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ABSTRACT  :We describe a novel method of removing 
additive noise of known variance from images . The 
method is based on a characterization of statistical 
properties of natural images represented in a complex 
wavelet decomposition . Specifically , we decompose the 
noisy image into wavelet sub bands , estimate the 
correlation of both the nose-free raw coefficients and their 
magnitudes within each sub band , impose these  statistics 
by projecting onto the space of images having the desired 
correlations , and reconstruct an image from the modified 
wavelet coefficients . This process is applied  repeatedly , 
and can be accelerated to produce optimal results in only a 
few iterations . De-noising results compare favorably to 
three- point formulae . 
The proposed filter has shown extremely good 
performance in intelligence preservation and noise 
suppression while eliminating noise .Moreover this filter 
has shown excellent results with training data and highly 
corrupted noisy images. 
 
Keywords:-de-noising, thresholding , rejective-filter, 
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I.WAVELET T RANSFORM  
 
Wavelet transform is being used to represent a time and 
frequency varying signal in the appropriate reference 
frame  conforming with Heisenberg`s uncertainty 
principle.  A signal or an image which is varying in time 
and frequency simultaneously cannot be represented 
solely as a function of time (Fourier transform) or a 
function of frequency (laplace transform). 
What is needed is a transform that can cater to both time 
and frequency variations at the same time with good 
resolution. The inhibition was primarily dealt by 
Heisenberg in a totally different perspective by 
formulating the well known uncertainty principle. 

π4hpx ≥∇∗∇ ------ (1) 
where; 
 x∇ --difference in position of particle or signal 
 p∇ --difference in momentum of particle or signal 

  h  ---plank’s constant 

This leads us to an implicit function of time interval ,                
),( ftFA =     -------(2)    

Where, →t time, →f frequency 
The continuous wavelet transform is given by 

( )∫ −= dtattsauCWT )/)(()(1),( τψτ -----(3) 

Where, )(tψ  is the basic wavelet  or mother wavelet and 

( ) aat /)( τψ −  is wavelet basis function called baby 
wavelet. The term wavelet means a  small wave .The 
smallness refers to the condition that this (window) 
function is of finite length (compactly supported). The 
wave refers to the condition that this function is 
oscillatory. The term mother implies that the functions 
with different region of support that are used in the 
transformation process are derived from one main 
function , or the mother wavelet . In other words, the 
mother wavelet is a prototype for generating the other 
window functions.  
The various  wavelet function prototypes are given as 
below : 
1)Modulated Gaussian (Morlet)  

  22

)( tjwt eet −=ψ    -------------(4)          
2.Second derivative of a Gaussian 

   22 2

)1()( tett −−=ψ     -------------(5) 
3.Haar 
                 1,   0 � W � ½  
  =)(tψ   -1,    ½ � W � �    -------------(6) 
                0,    otherwise 
4.Shannon 
  )2/3))(cos2//()2/(sin()( tttt πππψ =   ----------(7) 
The term translation is related to the location of window, 
as the window is shifted through the signal. This term 
corresponds to time information in transform domain. 
Scaling as a mathematical operation , either dilates or 
compresses the signal. In terms of mathematical functions, 
if )(tf is a given function )(stf corresponds to a 

contracted signal (compressed) version of f(t) if 1 s and 
to an expanded (dilated) version of )(tf if 1%s .However 
in the definition of wavelet transform , the scaling term is 
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used in the denominator and therefore, the opposite of the 
above statements holds, i.e scales 1 s dilates the signal 
whereas 1%s  compresses the signals. 
  

II.WAVELET BASICS  
 

The discrete wavelet transform (DWT)  

)2()(2),( 2 nkksnmDWT mm −= −− ∑ ψ --------( 8 ) 

Where the discrete wavelet )(kψ  can be ,but not 
necessarily,a sampled version of a continuous counterpart.  
That is, it is possible that )(kψ may not have a continuous 

time version. When )(kψ is a discretization  of a )(tψ ,the 

DWT is identical to theDTWT (Discrete time wavelet 
transform).  

∑ −= −− )()(),( 00
2

0 τψ nkaksanmDTWT mm ------( 9 ) 

 
III.THE WAVELET SYNTHESIS  

 
The continuous wavelet transform is reversible ,if 
equation (11) is satisfied , even though the basis functions 
are in general may not be orthonormal. Fortunately this is 
very non-restrictive requirement. The reconstruction is 
possible by using the following reconstruction formula: 

dsdst
s

sctX
s xx ττψτψ ψ }){(

1
),(1)(

2
2 −= ∫ -------(10) 

Where Ψ is a constant that depends on the wavelet used. 
The success of the reconstrution depend upon this constant 
called,the admissibility constant,to satisfy the following 
admissibility condition :  

   ∞= ∫ ∞−
%ξξξψπψ dc ||/|)(|2 2      ----------( 11 )   

Where |)(| ξψ  at )( ix  is the FT of )(tψ . Equation (11)  

implies that |)(| ξψ  at 0)0( =x , 
 

which is       0)( =∫ dttψ -----------(12) 

As stated above, equation(12) is not a very restrictive 
requirement since many wavelet functions can be found  
whose integral is zero. For equation (12) to be satisfied 
,the wavelet must be oscillatory.    
 

IV.COMPUTATION OF THE CWT 
 
The computation of CWTstarts with the choice of mother 
wavelet is chosen to serve as a prototype for all windows 
in the process. Once the mother wavelet is chosen the 
computation starts with 1=s  and the continuous wavelet 
transform is computed for all values of 1% s ,i.e. smaller 
and larger than"1" . However, depending upon the signal, a 
complete transform is usually not necessary. For all 
practical purposes, the signals are band-limited, and 

therefore, computation of the transform for a limited 
interval of scales is usually adequate. In this study, some 
finite interval  values of ''s  are used. 
For convenience, the procedure will be started from scale 

1=s and will continue for the increasing values of ''s , 
i.e., the analysis will start from high frequencies and 
proceed towards low frequencies. This first value of s will 
correspond to the  most  compressed wavelet. As time the 
value of ''s increased, the wavelet will dilate. 
The wavelet is placed at the beginning of the signal at the 
point which correspond to time 0=t . The wavelet 
function at scale "1" is multiplied by the signal and then 
integrated over all times. The result of the integrated is 

then multiplied by the constant number s1 .This 
multiplication is for energy normalization  purposes so 
that the transform signal will have the same energy at 
every scale .The final result is the value of the 
transformation, i.e., the value of the continuous wavelet 
transform at time zero and scale 1=s . In other words, it 
is the value that corresponds to the point 0=τ , 1=s in 
time-scale plane.    
The wavelet at scale 1=s is then shifted towards the right 
by τ amount to the location τ=t , and the above equation 
is computed to get the transform value atτ=t , 1=s in the 
time-frequency plane. This procedure is repeated until the 
wavelet reaches the end of the signal. One row of points 
on the time-scale plane for scale 1=s is now completed. 
Then, ''s is increased by a small value. Note that, this is a 
continuous transform, and therefore, both τ   and ''s must 
be incremented continuously. However, if this transform 
needs to be computed by a computer, then both parameters 
are increased by a sufficiently small step size. This 
corresponds to sampling the time-scale plane.      
 

V. PROBLEM DEFINITION 
 

Consider an observed signal modeled as  
 nLb a += ------------(13 ) 

where n  is a random, zero mean , signal dependent noise, 
and aL  is a liner operator defining the distortion. Let the 

distorted signal be described in an orthogonal transform 
domain as 
 rrr v+= ηαλβ --------(14 ) 

where rλ  are representation coefficients of the linear 

operator aL in the transform domain , and rv are zero 

mean spectral coefficients of the realization of the noise 
interference , and   ''r is the spectral component index. 
Transform domain filtering basically consists of the 
following three steps : 
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1). Computing spectral coefficients Tb=β  of the 

observed image fragment b  within a window over the  
chosen orthogonal transform T . 
2). Multiplication of the obtained spectral coefficients by 
the filter coefficients {ηr} given by 

rrr βηα =     ----------( 15 ) 

3). Inverse transformation 1−T of the output  signal 
spectral coefficients{ }ηα ,  

where subscripts ''r are corresponding indices in the 
transform domain.    
 

VI.WAVELET DENOISING  
 
The idea of shrinkage of transform coefficient  that are 
lower ( in magnitude) than a certain threshold recently 
reappeared and obtained popularity in the form of wavelet 
shrinkage . 
Wavelet transform  has the locality , multi-resolution and 
compression properties which make it a popular analysis 
tool for several signal processing applications. It 
compresses a signal into a very small number of large 
coefficients . Given a signal corrupted with large wavelet 
coefficients whereas noise is distributed across small 
wavelet coefficients. 
Wavelet de-noising operates in the same three steps 
introduced earlier , where T is now a wavelet transform . 
Although wavelet de-noising operates on the overall 
image rather than on a sliding window , localization 
property of  wavelet transform makes it possible to 
consider local behavior of the data . The  wavelet 
transform  domain filtering is performed either by soft 
thresholding where the filter coefficients are  

 ])(,0max[ nnx thr ββη −=     ----------( 16 ) 

and the filter can be realized in the form given by zero-
order estimation method as 

22

nrAVsys ββ ≅   

( )2222
,0 rrrr vAVsig −≅ βαλ   ---------(17 ) 

from which the following filter realization   for signal de-
noising is formed as 

[ ])(,0max
222

rrrrx v βλβη −= , for .0≠rλ  

      ,0=    otherwise -----------(18 ) 

Where AVsys andAVsig denote averaging over 
realizations of signaling system sensor noise  and 
unknown parameters  of the signals respectively and the 
value of ''thr  i.e. threshold is associated with the variance 
of the additive noise. It is assumed here that the noise  

spectral density 
2

rv is known . If noise is assumed to be 

‘white’, 
2

rv is a constant . 

This filter can also further simplified to its ‘binary’ 
implementation called as ‘rejective filter’ and is given by 

rr λη 1= ,      thrr ≥2β  and  .0≠rλ  

      0= ,            otherwise                -----------(19 )     
i.e. hard thresholding implementation where filter 
coefficient we defined in equation (19) with 1=rλ . In this 
filter using soft thresholding, those signal spectral 
components that do not exceed by magnitude, a certain 
thresholds are zeroed and  therefore removed from the 
signal .   
 

VII.RESULT  
 
We have obtained the desired success working with 
different with varying noise concentration. We have 
shown the results of moon and Saturn image for 
justification of our algorithm. 
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VIII.CONCLUSION 
 
Local transform domain de-noising and wavelet de-
noising are reviewed and their performance is tested 
over different images . We have introduced a 
correlation-dependent model for thresholding noisy 
coefficients of non-orthogonal wavelet transforms . 
This model is based on the correlation structure of the  
transform and includes a scale-wavelet dependent 
threshold  that reduces to the famous uniform 

threshold ( )Nlog2  in the case of an orthogonal 
wavelet transform . The threshold is explicitly 
calculated for biorthogonal and translation invariant 
wavelet systems . We compared denoising results for 
hard and soft thresholding techniques using the new 
thresholding scheme . 
Using hard-thresholding the new correlation model clearly 
outperforms the uniform model since outliers , that occur 
in the latter case, vanishes . When applying  soft-
thresholding a more global smoothness of the estimate is 
achieved and small oscillations , that disturb the global 
smoothness after soft-thresholding with the uniform 
threshold , are removed.  
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