
A New Proof for the Sequential Access Theorem for Splay Trees

Amr Elmasry
Computer Science Department

Rutgers University
New Brunswick, NJ 08903

USA

Abstract: We give a new, simple proof for the sequential access theorem for splay trees. For
an n-node splay tree, our bound on the number of rotations is 4.5n, with a smaller constant
than the bound of 10.8n concluded by Tarjan. Our proof provides additional insights into the
workings of splay trees.

Key-words: Algorithms - Data structures - Splay trees - Amortized analysis - Combinatorial
problems - Self-adjusting structures.

1



1 Introduction

A binary search tree is a binary tree whose
nodes contain items in symmetric order. In
other words, for any node, x, all the items in
the left sub-tree of x are less or equal to the
item in x, and all the items in the right sub-
tree of x are greater. A splay tree [1] is a self-
adjusting binary search tree, which supports a
restructuring operation of the tree called splay.
The splay operation consists of a sequence of
rotations of edges. A rotation of an edge main-
tains the symmetric property of the tree. When
any node of the tree is accessed, a splay is per-
formed at this node. Let p(x) be the parent of
x. A splay at x repeats the following step until
x becomes the root of the tree.

Zig case. If p(x) is the root: Make x the new
root by rotating the edge joing x and p(x).

Zig-zig case. If x and p(x) are both left chil-
dren or right children: Rotate the edge
joining p(x) to its parent, and then ro-
tate the edge joining x to p(x).

Zig-zag case. If x is a left child and p(x) is
a right child or vice versa: Rotate the
edge joining x to p(x), and then rotate
the edge joining x to its new parent.

We give a new proof for the sequential ac-
cess theorem, bounding the number of rota-
tions with at most 4.5n. The sequential access
theorem states that the number of rotations re-
quired to access each of the n nodes of an ar-
bitrary initial splay tree once, in symmetric or-
der, is linear. Tarjan [3] proved that the bound
for the number of rotations is 10.8n. Sundar
[2] gave an easier proof that uses a potential
function technique. His bound for the number
of rotations is 15n.

Tarjan conjectured that a sequence of k deque
operations on an arbitrary n-node splay tree
takes O(n + k) rotations. He proved a special
case of this conjecture [3] for output restricted

deques. Sundar [2] gave an inverse Ackerman
upper bound. Applying our proof reduces the
constant involved in Tarjan’s proof. More in-
teresting is to try to extend our proof to prove
the deque conjecture.

2 The proof

In a binary tree, the left spine of a sub-tree is
defined to be the path from the root of this sub-
tree to its leftmost leaf. In other words, every
node on the path is the left child of its prede-
cessor. The right spine is defined analogously.

We may think about the sequential access
theorem for splay trees as repeated splaying on
the leftmost leaf of the right sub-tree of the
root. As a result of a splaying operation on
such node, this node becomes the root of the
tree and the old root becomes the root of the
left sub-tree. Hence, we may ignore the left
sub-tree (which is always a path) entirely and
only keep track of the right sub-tree. We call
the left spine of the right sub-tree of the root,
the splaying spine.

Before a splay operation, name the nodes
on the splaying spine, xi, such that xi is the
left child of xi+1, for all i starting from 0. As
a result of a splaying operation performed on
x0, the following restructuring takes place. The
node x0 becomes the root of the tree, leaving,
on the splaying spine, its right child and the
nodes on the left spine of this right child’s sub-
tree. For every even value of i, xi is linked to
xi−1 as its right child, and the right sub-tree of
xi−1 becomes the left sub-tree of xi.

For the purpose of the proof, we use a color-
ing scheme to distinguish some nodes from oth-
ers. The following coloring rules are applied:

• Initially, all the nodes are uncolored.

• When an uncolored node becomes a node
on the splaying spine, it is colored yellow.

• When a yellow node is linked to another
node, this yellow node is colored red.

2



• When a red node becomes a node on the
splaying spine, this node and all the red
descendents of its right child are colored
green.

• When a green node is linked to a yellow
node, the yellow node is colored green.

• All the nodes on the right spine of the tree
are colored black, overriding the above
coloring rules.

The splay operations are numbered, start-
ing from 1. We assume that the splay operation
number t takes place at time t. Consider any
node x in the tree. Let gx(t) be the number of
the colored nodes on the right spine of x, after
the splay operation t. Let hx(t) be the number
of the colored nodes on the right spine of the
left child of x, after the same splay operation.
If x does not have a left child, then hx(t) is
equal to 0. Before any splay operation, gx(0)
and hx(0) are defined. Define vx(t) to be equal
to gx(t)− hx(t).

Consider any node w and its left child z,
such that w is linked to z during the splay op-
eration t + 1, for any t ≥ 0. The following
relations hold:

hw(t) = gz(t) (1)

gw(t+ 1) = gw(t) (2)

hw(t+ 1) = hw(t)− 1 (3)

gz(t+ 1) = gw(t) + 1 (4)

hz(t+ 1) ≤ hz(t) + 1 (5)

The following lemma follows

Lemma 1
1. For any non-black node x, vx(t) ≥ 0, and
vx(t+ 1) ≥ vx(t).

2. If, at time t, x is red or green, then vx(t) >
0.
3. If, at time t, w is not black, and is linked to
z at time t + 1, then vw(t+ 1) > vw(t). If, at
time t, w is green, then vz(t+ 1) > vz(t).

Proof. We prove the lemma by induction on
time. For any node, x, the base case follows
from the fact that vx(0) = 0. Using the induc-
tion hypothesis for node w at time t, assuming
that w is not black, then vw(t) ≥ 0. Using (2)
and (3), then vw(t+ 1) > vw(t), which implies
vw(t+ 1) > 0. Since w becomes red after this
link, the hypothesis is true for the node w at
time t+1. The relation vw(t) ≥ 0 together with
(1) and (4) implies gz(t + 1) ≥ gz(t) + 1. Us-
ing the latter relation and (5), then vz(t+ 1) ≥
vz(t), and the hypothesis is true for node z at
time t+ 1. If w was green at time t, then the
induction hypothesis becomes vw(t) > 0. The
same calculations imply vz(t+ 1) > vz(t). The
hypothesis is then true for all the non-black
nodes throughout the algorithm. 2

We use the accounting method for bound-
ing the number of rotations. When a node is
colored yellow, it is given one credit for a total
of n credits. Other than the links that involve
black nodes, there are four possible types of
links: yellow-to-yellow, yellow-to-green, green-
to-yellow and green-to-green. For the first three
types, the color of a yellow node changes. We
use the credit on this node to pay for the link.
Using Lemma 1, for any green node, z, vz(t) >
0. If a green node is linked to z while vz(t) = 1,
we call this link a green-to-green A-link. Us-
ing Lemma 1, any node may gain at most one
child by a green-to-green A-link. Hence, the
number of rotations accompanying these links
is at most n. If vz(t) ≥ 2, the link is called
a green-to-green B-link. We keep the invariant
that, after the splay operation t, there are h2

x(t)
2

credits on any green node, x. Next, we show
that these credits are enough to pay for all the

3



green-to-green B-links, while maintaining the
invariant. Assume that w is linked to z by a
green-to-green B-link. Let d be the difference
between the sum of the number of credits on w
and z before the splay operation t+1 and those
needed after the splay operation t+ 1. Then

d =
h2
z(t)
2

+
h2
w(t)
2
− h2

z(t+ 1)
2

− h2
w(t+ 1)

2
.

Using (3) and (5), then

d ≥ hw(t)− hz(t)− 1.

Using (1) together with the fact that for all the
green-to-green B-links vz(t) ≥ 2, then d ≥ 1.
This extra credit is used to pay for the link of
w to z.

To keep the invariant hold, when a red node
becomes a node on the splaying spine at time
t, this red node and all the red descendents of
its right child are colored green and are given
credits. Precisely, a credit of h2

x(t)
2 is given to

every red node, x, of this sub-tree. These extra
credits are enough to keep the invariant hold
for all the green nodes. The following lemmas
bound the total number of such credits.

Lemma 2 For any m-node sub-tree τ at time
t, there are at most m

2i+1 red nodes whose h(t)
equals i.

Proof. An equivalent statement to the lemma
would be: Except for the right spine of τ , there
are at most m

2i+1 red nodes whose g(t) equals i.
The prove is by backward induction on i. For
the base case, we show that, except for the right
spine of τ , there is no red node whose g(t) is
greater or equal to logm. Assume that such
a node exists, and call it x. This means that
the, at least, logm nodes on the right spine of x
must have been nodes on the splaying spine, for
at least logm splaying steps. For each of these
steps, the number of the nodes on the splay-
ing spine should have been halved. This means
that x must be on the right spine of τ , which is

a contradiction. It also follows that, except for
the right spine of τ , there is at most one red
node whose g(t) equals logm−1. Using the in-
duction hypothesis, there are at most m

2i+1 red
nodes, not on the right spine of τ , whose g(t)
equals i. Consider any of these nodes, and call
it y. The value of g(t) for the right child of y is
i− 1. Using Lemma 1, the value of g(t) for the
left child of y is at most i−1. Therefore, every
node, y, may have at most two red descendents
whose g(t) equals i − 1. Using Lemma 1, the
red nodes whose g(t) equals i − 1 must be de-
scendents of the red nodes whose g(t) equals i.
Therefore, the total number of the red nodes,
not on the right spine of τ , whose g(t) equals
i−1 is at most n

2i
. The hypothesis is true, and

the lemma follows. 2

Lemma 3 The total number of credits given
to the red nodes to cover the green-to-green B-
links is less than 1.5n.

Proof. Let C be the total number of such
credits. Using Lemma 2, and taking the sum-
mation over all the credited nodes, then

C =
∑
x

h2
x

2
,

≤
logn−1∑
i=1

n

2i+1

i2

2
,

< 1.5n.

2

When the number of nodes on the splaying
spine is even, the root of the splaying spine is
not linked to another node. The relations de-
fined earlier may not hold for this node. For-
tunately, this node is colored black. The black
nodes are involved in at most one rotation per
splay operation. This costs at most n extra
rotations.

The sequential access theorem follows by
adding the following bounds: The n credits on

4



the yellow nodes, the n rotations accompany-
ing the green-to-green A-links, the 1.5n credits
accompanying the green-to-green B-links, and
the n rotations that involve black nodes.

References:
[1] D. Sleator and R. Tarjan, Self-adjusting
binary search trees, J. ACM, 32(3), 1985, pp.
652-686.
[2] R. Sundar, On the deque conjecture for the
splay algorithm, Combinatorica, 12, 1992, pp.
95-124.
[3] R. Tarjan, Sequential access in splay trees
takes linear time, Combinatorica, 5, 1985, pp.
367-378.

5


