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ABSTRACT :We describe a novel method of removing This leads us to an implicit function of time interval ,
additive noise of known variance from images . The A=F(t,f) e (2)
method is based on a characterization of statistica{Nhere,t _ time, f — frequency

properties of natural images represented in a comple

wavelet decomposition . Specifically , we decompose the)zf he continuous wavelet ransform is given by

noisy image into wavelet sub bands , estimate theCWT(UJ):(]/\/E)J'S(t)ll/((t‘T)/ a)dt-----(3)
correl_ation of _bo"rh the nose-free raw coefficients and the?"\Nhere, W(t) is the basic wavelet or mother wavelet and
magnitudes within each sub band , impose these statistics
by projecting onto the space of images having the desiret/((t —7)/a)/+/a is wavelet basis function called baby
correlations , and reconstruct an image from the modifiedvavelet. The term wavelet means a small wave .The
wavelet coefficients . This process is applied repeatedly smallness refers to the condition that this (window)
and can be accelerated to produce optimal results in only fanction is of finite length (compactly supported). The
few iterations . De-noising results compare favorably towave refers to the condition that this function is
three- point formulae . oscillatory. The term mother implies that the functions
The proposed filter has shown extremely goodwith different region of support that are used in the
performance in intelligence preservation and noiseransformation process are derived from one main
suppression while eliminating noise .Moreover this filter function , or the mother wavelet . In other words, the
has shown excellent results with training data and highlymother wavelet is a prototype for generating the other

corrupted noisy images. window functions.
The various wavelet function prototypes are given as
Keywords:-de-noising, thresholding , rejective-filter, below :
shrinkage, discretization. 1)Modulated Gaussian (Morlet)
wt)y=e™e®? 4)

. WAVELET T RANSFORM 2.Second derivative of a Gaussian

Wavelet transform is being used to represent a time and /() = (1-t2)e™? e (5)
frequency varying signal in the appropriate references Haar

frame conforming with Heisenberg's uncertainty 1, g t<

principle. A signal or an image which is varying in time ;)2 -1,  Y<t<l 0000 e (6)
and frequency simultaneously cannot be represented 0 otherwise

f:3oIer asffa function(I ofltime (Fofurier) transform) or a 4.Shannon '

unction of frequency (laplace transform). ' .

What is needgd is :):1/ traF;]sform that can cater to both time"u(t) = (sin(t/ 2) /(11 2))(COSITE/ 2) ~roveoveer (7)

and frequency variations at the same time with goodlNe term translation is related to the location of window,

formulating the well known uncertainty principle. Scaling as a mathematical operation , eith_er dilate_s or
Ox O0p = h/4m - 1) compresses the signal. In terms of mathematical functions,

where: B if f(t)is a given function f(st)corresponds to a
[x __an‘-ference in position of particle or signal contracted signal (compressed) version of f(tp ¥ 1and

to an expanded (dilated) version ft) if s<1.However
in the definition of wavelet transform , the scaling term is

[p--difference in momentum of particle or signal
h ---plank’s constant



used in the denominator and therefore, the opposite of thierefore, computation of the transform for a limited
above statements holds, i.e scats ldilates the signal interval of scales is usually adequate. In this study, some

whereass <1 compresses the signals. finite interval values ofs' are used.
For convenience, the procedure will be started from scale
IILWAVELET BASICS s=1and will continue for the increasing values ‘&,
i.e.,, the analysis will start from high frequencies and
The discrete wavelet transform (DWT) proceed towards low frequencies. This first value of s will
DWT(m,n) = 2™™2 Z S(KW (27K = n) === (8) correspond to the most compressed wavelet. As time the

value of's'increased, the wavelet will dilate.

Where the discrete Wavglet//(k) can_ be .but not The wavelet is placed at the beginning of the signal at the
necessarily,a sampled version of a continuous counterparlgoim which correspond to time =0. The wavelet

That is, it is possible thap (k) may not have a continuous  fnction at scale'l"is multiplied by the signal and then
time version. Wheny (K) is a discretization of g(t),the integrated over all times. The result of the integrated is
DWTis identical to th®TWT (Discrete time wavelet then multiplied by the constant numbel/+/s.This

transform). multiplication is for energy normalization purposes so
DTWT(m,n) :a(;m/ZZs(k)l,U(agmk—nro) —————— (9) that the transform signal will have the same energy at
every scale .The final result is the value of the

N.THE WAVELET SYNTHESIS transformation, i.e., the value of the continuous wavelet
transform at time zero and scade=1. In other words, it
The continuous wavelet transform is reversible ,if is the value that corresponds to the paint 0,s=1in

equation (11) is satisfied , even though the basis functionstime-scale plane.
are in general may not be orthonormal. Fortunately this is The wavelet at scalg =1is then shifted towards the right
very non-restrictive requirement. The reconstruction is by T amount to the locatioh =7, and the above equation

possible by using the following reconstruction formula: is computed to get the transform valué atr , s = 1in the
1 time-frequency plane. This procedure is repeated until the
— 2 7] —V/'QAQAdrAcm
X(t) _1/ Cx J;"UX (T’S)?w{(t r)/shdrds (10) wavelet reaches the end of the signal. One row of points

Wherey is a constant that depends on the wavelet used. O the time-scale plane for scade= is now completed.
The success of the reconstrution depend upon this constarfthen, 's'is increased by a small value. Note that, this is a
called,the admissibility constant,to satisfy the following continuous transform, and therefore, bath and's' must

admissibility condition : be incremented continuously. However, if this transform
c =2 2 df <00  ceeeeeeee 11 needs to be computed by a computer, then both parameters
v I—oow ()T /18]de < e (11) are increased by a sufficiently small step size. This

Wherey | ()| at (x) is the FT ofg(t) . Equation (11) corresponds to sampling the time-scale plane.

implies that | (£) | at x(0) = 0, V. PROBLEM DEFINITION

which is J'l,U(t)dt S (12) Consider an observed signal modeled as

As stated above, equation(12) is not a very restrictiveb =L, + N--------e-- (13)

requirement since many wavelet functions can be foungvheren is a random, zero mean , signal dependent noise,
whose integral is zero. For equation (12) to be satisfiedy,q s a liner operator defining the distortion. Let the

,the wavelet must be oscillatory. ; ) . .
y distorted signal be described in an orthogonal transform

IV.COMPUTATION OF THE CWT domain as
B, =A.a, +V, ------- (14)

The computation oCWT starts with the choice of mother where A, are representation coefficients of the linear
wavelet is chosen to serve as a prototype for all windows : .
. . %peratorLa in the transform domain , ang are zero
in the process. Once the mother wavelet is chosen th o o _
computation starts witts =1 and the continuous wavelet Mean spectral coefficients of the realization of the noise
transform is computed for all values sf<> 1,i.e. smaller ~ INtérference , and'r'is the spectral component index.
and larger thati" . However, depending upon the signal, aTrans_form domain filtering basically consists of the
complete transform is usually not necessary. For aIfOHOWIng three steps :
practical purposes, the signals are band-limited, and
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1). Computing spectral coefficienfs = Tb of the spectral densit)fvr|2is known . If noise is assumed to be
observed image fragmebt within a window over the

e 2.

chosen orthogonal transforin. white’, |V, |*is a constant .

2). Multiplication of the obtained spectral coefficients by  This filter can also further simplified to its ‘binary’

the filter coefficients §,} given by implementation called as ‘rejective filter’ and is given by

ar :r]rBr __________ (15) r]r :l/Ar, |B,|22thr and Ar z 0.

3). Inverse transformatiof *of the output signal =0, otherwise = = cemmeeeeee (19)

spectral coefficienl}(s?n}, i.e. hard thresholding implementation where filter

where subscriptsr'are corresponding indices in the coefficient we defined in equation (19) wth =1. In this

transform domain. filter using soft thresholding, those signal spectral
components that do not exceed by magnitude, a certain

VI.WAVELET DENOISING thresholds are zeroed and therefore removed from the

signal .

The idea of shrinkage of transform coefficient that are

lower ( in magnitude) than a certain threshold recently VII.RESULT

reappeared and obtained popularity in the form of wavelet

shrinkage . We have obtained the desired success working with

Wavelet transform has the locality , multi-resolution anddifferent with varying noise concentration. We have
compression properties which make it a popular analysishown the results of moon and Saturn image for
tool for several signal processing applications. lItjustification of our algorithm.

compresses a signal into a very small number of large

coefficients . Given a signal corrupted with large wavelet

coefficients whereas noise is distributed across sma
introduced earlier , wher& is now a wavelet transform . 200 200 200

Although wavelet de-noising operates on the overall 100 100 100

image rather than on a sliding window , localization M J\\
property of wavelet transform makes it possible t0 qanademaionso 00 o 0 o 10
consider local behavior of the data . The wavelet

wavelet coefficients.

Wavelet de-noising operates in the same three steg
transform domain filtering is performed either by soft
thresholding where the filter coefficients are

correlation ¢

N, =max[0,(|B,[-thr) /|B,[l = - (16) 4000 4000
and the filter can be realized in the form given by zero- 2000 /L 2000 k
0 0 :

order estimation method as

AVsy$,[* O|B,|*
Avsigh, e, | 00,8, - [?) ~— (17)

from which the following filter realization for signal de-
noising is formed as

n, = max[0,<|/3,|2 —|v,|2>/(}\, |,/3,|2)J, for A, #0,
=0, otherwise ----------- (18)

Where AVsys andAVsig denote averaging over

realizations of signaling system sensor noise  and
unknown parameters of the signals respectively and the
value of 'thr' i.e. threshold is associated with the variance
of the additive noise. It is assumed here that the noise

0 5 10
power spectral density

orignal image  Gaussian noise cormupted image  filtered image




VIII.CONCLUSION IX.REFERENCES

[1] R. Oktem, L.Yaroslavsky, K. Egiazarian, and J. astola, *

Local transform domain de-noising and wavelet de'Transform domain approaches for image denoising, ” Ph.D.

noising are reviewed and their performance is testeghesis 2000.

over different images . We have introduced a[2]. D. L. Donoho and J. M. Johnstone, “ Ideal spatial
correlation-dependent model for thresholding noisyAdaptation by wavelet shrinkage ,” Biometrica,vol.81, no.3, pp.
coefficients of non-orthogonal wavelet transforms .43%5'é5i15§§-math V. Lang. H. Guo and J.E. Odeqard. *
This model is ba;ed on the correlation structure of th nhancementpof dec,:ompressge,d images at low bit rate,g Pr(;c. Of
transform and includes a scale-wavelet dependenfe spiE vol.2303, pp.360-377, 1994.

threshold that reduces to the famous uniform4]N. Weyrich and G.T.Warhola, “ Wavelet shrinkage and

; Generalized cross validation for image denoising ” IEEE Trans.
threshold (\/ﬁlog N) in the case of an _Orthog_or_]al On Image Processing ,vol..7, no.1, pp.88-90,1998.
wavelet transform . The threshold is explicitly [5]. G.p.Nason, * Wavelet Regression by cross-validation,”

calculated for biorthogonal and translation invariantTechnical Report 47,Department of statistics, Stanford
wavelet systems . We compared denoising results fd¢niversity,1994.

hard and soft thresholding techniques using the new[6] R. Oktem, L.Yaroslavsky, and K.Egiazarian, “ Signal and
Image De-Noising in Transform Domain and Wavelet

thresholding scheme . | Shrinkage : A Comparative Study’, Proc. Of EUSIPCO’ 98
Using hard-thresholding the new correlation model clearlysignal processing Theories and Applications, Vol..IV, pp. 2269-
outperforms the uniform model since outliers , that occur272, September 8-11, 1998, Island of RhodesGy.

in the latter case, vanishes . When applying soft{7] K. Egiazarian, and J. astola, “New Algorithm for Removing
thresholding a more global smoothness of the estimate isf Mixed( White and Impulsive ) Noise from Images”, Proc. Of
achieved and small oscillations , that disturb the globathe SPIE, Vol. 3646, pp 78-89, 1999. _ _
smoothness after soft-thresholding with the uniform[8] H.Oktem, K.Egiazarian, and V. Katkovnik, “Adaptively
threshold , are removed. Denoising of Images by Locally switching wavelet
*D.S.BORMANE:-working as head of Electronics and I;%gsforms”, Proc. OF ICIP, 99 Kobe, Japan, October 24-28,
Telecommunication Engineering at S T B college Of '

Enai . Tul Al Ki R h schol [9] E. Abreau, M. Lightstone, and S.K.Mitra, “ A new efficient
ngineering, 1ufjapur. AISO working as kesearch schoiar approach for the removal of impulsive noise from highly

at SRT Marathwada university, Nanded (India). corrupted images,” Vol.5, No.6,June 1996, IEEE.
** Dr.T.R.Sontakke :-Working as Principal at SGGS

college of Engineering and Technology, Nanded (India).



