−η    and     

( ) )()(0 zSzbz ==η .  

ii) Apply Euclid's algorithm. At each iteration i 
(i = 1, 2, … ) divide ηηi-2(z) by ηηi-1(z), obtain 
the quotient qi(z), the remainder ηηi(z), and 
construct polynomial gi(z) via: gi(z)=gi-2(z)-
qi(z).gi-1(z). 

iii) Stop the recursive iterations when 
deg[çn(z)]<t, and set ΛΛ(z)=gn(z). 

Termination (step iii) occurs properly if no more 
than t errors occur in r because only in this case 
does eq. 4 hold. Otherwise (i.e. if more than t errors 
occur) an incorrect, though valid, code vector may 
be produced or the SKHNE algorithm may 'fail'. 
The latter is detectable. There are two failure 
modes, [14]: (a) The SKHNE does not terminate 
properly; this occurs iff  zt | S(z).  (b) The SKHNE 
terminates but produces a faulty ΛΛ(z); this may 
happen if ΛΛ(z) has 0 as a root or it does not split 
into linear factors. 
 
 
3.3 The SKHNE Implementation 
Table 1 shows the steps in the SKHNE algorithm; 
it follows a time domain BCH decoder structure 
[13].  The language used was C++. 
 
 

4 Conclusion 
Addressing the need to provide greater user control 
over data integrity in traditional storage media, this 
paper develops a modified SKHNE algorithm, 
showing how it can be flexibly implemented for 
binary “narrow-sense” BCH(8,t) codes such that 
the user may set the additional level of data 
protection required especially where degradation of 
the quality of the storage media is feared.  

A reasonable approximation for the error rate, 
AER, for raw random probability of error p, is 
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For example a BCH(8,10) code, which will cause a 
42% file expansion overhead, yields an AER of 

4110− for p=10-5. 
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Figure 2. Binary BCH Decoder Block Diagram 



Table 1: The steps in the SKHNE algorithm 

Step Action Step Action 

 

1 

Retrieve r. Calculate Si (eq. 1).  Write S(z) as 

eq.2. If S(z)=0, r is error free: set e to zero 

and go to step 7; otherwise go to step2. 

 

4 

Check for failure mode (b), ΛΛ(z) has o as a root 

or does not split into linear factors: if positive 

then stop and issue EM.  Otherwise, go to step 5. 

2 

Check zt |S(z): if positive, failure mode (a), 

stop and issue EM; otherwise, go to step 3. 5 

Find: (i) the roots, α p(ô), of  ΛΛ(z);  

         (ii) error locations jô = 2m - 1 - p(ô) 

 
6 

Construct error vector e with 1's in positions jô 

and 0's elsewhere. 

3 

Execute 'finding ΛΛ(z)' algorithm core.  If the 

first remainder ηi(z), which has degree <t is 

zero then there are more than t errors in r: 

stop and issue EM. Otherwise go to step 4. 
7 

Obtain the recovered corrected code vector c, 

via cre =⊕ . Return to  & repeat the 

process 

completed. 

 –

retrieval with another device drive as the errors may not be inherent to the archive  
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