
Modification and Efficient Implementation of the SKHNE Algorithm
for Adaptive Data Protection

Dr. MAIRTIN O’DROMA

Department of Electronics and Computer Engineering
University of Limerick

National Technological Park, Limerick
IRELAND

Dr. IVAN GANCHEV

Department of Electronics and Computer Engineering
University of Limerick

National Technological Park, Limerick
IRELAND

Abstract: - A modification and efficient implementation of the SKHNE (Sugiyama, Kasahara, Hirasawa,
Namekawa, Euclid) algorithm for a class of BCH codes is proposed. Envisaged as part of an adaptive data
protection (ADP) software application it is designed to operate (decode and error correct) for binary “narrow-
sense” BCH(8,t) codes providing increasing level of protection against error in accordance with user choices.
While such codes cause loss of compression the improvement in error probability is dramatic, e.g. from 10-5 to
10-41 approximately for BCH(8,10), with a 42% loss of compression. It may function in applications requiring a
supplemental inner code or a stand alone data protection shield.

Key-words: - SKHNE algorithm; BCH codes; error protection; archives; CD-ROM; DVD

1 Introduction
Coding to protect against errors arising in the
electronic archival writing or retrieving process or
in the archive itself, fig. 1, is an important field e.g.
c.f. [1], [2], [3], [4] and [5]. Some coding schemes
are built into the archiving software. Of these some
are error detecting only, e.g. the popular CRC-32.
Others attempt to recover corrupted data e.g. the
ARJ and JAR programs [4], which can be made to
repair up to 4 damaged 1kbyte long sections in a
1Mbyte block and 28 kbytes of damaged section(s)
on a 1.44 Mbytes volume resp. Other schemes are
embedded into the hardware or the firmware. In
CD-ROM and DVD firmware implemented (right
of 'A', fig.1), powerful, Cross-Interleaved Reed-
Solomon Code (CIRC) and Reed-Solomon Product
Code (RS-PC) are used resp., e.g. [5], [6], [7] and
[8]. The latter can cater for 6.0mm burst error and
both add c. 34% and 13% overhead resp., [9].
However regardless of the in-built error protection
power in any archive system, requirements will
continue to change as a function of service
application, user needs and so forth, e.g. [5], [10].
Thus there is room for optional, supplemental,
software-based schemes –adaptive data protection

(ADP) applications– for multiple error protection,
with levels of protection being chosen by the user
and traded against increased storage requirements.
Such a scheme would be inserted at 'A' in fig. 1.
Existing error protection, if present –to the right of
'A'– becomes an outer layer of protection. An ADP
has been developed based on Bose-Chaudhuri-
Hocquenghem (BCH) codes, [11], [12]. These
codes have the attraction of flexibility in the choice
of those parameters, which dictate their multiple
error-correcting power. Also at block lengths of a
few hundred or less, many of them are among the
most efficient codes known, [13].

2 BCH Encoding/Decoding Process

2.1 Definition of Terms
Letting G(x) be the characteristic unique generator
polynomial for a BCH code. Its polynomial
coefficients are required to be elements of a finite
Galois field, GF(q). The BCH codes are most
easily defined in terms of the roots of G(x). Thus a
primitive t-error-correcting BCH(m,t) code over

GF(q) of block length n=(qm-1) has
121 000 ,...,, −++ tmmm ααα as roots of G(x) for any

m0, where αα is a primitive element of GF(qm).
Those codes with m0=1 are called "narrow-sense”
BCH codes and those defined over GF(2) are called
binary codes. These only are considered here. The
choice of αα for GF(2m) is immaterial, [14]. Of
course the encoder and decoder should use the
same αα .

2.2 BCH Encoding
A systematic n-tuple BCH(m,t) codeword c(x) for
the input k-tuple message b(x) may be obtained via,
e.g. [14]:

c(x) = b(x)x n-k + h(x),

where h(x) = {b(x) x n-k }modulo{G(x)}, n = 2m-1,
and k=n-{degree of G(x)}.
The code's minimum Hamming distance (HD) is
d=2t+1.

2.3 BCH Decoding
The BCH decoding process operates on the
minimum distance decoding principle, i.e. choosing
as the valid corrected codeword vector, c, that one
nearest –HD– to the retrieved data vector, r. It does
this by finding that error vector e of minimum
Hamming weight such that c=r⊕⊕e (⊕⊕ denoting
modulo-2 sum). Figure 2 shows the block diagram
of the binary BCH decoder implemented as a part
of the general structure for time domain BCH
decoders, [13].
It comprises the following phases:
i) Computing the syndromes and obtaining the
syndrome polynomial)(zS
The syndromes Si of r, =rj, j=0,…,(n-1) may be
defined, [14], as the values

(1) ij
n

j
ji

rS α∑
−

=

=
1

0

, i = 1, 2,…, 2t .

If Si=0 for i=1,…, 2t, then c=r. The syndrome
polynomial can be obtained as:

(2) =++++= −12
2

2
321 ...)(t

t zSzSzSSzS

.
12

0
1∑

−

=
+=

t

i

i
i zS

ii) Solving the key equation and finding the error
locator polynomial)(zΛ

If r has νν errors in error locations j1, j2, …, jνν , (with
νν ≤ 2t) then its error locator polynomial ΛΛ(z) and
error evaluator polynomial Ù(z) can be written
[14]:

(3) ∏
=

−=Λ
ν

α
1

),1()(
k

j zz k and

∑ ∏
= ≠=

−=Ω
ν ν

αα
1 1

).1()(
k klandl

ij
j zez lk

k

When t or less errors occur in r, then the following
key equation holds, [14]:

(4) Λ(z)S(z) ≡ Ω(z)mod(z2t).

iii) Finding error locations and obtaining the
error vector e
The reciprocals of the roots of ΛΛ(z), i.e.

νααα jjj −−− ,...,, 21 (eq. 3), correspond to the
error locations. That is an error is found in position
j iff ΛΛ(αα-j)=0. From here e is obtained. The roots
themselves may be found by simply checking
which elements y of GF(2m) satisfy the equation
ΛΛ(y) =0. If αα p(ô) is such a root then the location jô ,

(ô � νν), of the corresponding error location in
 r is (counting from the right starting with 0):
(5) jô = 2m - 1 - p(ô)

Potential Errors
Original file Compression

Segmentation, error
protection encoding &

writing

Figure 1. A block diagram of the typical archival-retrieval process

Extracted file De-compression
Retrieving, decoding,

error handling &
 re-assembly

Archive
A

→ firmware/hardware software ←

3 Error Correction with the
SKHNE Algorithm

3.1 Finding ΛΛ(z)
Berlekamp [15] developed an algorithm to find the
minimum-degree ΛΛ(z), which satisfies eq.4.
Though efficient, it was later improved by Massey
[16]. The technique used here adapts and
implements a simpler algorithm, reported by
Sugiyama, Kasahara, Hirasawa & Namekawa, [17],
based on Euclid's algorithm [for finding the
greatest common divisor of two polynomials a(z)
and b(z)]. For brevity it is called here the SKHNE
algorithm. The useful aspect of the Euclid’s
algorithm is not in the final answer but in the
partial results, as shown in the following. At each
iteration i a set of polynomials fi(z), gi(z) and çi(z)
are generated such that

(6))()()()()(zzbzgzazf iii η=+ .

In noting that eq.6 may also be written

(7))(mod)()()(zazzbzg ii η≡

then if a(z) is set to z2t and b(z) to S(z), this
becomes

(8))mod()()()(2t
ii zzzSzg η≡ .

At some stage in the iterative process, say stage
i=n, when deg[çn(z)]<t, eq. 8 becomes identical to
eq. 4, with çn(z)=Ù(z) and gn(z) being the desired
polynomial Ë(z) .

3.3 The SKHNE Steps in 'Finding Ë(z) '
i) Set the initial conditions:

() 01 =− zg , () 10 =zg ,

() () tzzaz 2
1 ==−η and

())()(0 zSzbz ==η .

ii) Apply Euclid's algorithm. At each iteration i
(i = 1, 2, …) divide ηηi-2(z) by ηηi-1(z), obtain
the quotient qi(z), the remainder ηηi(z), and
construct polynomial gi(z) via: gi(z)=gi-2(z)-
qi(z).gi-1(z).

iii) Stop the recursive iterations when
deg[çn(z)]<t, and set ΛΛ(z)=gn(z).

Termination (step iii) occurs properly if no more
than t errors occur in r because only in this case
does eq. 4 hold. Otherwise (i.e. if more than t errors
occur) an incorrect, though valid, code vector may
be produced or the SKHNE algorithm may 'fail'.
The latter is detectable. There are two failure
modes, [14]: (a) The SKHNE does not terminate
properly; this occurs iff zt | S(z). (b) The SKHNE
terminates but produces a faulty ΛΛ(z); this may
happen if ΛΛ(z) has 0 as a root or it does not split
into linear factors.

3.3 The SKHNE Implementation
Table 1 shows the steps in the SKHNE algorithm;
it follows a time domain BCH decoder structure
[13]. The language used was C++.

4 Conclusion
Addressing the need to provide greater user control
over data integrity in traditional storage media, this
paper develops a modified SKHNE algorithm,
showing how it can be flexibly implemented for
binary “narrow-sense” BCH(8,t) codes such that
the user may set the additional level of data
protection required especially where degradation of
the quality of the storage media is feared.

A reasonable approximation for the error rate,
AER, for raw random probability of error p, is

 1

1

12 +

+
−

= t
m

p
t

AER .

For example a BCH(8,10) code, which will cause a
42% file expansion overhead, yields an AER of

4110− for p=10-5.

r)(zΛS(z)
r

e

c

Computing
Syndromes

Solving Key
Equation

Finding
Error Locations

Figure 2. Binary BCH Decoder Block Diagram

Table 1: The steps in the SKHNE algorithm

Step Action Step Action

1

Retrieve r. Calculate Si (eq. 1). Write S(z) as

eq.2. If S(z)=0, r is error free: set e to zero

and go to step 7; otherwise go to step2.

4

Check for failure mode (b), ΛΛ(z) has o as a root

or does not split into linear factors: if positive

then stop and issue EM. Otherwise, go to step 5.

2

Check zt |S(z): if positive, failure mode (a),

stop and issue EM; otherwise, go to step 3. 5

Find: (i) the roots, α p(ô), of ΛΛ(z);

 (ii) error locations jô = 2m - 1 - p(ô)

6

Construct error vector e with 1's in positions jô

and 0's elsewhere.

3

Execute 'finding ΛΛ(z)' algorithm core. If the

first remainder ηi(z), which has degree <t is

zero then there are more than t errors in r:

stop and issue EM. Otherwise go to step 4.
7

Obtain the recovered corrected code vector c,

via cre =⊕ . Return to & repeat the

process

completed.

 –

retrieval with another device drive as the errors may not be inherent to the archive

[1] X1. Coding Techniques for

digital recorders,
[2] X2. J. Taylor. ebook

for DVD video and DVD- McGraw-
1997.

Forum. http://www.dvdforum.org. To
date.

[4] X4. R. 76 and JAR 1.02 programs.
 ARJ.TXT and

. To
[5] Error control systems for

 Prentice
Hall. 1995.

[6] X6. R.C. Chang and C.B. Shung. A (208,192;8)
Reed Solomon decoder for DVD application.
Proc. International Conference

, ICC 98. (ISBN: 0- -
4788 9). Vol. 2. 1998. pp.957-

[
Markarian. Improved decoding technique for
the DVD.
Music Technology: The Challenge of Creative
DSP. -17/5.

[8] X8. K. Oh and W. Sung. An efficient Reed-
ecoder VLSI with erasure

correction. SIPS 97. ISBN 0- -3806
5. 1997. pp. 193-

IEEE

Multimedia -Mar. 1999. pp.
-84

[10] X10. J.W. Einberger. CD-
storage device. Proc. 9th IEEE
Mass Storage Systems. Boulder, USA. 1988.

- 129.
[11] X11. A. Hocquenghem. "Codes correcteurs

Chiffres, 2, 1959. pp.147 156.
X12. R.C. Bose, and D. K. Ray Chaudhuri. On
a class of error correcting binary group codes,

f. Control, 3, 1960. pp.68 79.
X13. G.C. Clark, Jr. and J. B. Cain. -
Correcting Codes for Digital

 Plenum Press. 1981.
X14. O. Pretzel. -Correcting Codes and

Clarendon Press. 1992.
X15. E. R. Berle amp. On decoding binary

-Chaudhuri Hocquenghem codes, IEEE
, 11. 1965. pp.577-

[16] J.L. Massey. Shift-
BCH decoding, IEEE Trans. Info. Theory
1969. pp.122-

[17] Y. Sugiyama, M. Kasahara, S. Hirasawa,

equation for decoding Goppa codes, Inf.
, 27. 1975. pp.87-

