CONSTRUCTION OF α-VALUATIONS OF SPECIAL CLASSES OF 2-REGULAR GRAPHS

Kourosh Eshghi Department of Industrial Engineering Sharif University of Technology Iran Michael W. Carter Department of Industrial Engineering University of Toronto Canada

This work is dedicated to the memory of Jaromir Abrham, a true gentleman, a scholar, and the inspiration for this work.

In this paper, we show that every 2-regular graph with three components of the form $2C_{4p} \cup C_{4m}$ has an α -labeling, except for the case p = m = 1. Furthermore, we present some general results for graphs composed of the disjoint union of cycles. The results considerably enlarge the class of 2-regular graphs known to have α -valuations.

Key-Words: Graph Labeling, α-valuation

1. BASIC DEFINITIONS

This paper is closely related to a companion paper by Eshghi, Carter & Abrham [3] where we show that all 2-regular graphs with three components of the form $C_{4a} \cup C_{4b} \cup C_{4c}$ have an α -labeling. Additional constructions are presented in Eshghi [4].

Let G = (V, E) be a graph with m = |V| vertices and n = |E| edges. By the term graph, we mean an undirected finite graph without loops or multiple edges.

A graceful labeling (or **b**-valuation) of a graph G = (V, E) is a one-to-one mapping Ψ of the vertex set V(G) into the set $\{0, 1, 2, ..., n\}$ with this property: If we define, for any edge $e = \{u, v\} \in E(G)$, the value $\Psi^{\bullet}(e) = |\Psi(u)-\Psi(v)|$ then Ψ^{\bullet} is a one-to-one mapping of the set E(G) onto the set $\{1, 2, ..., n\}$.

A graph is called graceful if it has a graceful labeling. An *a*-labeling (or *a*-valuation) of a graph G = (V, E) is a graceful labeling of G which satisfies the following additional condition: There

exists a number $\gamma \ (0 \leq \gamma \leq \left| \ E(G) \right|)$ such that, for any edge e

 $\in E(G)$ with end vertices $u, v \in V(G)$, min $[\Psi(u), \Psi(v)] \le \gamma < \max [\Psi(u), \Psi(v)]$.

The concept of a graceful valuation and of an α -valuation were introduced by Rosa [8]. Rosa proved that, if G is graceful and if all vertices of G are of even degree, then $|E(G)| \equiv 0$ or 3 (mod 4). This implies that if G has an α -valuation and if all vertices of G are of even degree, then $|E(G)| \equiv 0$ (mod 4) (G is bipartite). In [8] it is also shown that these conditions are also sufficient if G is a cycle. The symbol C_m will denote a cycle on m vertices. Abrham and Kotzig [2] proved that Rosa's condition is also sufficient for 2-regular graphs with two components.

A snake is a tree with exactly two vertices of degree 1. In [8], it was proved that every snake has an α -valuation. A snake with n edges will be denoted by P_n .

A detailed history of the graph labeling problem and related results appears in Gallian [5, 6]. One of the

results of Abrham and Kotzig should be mentioned here: If G is a 2-regular graph on n vertices and n edges which has a graceful valuation Ψ then there exists exactly one number x (0 < x < n) such that $\Psi(v) \neq x$ for all $v \in V(G)$; this number x is referred to as the missing value of the graceful graph [2].

All parameters in this paper are positive integers. A sequence of numbers in parentheses or square brackets indicates the values of vertices of a graph or subgraph under consideration according to whether it is a snake or cycle respectively.

2. Transformations of Labeling of a Graph

The transformations presented below are used extensively in this paper.

Lemma 1: (Abrham & Kotzig [1]) Let r be a nonnegative integer and let s be an odd integer, $s = 2k+1 \exists 2r+1$. Then P_s has an α -valuation P with endpoints labelled w and z that satisfies the conditions z -w = k+1 and w = r. (w.l.o.g., we assume that w < z.)

Transformation 1: Given any $0 \le w \le k$ and k+1 # z # 2k+1, and z - w = k+1, we can always construct an α -valuation for a snake P_{2k+1} with edge labels 1 through 2k+1 and endpoints w and z, with (= k. i.e., the snake is bipartite. Since w = r, z = k+r+1.

Figure 1: Arrangement of vertex labels of snake P_{2k+1} according to lemma 1

Suppose we now add n to the top half, and add m-(k+1) to the bottom half for any positive integers m and n where m > n+k:

Figure 2: Arrangement of vertex labels in transformation 1

Then the edge labels will all increase by precisely m-(k+1)-n. The transformation produces the edge labels from [m-k-n] through [m+k-n].

Lemma 2: (Abrham & Kotzig [1]) Let r be a nonnegative integer and let s be an even integer, s = 2k $\exists 4r+2$. Then P_s has an α -valuation P with endpoints labelled w and z that satisfies the conditions z + w =k and w = r. (w.l.o.g., we assume that w < z.)

Transformation 2: Given any 0 # w < (k/2) < z # k and w + z = k we can always construct an α -valuation for a snake P_{2k} with endpoints w and z, with (= k. i.e., the snake is bipartite. Since w = r, z = k-r, and r < k/2.

0	1	2	•••	w⊐r	•••	k⁄2	•••	z≠k⊣	r	k-1	k
0	0	0		0		0		0		0	0
		0	0						0	0	
		2k	2 k-1	L		•••			k+2	k+1	

Figure 3: Arrangement of vertex labels of snake P_{2k} according to lemma 2

Suppose we now add n to the top half, and add m-(k+1) to the bottom half for any positive integers m and n where m > n+k:

n	n+1	n+2		n+w	n+k/2	n+z		n+k-1	n+k
0	0	0		0	0	0		0	0
	0		0				0	0	
	m+k-	-1 1	m+k−2				m+1	m	

Figure 4: Arrangement of vertex labels in transformation 2

Then the edge labels will all increase by precisely m-(k+1)-n. The transformation produces the edge labels from [m-k-n] through [m+k-1-n].

Transformation 3: This transformation is derived similar to transformation 2. Given any α -valuation P of a graph on s edges, the *complementary valuation* is defined by substituting the labels of P(v) with s -P(v). The new valuation is again graceful. If we apply this transformation to the snake P_{2k} in transformation 2, we get:

Given any $2k \exists w \exists (3k/2) \exists z \exists k and w + z = 3k$, we can always construct an α -valuation for a snake P_{2k} with edge labels 1 through 2k and endpoints w and z, with (= k. i.e., the snake is bipartite. Since w = 2k-r, z = k+r, and 0 # r < k/2. (In the complement, w > z.)

Figure 5: Arrangement of vertex labels of snake P_{2k} used in transformation 3

Suppose we add n to the top half, and add m-k to the bottom half for any positive integers m and n where m > n+k-1:

Figure 6: Arrangement of vertex labels in transformation 3

Then the edge labels will all increase by precisely m-k-n. The transformation produces the edge labels from [m-k-n-1] through [m+k-n].

3. The Construction of an $\alpha\mbox{-valuation}$ of the graph $2C_{4p}\cup C_{4m}$

Theorem 1: The graph $2C_{4p} \cup C_{4m}$ has an α -valuation for all m, $p \ge 1$ with the exception of p = m = 1.

Proof: Since in [1] it was proved that if p, $q \ge 1$ and $p + q \le m$ then the graph $C_{4p} \cup C_{4q} \cup C_{4m}$ has an α -valuation, we only need to consider the case m < 2p in this theorem. We also know that $3C_4$ does not have an α -valuation [7]. Now we will organize the following cases, covering different special cases of this theorem, and prove each of them separately:

3.1 Case 1: p+2 < m < 2p

The vertices of the first C_{4p} will be successively labeled as follows: [0, 8p+4m, 1, 8p+4m-1, 2, 8p+4m-2, ..., p-1, 7p+4m+1, p+1, 7p+4m, ..., 2p-1, 6p+4m+2, 2p, 6p+4m+1]. The resulting edge values of the first C_{4p} are then 8p+4m, 8p+4m-1, 8p+4m-2, ..., 6p+4m+2, 6p+4m, ..., 4p+4m+2, 4p+4m+1 and 6p+4m+1.

The vertices of the second C_{4p} will be consecutively labeled by the numbers [2p+2m, 6p+2m, 2p+2m+1, 6p+2m-1, 2p+2m+2, 6p+2m-2, ..., 3p+2m-1, 5p+2m+1, 3p+2m+1, 5p+2m, ..., 4p+2m-1, 4p+2m+2, 4p+2m, 4p+2m+1]. The resulting edge values of the second C_{4p} are then: 1, 2, 3, ..., 2p-1, 2p, 2p+2, ..., 4p-1, 4p, 2p+1. The missing value of the first C_{4p} is equal to p and the missing value of the second C_{4p} is equal to 3p+2m. The missing value of the main graph is equal to 2p+m.

Now we must label the cycle C_{4m} . The cycle C_{4m} can be labeled based on the following stages:

- i. Join the missing value of the first C_{4p} , i.e., p to the vertices labeled 5p+4m and 5p+4m-1. This generates the edges labeled 4p+4m and 4p+4m-1.
- ii. Join the missing value of the second $C_{4p,}$ i.e., 3p+2m to the vertices labeled 7p+2m+1and 7p+2m+2. This generates the edges labeled 4p+1 and 4p+2.
- iii. Construct the snake (6p+4m-1, 2p+1, 6p+4m-2, 2p+2, ..., 5p+4m+1, 3p-1, 5p+4m). Thus the edge labels 4p+4m-2, 4p+4m-3, 4p+4m-4, ..., 2p+4m+2, 2p+4m+1 will be generated by this snake.
- iv. Form another snake in such a way that its vertices are labeled as follows: (5p+4m-1, 3p, 5p+4m-2, 3p+1, 5p+4m-3, ..., 2p+m-3, 6p+3m+1, 2p+m-2, 6p+3m). The value of the edges are then 4p+2m+2, 4p+2m+3, ..., 2p+4m-2, 2p+4m-1.
- v. Join the vertex labeled 2p+2m-1 to the vertices labeled 6p+4m-1 and 6p+4m. The value of the edges will be 4p+2m and 4p+2m+1. Next join the two vertices 4p and 6p+4m and produce the edge labeled 2p+4m.

Now we have to distinguish ten special cases to cover the rest of the edge values of C_{4m} by considering this fact that the missing value of the main graph is equal to 2p+m. The details of construction of C_{4m} in each of these cases are given in Appendix 1.

3.2 Case 2: m = p + i i = 2, 1, 0

The labeling of the vertices of the first and the second C_{4p} will be the same as case 1. Now we

have to organize three special cases to label the edges of the cycle C_{4m} . The details of each case are given in Appendix 2.

3.3 Case 3: (1/2) p < m ≤ p-1

The vertices of the first C_{4p} will be successively labeled as follows: [0, 8p+4m, 1, 8p+4m-1, 2, 8p+4m-2, ..., p-1, 7p+4m+1, p+1, 7p+4m, ..., 2p-1, 6p+4m+2, 2p, 6p+4m+1]. The resulting edge values of the first C_{4p} are then 8p+4m, 8p+4m-1, 8p+4m-2, ..., 6p+4m+1, 6p+4m, ..., 4p+4m+2, 4p+4m+1. As we can see the first cycle C_{4p} is constructed exactly the same as the first cycle C_{4p} in the case 1. The vertices of the C_4 will then be consecutively

The vertices of the C_{4m} will then be consecutively labeled by the numbers [4p, 4p+4m, 4p+1, 4p+4m-1, ..., 4p+m-1, 4p+3m+1, 4p+m+1, 4p+3m, ..., 4p+2m-1, 4p+2m+2, 4p+2m, 4p+2m+1]; this yields the edge values 4m, 4m-1, 4m-2, ..., 2m+2, 2m+1, 2m, 2m-1, ..., 3, 2, 1.

The second cycle C_{4p} can be labeled based on the following stages with the exception of case m = p-2:

- i. The missing value of the first C_{4p} , p, is joined to the vertices 5p+4m and 5p+4m-1 to generate the edges labeled 4p+4m and 4p+4m-1.
- ii. Join the missing value of C_{4m} , 4p+m, to the vertices labeled 4p+5m+2 and 4p+5m+1. This yields the edges labeled 4m and 4m+1.
- iii. Form the following snake in such a way that its vertices are labeled by (6p+4m-1, 2p+1, 6p+4m-2, 2p+2, ..., 2p+m-2, 6p+3m+1, 2p+m-1, 6p+3m). The corresponding values of the edges are then 4p+4m-2, 4p+4m-3, 4p+4m-4, ..., 4p+2m+3, 4p+2m+2, 4p+2m+1.
- iv. The edge labeled 4p+2m is obtained by connecting the vertex labeled 6p+4m to the vertex labeled 2p+2m.
- v. The edges labeled 2p+4m+1 and 2p+4m are generated by joining the vertex labeled 4p-1 to the vertices labeled 6p+4m and 6p+4m-1 respectively.

vi. For $(1/2)p < m \le p-3$ form the snake (6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2, ..., 3p-2, 5p+4m+2, 3p-1, 5p+4m+1). The values of the edges of this snake are (4p+2m-1, 4p+2m-2, 4p+2m-3, ..., 2p+4m+4, 2p+4m+3, 2p+4m+2).

Now we have to distinguish ten special cases to generate the remaining edge labels of C_{4p} . The details are given in Appendix 3.

3.4 Case 4: $1 < m \le (1/2) p$

The vertices of the first C_{4p} will be successively labeled as follows: [0, 8p+4m, 1, 8p+4m-1, ...7p+4m+3, p-2, 7p+4m+2, p-1, 7p+4m+1, p, 7p+4m-1, ..., 2p-2, 6p+4m+1, 2p-1, 6p+4m]. The resulting edge values of the first C_{4p} are then 8p+4m, 8p+4m-1, 8p+4m-2, ... 4p+4m+3, 4p+4m+2, 4p+4m+1. The vertex labeled 7p+4m is the missing value of the first C_{4p} .

Suppose that m < (1/2)p. The vertices of C_{4m} will be consecutively labeled by the numbers [2p, 6p+4m-1, 2p+1, 6p+4m-2, 2p+m-2, 6p+3m+1, 2p+m-1, 6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2, 6p+3m-2, ... , 2p+2m-1, 6p+2m+1, 2p+2m, 6p+2m]; this yields the edge values 4p+4m-1, 4p+4m-2, 4p+4m-3, ... , 4p+2, 4p+1, 4p. The vertex labeled 2p+m is the missing value of $2C_{4p} \cup C_{4m}$. The construction of C_{4m} is shown in figure 11 as follows:

Now join the missing value of the first C_{4p} to the vertices labeled 3p and 3p+4m+1. This generates the edges labeled 4p+4m and 4p-1. Then we apply transformation type 2 to the vertex labels (2p+2m+1, 2p+2m+2, ..., 3p, ..., 3p+4m+1, ..., 4p+2m-1, 4p+2m) and (4p+2m+1, 4p+2m+2, ..., 6p+2m-2, 6p+2m-1) by using the two vertices 3p and 3p+4m+1 as end vertices. Note that since 1 < m < (1/2) p we have $2p+2m+1 \le 3p < 3p+4m+1 \le 4p+2m$. This transformation generates the edge labels 4p-2,4p-3, ..., 3,2,1 and the construction of the second C_{4p} will be completed.

For m = (1/2)p the construction of C_{4m} and the second C_{4p} will be similar to the above case with a minor modification. The vertices of C_{4m} in this case will be labeled by the numbers [2p, 6p+4m-1, 2p+1, 6p+4m-2,, 2p+m-2, 6p+3m+1, 2p+m-1, 6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2, 6p+3m-2, ... , 2p+2m-1, 6p+2m+1, 2p+2m+1, 6p+2m]; this yields the edge values 4p+4m-1, 4p+4m-2, 4p+4m-3, ..., 4p+2, 4p, 4p-1. Now we connect the missing value of the first C_{4p} , i.e., 7p+4m to the vertices labeled 2p+2m and 3p+4m-1 (=5p-1) to generate the edges labeled 4p+4m and 4p+1. The edge labeled 4p-2 is obtained by joining the two vertices 6p+2m-2. 2p+2mand Next. we apply transformation type 1 to the vertex labels (2p+2m+2, 2p+2m+3, ..., 4p+2m-1, 4p+2m) and $(4p+2m+1, 4p+2m+2, \dots, 6p+2m-2, 6p+2m-1)$ by using the two vertices 4p+2m-1 (=5p-1) and 6p+2m-2 as end vertices. This transformation generates the edge labels 4p-3, 4p-4,, 3,2,1 and the construction of the second C_{4p} will be completed.

3.5 Case 5: m = 1

As mentioned earlier, Abrham and Kotzig [1] showed that the case p=1 has no graceful valuation. The case p=2 was handled in case 4. Now suppose p > 3. The labeling of the vertices of the first C_{4p} will be successively as follows: [6p+5, 2p, 6p+6, 2p-1, ..., 7p+4, p+1, 7p+5, p-1, 7p+6, p-2, ..., 8p+3, 1, 8p+4, 0]. The edge labels of this cycle will be 4p+5, 4p+6, 4p+7, ..., 8p+2, 8p+3, 8p+4. The missing value of this cycle, p, will be used in the C₄.

The vertices of C_4 will be labeled as follows: [p, 5p+4, 3p+3, 5p+3]. The corresponding edge values of this cycle are then 4p+4, 2p+1, 2p, 4p+3. The missing value of the whole graph is 2p+1.

Now we will construct the second C_{4p} . First we generate a snake with vertices labeled (3p+2, 5p+5, 3p+1, 5p+6, ..., 2p+4, 6p+3, 2p+3, 6p+4, 2p+2). The resulting values of the edges are then 2p+3, 2p+4, 2p+5, ..., 4p-1, 4p, 4p+1, 4p+2. The edges labeled 2p+2 and 2p-1 are obtained by connecting

the following pairs of vertices: 2p+2 and 4p+4; 3p+2 and 5p+1. In order to make the rest of the edge labels we will perform transformation type 3 to the vertex labels (5p+2, 5p+1, 5p, ..., 4p+5, 4p+4, 4p+3) and (4p+2, 4p+1, 4p, ..., 3p+5, 3p+4) where we select the two vertices 5p+1 and 4p+4 as end vertices. Therefore the edge labels 1, 2, 3, ..., 2p-3, 2p-2 will be obtained and the construction of the second C_{4p} will be completed.

For p = 3, we will have the graph $2C_{12} \cup C_4$ and an α -valuation of this graph could have the following vertex labels: [0, 23, 6, 24, 5, 25, 4, 26, 2, 27, 1, 28], [3, 19, 11, 18], [8, 22, 13, 15, 14, 17, 12, 16, 10, 20, 9, 21].

4. THE STANDARD VALUATIONS OF C_{4k}

Definition 1: The *standard* a-valuations of C_{4k} are given by any of the following sequence of values of the consecutive vertices of C_{4k} :

- i) [4k, 0,4k-1, 1,4k-2, 2, ..., k-2, 3k+1, k-1, 3k, k+1, 3k-1, k+2, 3k-2, ..., 2k+2, 2k-1, 2k+1, 2k] with missing value x = k.
- ii) [0,4k, 1,4k-1, 2, 4k-2,..., k-2, 3k+2, k-1, 3k-1, k+1, 3k, k+2, 3k-1, ..., 2k-2, 2k+2, 2k, 2k+1] with missing value x = k.
- iii) [4k, 0,4k-1, 1,4k-2, 2, ..., k-2, 3k+1, k-1, 3k-1, k, 3k-2, ..., 2k+1, 2k-2, 2k, 2k-1] with missing value x = 3k.
- iv) [0,4k, 1,4k-1, 2, 4k-2,..., k-2, 3k+2, k-1, 3k+1, k, 3k-1, k+1, ..., 2k-2, 2k+1, 2k-1, 2k] with missing value x = 3k.

In figure 7 one of the standard α -valuations of C_{12}

has been shown:

Figure 7: A standard α -valuation of C₁₂

A standard α -valuation of C_{4k} can be replaced by any other α -valuations of C_{4k} . For example, an α valuation of C_{12} in figure 13 is replaced by an α valuation of $2C_6$ in figure 8:

Figure 8: An α -valuation of 2C₆

Definition 2: The graph C_{4k} has a *standard labeling* (or *standard valuation*) if the values of the vertices of C_{4k} can be generated from a standard α -labeling of C_{4k} differ by a constant factor.

For example, C_{12} in the α -labeling of $C_{12} \cup C_{20}$ shown in figure 9 has a standard labeling because it can be generated from a standard α -labeling of C_{12} that differs by a constant factor 10:

Figure 9: An α -valuation of $C_{12} \cup C_{20}$

If a graph has a standard labeling it can be replaced by any α -labeling of C_{4k} by considering the constant factor. For instance, the standard labeling of C_{12} in figure 10 can be replaced by an α -labeling of $2C_6$ to form an α -valuation of $2C_6 \cup C_{20}$ if we increase the values of the α -labeling $2C_6$ in figure 14 by constant factor i.e. 10:

Figure 10: An α -valuation of C_{12}

5. EXISTENCE OF CONDITIONAL α-VALUATIONS OF GENERAL CLASSES OF 2-REGULAR GRAPHS

Now we present some general results for the graphs composed of the disjoint union of cycles. The results considerably enlarge the class of 2-regular graphs known to have α -valuations.

Theorem 2: The graph $\bigcup_{i=0}^{n} C_{4m_i}$ has an α -valuation if $\sum_{j=i+1}^{n} m_j \leq m_i$ for i = 0, 1, 2, ..., n-1.

Proof: According to the definition of standard labeling, we notice that in the construction of an α -valuation of the graph $C_{4p} \cup C_{4m}$; $p \le m$, which was constructed by Abrham and Kotzig [2], C_{4p} has a standard valuation. Suppose that $C_{4k} \cup C_{4m_0}$; $k \le m_0$, has an α -valuation. Now we replace C_{4k} , which has a standard labeling, by the graph $C_{4k_1} \cup C_{4m_1}$; $k_1 \le m_1$; $k = k_1 + m_1$. In this construction C_{4k_1} again has a standard valuation and we can replace it by $C_{4k_2} \cup C_{4m_2}$; $k_1 = k_2 + m_2$; $k_2 \le m_2$. If we repeat this kind of replacement in such a way that each time we replace a standard valuation of the graph C_{4k_i} by $C_{4k_{i+1}} \cup C_{4m_{i+1}}$; $k_i = m_{i+1} + k_{i+1}$; $k_{i+1} \le m_{i+1}$ for i = 2, ..., n-2 and $k_{n-1} = m_n$; we will obtain an α -labeling of the graph $\bigcup_{i=0}^n C_{4m_i}$.

For example, the graph $C_{72} \cup C_{40} \cup C_{12} \cup C_8 \cup C_4$ has an α -valuation according to the theorem 2 since we have $m_0 = 18$, $m_1 = 10$, $m_2 = 3$, $m_3 = 2$ and $m_4 = 1$ and the condition of the theorem is satisfied.

Theorem 3: The graph $C_{4p} \cup C_{4r} \cup C_{4m}$ has an α labeling where $C_{4m} = \bigcup_{i=1}^{n} C_{4m_i}$ and $p \ge r +$

$$\sum_{i=1}^{n} m_{i} \text{ ; } r = \sum_{i=2}^{n} m_{i} \text{ ; } \sum_{j=i+1}^{n} m_{j} \leq m_{i} \text{ for } i = 1, 2, \\ \dots, n-1.$$

Proof: In the construction of an α -valuation of $C_{4k} \cup C_{4p}$; $k \leq p$; we replace a standard labeling of C_{4k} by $C_{4m_1} \cup 2C_{4p_1}$; $k = m_1 + 2p_1$. We know that in an α -labeling of $C_{4m} \cup 2C_{4p}$ we are always able to construct at least one of C_{4p} by using a standard labeling; thus in an α -labeling of $C_{4m_1} \cup 2C_{4p_1}$ we can replace one of the C_{4p_1} by $C_{4p_2} \cup C_{4m_2}$; $p_1 = p_2 + m_2$; $p_2 \leq m_2$. Now we use the same replacement procedure as theorem 2 in such a way that each time we replace a standard labeling of the graph C_{4p_i} by $C_{4p_{i+1}} \cup C_{4m_{i+1}}$; $p_i = m_{i+1} + p_{i+1}$; $p_{i+1} \leq m_{i+1}$ for i = 2, ..., n-2 and $p_{n-1} = m_n$.

For instance, the graph $C_{140} \cup C_{60} \cup C_{32} \cup C_{20} \cup C_8 \cup C_4$ has an α -valuation because the conditions of theorem 3 will be satisfied by assuming p = 35, r = 15, $m_1 = 8$, $m_2 = 5$, $m_3 = 2$ and $m_4 = 1$.

Theorem 4: The graph $C_{4s} \cup C_{4r} \cup C_{4m} \cup C_{4p}$ has an α -labeling where $C_{4m} = \bigcup_{i=1}^{n} C_{4m_i}$, $C_{4p} = \bigcup_{i=1}^{n} C_{4p_i}$ and $s \ge r + \sum_{i=1}^{n} (m_i + p_i)$; $r = p_n$ and $p_i = m_{i+1} + 2p_{i+1}$ for i = 1, 2, ..., n-1.

Proof: In the construction of an α -valuation of C_{4k} $\cup C_{4p}$; $k \leq p$; first we replace a standard labeling of C_{4k} by $C_{4m_1} \cup 2C_{4p_1}$; $k = m_1 + 2p_1$. Then we apply the replacement procedure by substituing a standard labeling of the graph C_{4p_i} by $2\,C_{_{4p_{i+1}}}\cup C_{_{4m_{i+1}}}\,;\,p_i=m_{i+1}+2p_{i+1}\ \ for\ i=1,2,\ \ldots\,,\,n-1.$

For example, the graph $C_{200} \cup C_{16} \cup C_{80} \cup C_8 \cup C_{36} \cup C_{12} \cup C_{12} \cup C_4 \cup C_4$ has an α -valuation according to the theorem 4 if we assume s = 50, r = 1, $p_1 = 20$, $m_1 = 4$, $p_2 = 9$, $m_2 = 2$, $p_3 = m_3 = 3$ and $p_4 = m_4 = 1$.

Theorem 5: The graph $C_{4t} \cup C_{4s} \cup C_{4r} \cup C_{4m} \cup C_{4p}$ has an α -labeling where $C_{4m} = \bigcup_{i=1}^{n} C_{4m_i}$, $C_{4p} = \bigcup_{i=1}^{n} C_{4p_i}$ and $s = r + \sum_{i=1}^{n} (m_i + p_i)$; $r = p_n$ and $p_i = m_{i+1} + 2p_{i+1}$ for i = 1, 2, ..., n-1.

Proof: First we consider an α -valuation of $C_{4t} \cup 2C_{4s}$. Then we replace a standard labeling of C_{4s} by $C_{4m_1} \cup 2C_{4p_1}$; $s = m_1 + 2p_1$. Next we apply the replacement procedure by substituting a standard labeling of the graph C_{4p_i} by $2C_{4p_{i+1}} \cup C_{4m_{i+1}}$; $p_i = m_{i+1} + 2p_{i+1}$ for i = 1, 2, ..., n-1.

 $\begin{array}{ll} \text{Theorem 6: The graph } C_{4m} \cup C_{4s} \cup C_{4r} & \text{has an } \alpha \text{-} \\ \text{labeling where } C_{4m} = \bigcup_{i=0}^{n} C_{4m_i} \ , \ C_{4r} = \bigcup_{j=0}^{t} C_{4r_j} \ , \ s \\ = \sum_{i=0}^{n} m_i \quad ; \ \sum_{j=i+1}^{n} m_j \leq m_i & \text{for } i = 0, \ 1, \ 2, \ \dots \ , \ n-1 \\ \text{i} ; \ \sum_{l=j+1}^{t} r_l \leq r_j & \text{for } j = 0, \ 1, \ 2, \ \dots \ , \ t-1 \ ; \ 1 < \ \sum_{j=0}^{t} r_j \\ < \sum_{t=0}^{n} m_i & \text{and} \quad \sum_{j=0}^{t} r_j \quad (1/2) \ \sum_{i=0}^{n} m_i & . \end{array}$

Proof: We have seen that in construction of an α -valuation of $2C_{4p} \cup C_{4m}$ for 1 < m < p; m (1/2)p we are always able to construct at least one of C_{4p} and C_{4m} by using standard labelings; thus we use the same replacement procedure as theorem 2 for each of these graphs to obtain the an α -valuation of the graph $C_{4m} \cup C_{4s} \cup C_{4r}$.

Theorem 7: a) The graph $C_{4m} \cup 2C_{4s}$ has an α labeling where $C_{4m} = \bigcup_{i=0}^{n} C_{4m_i}$; $s = \sum_{i=0}^{n} m_i$; $\sum_{j=i+1}^{n} m_j \leq m_i$ for i = 0, 1, 2, ..., n-1. b) The graph $C_{4m} \cup C_{4s} \cup C_{4r}$ has an α -labeling where $C_{4m} = \bigcup_{i=0}^{n} C_{4m_i}$, $C_{4r} = \bigcup_{j=0}^{t} C_{4r_j}$, $s = \sum_{i=0}^{n} m_i$; $\sum_{j=i+1}^{n} m_j \leq m_i$ for i = 0, 1, 2, ..., n-1; $\sum_{l=j+1}^{t} r_l \leq r_j$ for j = 0, 1, 2, ..., t-1 and $\sum_{j=0}^{t} r_j$ $= \sum_{i=0}^{n} m_i$.

Proof: In construction of C_{3a} , we have seen that two isomorphic components of C_{3a} have standard labelings. In part (a) of theorem 7 we use the same replacement procedure as theorem 2 for one of these components and in part (b) we use it for both of them. In fact in part b each standard labeling of C_{4a} decompose to the different components which are not necessarily isomorphic to each other.

References:

- 1. J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, *Discrete Math.* 150 (1996) 3-15.
- J. Abrham and A. Kotzig, On the missing value in graceful numbering of a 2-regular graph, *Cong. Numer.* 65 (1988) 261-266.
- K. Eshghi, M.W. Carter and J. Abrham, On the Construction of an α-Valuation of the Graph C_{4a}∪C_{4b}∪C_{4c}, Working paper, Mechanical and Industrial Engineering, University of Toronto, 1997.
- 4. K. Eshghi, The Existence and Construction of Alpha-Valuations of 2-Regular Graphs with Three Components, Ph.D. thesis, Mechanical and Industrial Engineering, University of Toronto, June 1997.
- 5. J. A. Gallian, A survey: recent results, conjectures and open problems on labeling graphs, *J. Graph Theory* 13 (1989) 491-504.
- 6. J. A. Gallian, A guide to the graph labeling zoo, *Discrete Appl. Math.* 49 (1994) 213-229.
- A. Kotzig, β-valuations of quadratic graphs with isomorphic components, *Utilitas Math.* 7 (1975) 263-279.

8. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), *Gordon and* Breach, New York and Dunod Paris (1967) 349-355.

APPENDIX 1: Case 1: p+2 < m < 2p

Con	nditio	ns: $m = 2p-1, p \ge 13$
Step)	The successive vertex labels
1	(4p-2,12p-5); (4p, 12p-8);(4p-2,10p-1)
2	(1	2p-3, 4p+1, 12p-4, 4p+2, 12p-5)
3	(1	1p-1, 5p-4, 11p-2, 5p-2, 11p-3, 5p-1,, 10p+1, 6p-5, 10p, 6p-4, 10p-1)
4	(1	1p, 5p-5, 11p+1, 5p-3, 11p+4)
5	A 5	pply the transformation type 3 to the vertex labels $(12p-6, 12p-7, 12p-8,, 11p+3, 11p+2)$ and $(5p-6, p-7, 5p-8,, 4p+4, 4p+3)$ by using the two vertices 12p-8 and 11p+4 as end points
Con	nditio	ns: $m = 2p-1, 4 \le p \le 12$
р	m	The successive vertex labels of C_{4m}
12	23	[12, 152, 35, 153, 34, 154, 33, 155, 32, 156, 31, 157, 30, 158, 29, 159, 28, 160, 27, 161, 26, 162, 25, 163, 69, 164, 48, 136,
		52, 137, 51, 138, 55, 134, 54, 135, 53, 131, 82, 132, 57, 133, 56, 130, 58, 129, 59, 128, 60, 127, 61, 126, 62, 125, 63, 124,
		64, 123, 65, 122, 66, 121, 67, 120, 68, 119, 46, 139, 50, 140, 49, 141, 45, 142, 44, 143, 43, 144, 42, 145, 41, 146, 40, 147,
		39, 148, 38, 149, 37, 150, 36, 151]
11	21	[11, 139, 32, 140, 31, 141, 30, 142, 29, 143, 28, 144, 27, 145, 26, 146, 25, 147, 24, 148, 23, 149, 63, 150, 44, 124, 48, 123,
		49, 126, 47, 125, 52, 122, 50, 121, 75, 120, 51, 119, 53, 118, 54, 117, 55, 116, 56, 115, 57, 114, 58, 113, 59, 112, 60, 111,
		61, 110, 62, 109, 42, 127, 46, 128, 45, 129, 41, 130, 40, 131, 39, 132, 38, 133, 37, 134, 36, 135, 35, 136, 34, 137, 33, 138]
10	19	[10, 125, 30, 124, 31, 123, 32, 122, 33, 121, 34, 120, 35, 119, 36, 118, 37, 117, 41, 116, 42, 115, 38, 110, 68, 109, 46, 111,
		45, 112, 44, 113, 43, 114, 52, 103, 53, 102, 54, 101, 55, 100, 56, 99, 47, 108, 48, 107, 49, 106, 50, 105, 51, 104, 40, 136, 57,
		135, 21, 134, 22, 133, 23, 132, 24, 131, 25, 130, 26, 129, 27, 128, 28, 127, 29, 126]
9	17	[9, 112, 27, 111, 28, 110, 29, 109, 30, 108, 31, 107, 32, 106, 33, 105, 37, 104, 38, 103, 34, 98, 61, 99, 41, 100, 40, 101, 39,
		102, 46, 94, 45, 95, 44, 96, 43, 97, 42, 89, 50, 90, 49, 91, 48, 92, 47, 93, 36, 122, 51, 121, 19, 120, 20, 119, 21, 118, 22, 117,
		23, 116, 24, 115, 25, 114, 26, 113]
8	15	[8, 99, 24, 98, 25, 97, 26, 96, 27, 95, 28, 94, 29, 93, 33, 92, 34, 91, 30, 86, 37, 87, 54, 88, 36, 89, 35, 90, 42, 81, 41, 82, 44,
		79, 43, 80, 38, 85, 39, 84, 40, 83, 32, 108, 45, 107, 17, 106, 18, 105, 19, 104, 20, 103, 21, 102, 22, 101, 23, 100]
7	13	[7, 86, 21, 85, 22, 84, 23, 83, 24, 82, 25, 81, 29, 80, 30, 79, 26, 74, 33, 75, 32, 76, 47, 77, 31, 78, 38, 69, 37, 70, 36, 71, 35,
		72, 34, 73, 28, 94, 39, 93, 15, 92, 16, 91, 17, 90, 18, 89, 19, 88, 20, 87]
6	11	[6, 73, 18, 72, 19, 71, 20, 70, 21, 69, 25, 68, 26, 67, 22, 62, 29, 61, 30, 60, 31, 59, 32, 66, 40, 65, 27, 64, 28, 63, 24, 80, 33,
		79, 13, 78, 14, 77, 15, 76, 16, 75, 17, 74]
5	9	[5, 60, 15, 59, 16, 58, 17, 57, 21, 54, 33, 55, 18, 53, 22, 56, 24, 51, 23, 52, 26, 49, 25, 50, 20, 66, 27, 65, 11, 64, 12, 63, 13,
		62, 14, 61]
4	7	[4, 47, 12, 46, 13, 45, 17, 44, 26, 43, 14, 40, 19, 39, 20, 42, 18, 41, 16, 52, 21, 51, 9, 50, 10, 49, 11, 48]

Condi	Conditions: (9/5) $p+1 < m \le 2p-2$ [Note: $\sigma = 3m-5p-3$, $\omega = 4p-2m+3$, $N = \lfloor \sigma / \omega \rfloor -1$, $r = \sigma - (N+1) \omega$]				
Step	The successive vertex labels				
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, 4p-1, 4p+4m+1, 4p+1, 4p+4m,, 6p-m, 2p+5m+1, 6p-m+1,				
	2p+5m) when $m < 2p-2$. For $m = 2p-2$ the vertex labels have the following order: (12p-6, 4p-1, 12p-7,				

	4p+1, 12p-8, 4p+2, 12p-9, 4p+3, 12p-10)
2	(2p+m-1, 2p+5m); (2p+m-1,7m-2p-3);(11p+r+5, 5p-r);(4p,10p+4);(7p+2m+2+r, 9p-2m-r+4)
3	(7p+2m+r+2, p+2m-r-2, 7p+2m+r+1, p+2m-r-1,, 7p+2m+3, p+2m-3, 7p+2m+2)
	[Note: If $r = 0$, we need to exclude this snake from our consideration]
4	Apply the transformation type 3 on the vertex labels (6p-m+2,6p-m+3,, p+2m-r-4, p+2m-r-3) and
	(7p+2m+r+3,7p+2m+r+4,,2p+5m-2,2p+5m-1) by using the end vertices $11p+r+5$ and $7m-2p-3$.
5	(7p+2m+1, p+2m-2, 7p+2m, p+2m-1,, 3p+4m+r, 5p-r-1, 3p+4m+r-1, 5p-r)
6	Apply the transformation type 1 on the vertex labels (5p-r+1, 5p-r+2,, 9p-2m-r+4,, 2p+2m-3,
	2p+2m-2) and (6p+2m+1, 6p+2m+2,, 10p+4,, 3p+4m+r-3, 3p+4m+r-2) by choosing the end
	vertices 9p-2m-r+4 and 10p+4.

Cond	lition: $m = (9/5)p+(3/5)$
Step	The successive vertex labels
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, 4p-1, 4p+4m+1, 4p+1, 4p+4m,, 6p-m, 2p+5m+1, 6p-m+1,
	2p+5m-1,, p+2m-3, 7p+2m+3, p+2m-2, 7p+2m+2)
2	(2p+m-1, 2p+5m); (2p+m-1, 7m-2p-2);(2p+5m, 5m-4p-3); (4p, 10p+2)
3	Apply transformation type 1 to the vertex labels (p+2m-1, p+2m,, 5m-4p-3,, 2p+2m-3, 2p+2m-2)
	and (6p+2m+1, 6p+2m+2,, 10p+2,, 7p+2m-1, 7p+2m) by using the two vertices 5m-4p-3 and
	10p+2 as end vertices

Condition: m = (9/5)p+(4/5)

[Note:	The rest of the edge labels are generated by the same method as the above case]
Step	The successive vertex labels
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, 4p-1, 4p+4m+1, 4p+1, 4p+4m,, 6p-m, 2p+5m+1, 6p-m+1,
	2p+5m-1,, p+2m-3, 7p+2m+3, p+2m-2, 7p+2m+1)
2	(2p+5m,5m-4p-4);(2p+m-1,7p+2m+2)
3	Apply the transformation type 1 to the vertex labels ($p+2m-1$, $p+2m$,, $5m-4p-4$,, $2p+2m-3$, $2p+2m-2$) and ($6p+2m+1$, $6p+2m+2$,, $10p+2$,, $7p+2m-1$, $7p+2m$) by using the two vertices $5m-4p-4$ and $10p+2$ as end vertices.

Condition: m = (9/5)p+1

[Note:	: The rest of the edge labels are generated by the same method as the above case]
Step	The successive vertex labels
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, 4p-1, 4p+4m+1, 4p+1, 4p+4m,, 6p-m, 2p+5m+1, 6p-
	$m+1, 2p+5m-1, \dots, p+2m-4, 7p+2m+4, p+2m-3, 7p+2m+2)$
2	(2p+m-1, 2p+5m);(2p+m-1, 7p+2m+3); (2p+5m,5m-4p-6);(7p+2m+3, p+2m-1); (4p, 10p}
3	(7p+2m+1, p+2m-2, 7p+2m, p+2m-1)
4	Apply the transformation type 1 to the vertices $(p+2m, p+2m+1,, 5m-4p-6,, 2p+2m-3, 2p+2m-2)$ and $(6p+2m+1, 6p+2m+2,, 10p,, 7p+2m-2, 7p+2m-1)$ by using the vertices $5m-4p-6$ and $10p$ as
	end vertices.

Cond	ition: $(7/4) p+(1/2) < m \le (9/5) p+(2/5)$
Step	The successive vertex labels
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, 4p-1, 4p+4m+1, 4p+1, 4p+4m,, 6p-m, 2p+5m+1, 6p-m+1,
	2p+5m-1,, 7p+2m+3, p+2m-2, 7p+2m+2)
2	(2p+m-1,7m-2p-2); (2p+m-1, 2p+5m); (2p+5m,5m-4p-3); (4p, 10m-8p-4)
3	(7m-2p-2, 10p-3m+1, 7m-2p-1, 10p-3m,, 7p+2m, p+2m-1, 7p+2m+1)

4	Apply transformation type 1 to the vertex labels (10p-3m+2, 10p-3m+3,, 5m-4p-3,, 2m+2p-3,
	2m+2p-2) and (6p+2m+1, 6p+2m+2,, 10m-8p-4,, 7m-2p-4, 7m-2p-3) and choose the two vertices
	5m-4p-3 and 10m-8p-4 as end vertices

Cond	itions: $(5/3) p + 1 \le m \le (7/4) p + (1/2), m \ne (22/13) p + (7/13)$
Step	The successive vertex labels
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, 4p-1, 4p+4m+1, 4p+1, 4p+4m,, 6p-m, 2p+5m+1, 6p-m+1,
	2p+5m-1,, 7p+2m+3, p+2m-2, 7p+2m+2)
2	(2p+m-1,2p+5m); (2p+5m, 5m-4p-3); (2p+m-1,7m-2p-2);(4p,20p-6m+5)
3	(5m-4p-3, 12p-m+3, 5m-4p-4, 12p-m+4,, p+2m, 7p+2m, p+2m-1, 7p+2m+1)
4	Apply transformation type 3 to the vertex labels (12p-m+2, 12p-m+1,, 7m-2p-2,, 20p-6m+5,,
	6p+2m+2, 6p+2m+1) and (2p+2m-2, 2p+2m-3,, 5m-4p-1, 5m-4p-2) by using the two vertices 7m-2p-
	2 and 20p-6m+5 as end points
Cond	itions: $(5/3) p + 1 \le m \le (7/4) p + (1/2), m = (22/13) p + (7/13)$
[Note	: The rest of the edge labels are generated by the same method as the above case]
Step	The successive vertex labels
1	(2p+m-1,18p-5m+4); (4p , 6m-1)
2	Apply transformation type 3 to the vertex labels (12p-m+2, 12p-m+1,, 6m-1,, 18p-5m+4,,
	6p+2m+2, 6p+2m+1) and (2p+2m-2, 2p+2m-3,, 5m-4p-1, 5m-4p-2) and select the two vertices 6m-1
	and 18p-5m+4 as end vertices

Cond	ition: $m = (5/3)p+(1/3)$
Step	The successive vertex labels
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2, , 4p-1, 4p+4m+1, 4p+1, 4p+4m, , 7p+2m+3, p+2m-1,
	7p+2m+2)
2	(2p+m-1, 7p+2m+1); (2p+m-1,8p+m+1)
3	Apply transformation type 3 to the vertex labels (7p+2m, 7p+2m-1,, 10p+1,, 8p+m+1,,
	6p+2m+2, 6p+2m+1) and (2p+2m-2, 2p+2m-3,, p+2m+1, p+2m) by using the two vertices 10p+1 and
	8p+m+1 would be end vertices

Cond	Condition: $\mathbf{m} = (5/3)\mathbf{p} + (2/3)$ [Note: The case where $\mathbf{p} = 5$, $\mathbf{m} = 9$ was discussed in $\mathbf{m} = 2\mathbf{p}-1$; so we can assume		
that th	the first values of p and m that satisfy the criteria are $p = 8$ and $m = 14$.]		
Step	The successive vertex labels		
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+2m+2,, 4p-1, 4p+4m+1, 4p+1, 4p+4m,, p+2m-2, 7p+2m+3,		
	p+2m-1, 7p+2m+1)		
2	(2p+m-1, 7p+2m+2); (2p+m-1, 8p+m+2); (4p,10p+1)		
3	Apply transformation type 3 to the vertex labels (7p+2m, 7p+2m-1,, 10p+1,, 8p+m+2,,		
	$6p+2m+1$) and $(2p+2m-2, 2p+2m-3, \dots, p+2m+1, p+2m)$ by choosing the vertices $10p+1$ and $8p+m+2$		
	as end vertices		

Condition	Conditions: $(3/2) p + 1 < m \le (5/3) p, m \ne (8/5)p + (2/5)$		
Step	The successive vertex labels		
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2, 6p+3m-2,, 4p-1, 4p+4m+1, 4p+1, 4p+4m, 4p+2,,		
	7p+2m+4, p+2m-2, 7p+2m+3, p+2m-1, 7p+2m+2).		
2	(2p+m-1, 2p+5m); (2p+m-1, 8p+m+1); (4p, 6m-1)		
3	(7p+2m+1, p+2m, 7p+2m, p+2m+1,, 2p+5m+1, 6p-m, 2p+5m)		

4	Apply transformation type 3 to the vertex labels (2p+5m-1, 2p+5m-2,, 6m-1,, 8p+m+1,,
	6p+2m+2, 6p+2m+1) and (2p+2m-2, 2p+2m-3,, 6p-m+2, 6p-m+1) by selecting the vertices 6m-
	1 and 8p+m+1 as end vertices
Conditi	ons: $(3/2) p + 1 < m \le (5/3) p$, $m = (8/5)p + (2/5)$ [Note: The first snake and the edge labeled $4m+1$
will be o	obtained by the same procedure as case $m \neq (8/5)p + (2/5)$]
Step	The successive vertex labels
1	(4p, 10p+2); (2p+m-1, 6p+2m+1)
2	(7p+2m+1, p+2m, 7p+2m, p+2m-1,, 10p+4, 6p-m-1, 10p+3, 6p-m)
3	(6p-m, 10p+1, 6p-m+1, 10p,, 2p+2m-3, 6p+2m+2, 2p+2m-2, 6p+2m+1)

Conditions: $m = (3/2) p + 1, p \ge 8$

		······································	
Step			The successive vertex labels
1	(61	p+3m, 2p+m+1	1, 6p+3m-1, 2p+m+2,, 4p-1, 7p+2m+3, 4p+1, 7p+2m+2)
2	(2 ₁	p+m-1, 2p+5m	u); (2p+m-1, 8p+m+1); (4p, 9p+5)
3	(1	0p+3, 4p+2, 1	0p+2, 4p+3,, (9/2)p-2, (19/2)p+6, (9/2)p-1, (19/2)p+5)
4	Ap	ply transforma	tion type 3 to the vertex labels ((19/2)p+4, (19/2)p+3, (19/2)p+2,, 9p+5, 9p+4,
	9p⊣	-3) and (5p, 5p	$p-1, \dots, (9/2)p+1, (9/2)p)$ by using the two vertices $(19/2)p+2$ and $9p+5$ as end vertices
Cond	ition	s: $m = (3/2)$	p+1, p ≤ 6
р	m	$2C_{4p}\cup C_{4m}$	An α -valuation of $2C_{4p} \cup C_{4m}$
4	7	$2C_{16}\cup C_{\ 28}$	See case $m = 2p-1, 4 \le p \le 12$
6	1	$2C_{24}\cup C_{40}$	[0, 77, 12, 78, 11, 79, 10, 80, 9, 81, 8, 82, 7, 83, 5, 84, 4, 85, 3, 86, 2, 87, 1, 88], [32, 45, 44, 46, 43, 47,
	0		42, 48, 41, 49, 40, 50, 39, 51, 37, 52, 36, 53, 35, 54, 34, 55, 33, 56], [6, 70, 17, 71, 16, 72, 15, 73, 14, 74,
			13, 75, 31, 76, 24, 57, 30, 58, 29, 59, 28, 60, 21, 62, 26, 61, 27, 64, 38, 63, 25, 65, 23, 66, 20, 67, 19, 68,
			18, 69]

Condi	tion: $m = (3/2) p + (1/2)$
Step	The successive vertex labels
1	((21/2)p+3/2, (7/2)p+3/2, (21/2)p+1/2,, 4p-2, 10p+4, 4p-1, 10p+3)
2	((7/2)p-(1/2), (19/2)p+3/2); ((7/2)p-(1/2), (19/2)p+5/2); (4p, 9p+2)
3	(10p+2, 4p+1, 10p+1, 4p+2,, (9/2)p-(3/2), (19/2)p+(7/2), (9/2)p-1/2, (19/2)p+5/2)
4	(10p+2, 6p+1, 10p+3)
5	$((19/2)p+(3/2), (9/2)p+(1/2), (19/2)p+(1/2), \dots, 5p-2, 9p+3, 5p-1, 9p+2)$

Cond	itions: $(4/3) p+(2/3) < m \le (3/2) p, m \ne (10/7) p + (4/7)$
Step	The successive vertex labels
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, p+2m-3, 7p+2m+3, p+2m-2, 7p+2m+2)
2	(2p+m-1,8p+m+2); (2p+m-1,2p+5m-1); (4p,12p-2m+3)
3	(7p+2m+1, p+2m-1, 7p+2m, p+2m,, 4p-1, 4p+4m, 4p+1, 4p+4m-1,, 3m-3, 8p+m+3, 3m-2,
	8p+m+2)
4	Apply transformation type 3 to the vertex labels (8p+m+1, 8p+m,, 2p+5m-1,, 12p-2m+3,,
	6p+2m+2, 6p+2m+1) and (2p+2m-2, 2p+2m-3,, 3m, 3m-1) by selecting the two vertices 2p+5m-1
	and 12p-2m+3 as end vertices
Cond	itions: $(4/3) p+(2/3) < m \le (3/2) p, m = (10/7) p + (4/7)$
Step	The successive vertex labels
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, p+2m-3, 7p+2m+3, p+2m-2, 7p+2m+2)
2	(2p+m-1,8p+m+2); (2p+m-1, 8p+m+1); (7p-2m+2, 7p+2m+1); (13p-6m+4,7p+2m); (7p-2m+2, 15p-
	4m+5); (4p , 26p-12m+10)
3	(7p+2m, p+2m-1, 7p+2m-1, p+2m,, 4p+4m, 4p-1, 4p+4m-1, 4p+1,, p+6m-1, 7p-2m+1, p+6m-2,
	7p-2m+3,, 3m-3, 8p+m+3, 3m-2, 8p+m+2)
4	(8p+m+1, 3m-1, 8p+m, 3m,, 8m-7p-7, 15p-4m+6, 8m-7p-6, 15p-4m+5)

5	Apply transformation type 1 to the vertex labels (8m -7p-5, 8m-7p-4,, 2p+2m-3, 2p+2m-2) and
	(6p+2m+1, 6p+2m+2,, 15p-4m+3, 15p-4m+4) by choosing the vertices $8m-7p-4$ and $6p+2m+2$ as
	end points

Cond	Condition: $p+3 \le m \le (4/3)p+(2/3)$		
Step	The successive vertex labels		
1	(6p+3m, 2p+m+1, 6p+3m-1, 2p+m+2,, p+2m-3, 7p+2m+3, p+2m-2, 7p+2m+2)		
2	(7p+2m+1, p+2m-1, 7p+2m, p+2m,, 3m-4, 8p+m+3, 3m-3, 8p+m+2); (2p+m-1,10p-m+3)		
3	Apply transformation type 1 to the vertex labels (3m-2, 3m-1,, 4p,, 2p+2m-3, 2p+2m-2) and		
	(6p+2m+1, 6p+2m+2,, 10p-m+3,, 8p+m, 8p+m+1) by selecting the two end vertices 4p and 10p-		
	m+3		

Appendix 2: Case 2: m = p + i i = 2, 1, 0

Cor	ndition	: m = p + 2,	p ≥ 4	
Step)		The successive vertex labels	
1	(p,	9p+7); (p, 9p-	+8); (3p+2m, 9p+5); (3p+2m, 9p+6); (4p,10p+8); (4p+3, 10p+8); (4p+3,10p+7);	
	(3p	+1,9p+4); (3p	+3,9p+5); (3p+3,9p+4);(3p+1,9p+1)	
2	(10	p+7, 2p+1, 10	p+6, 2p+2,, 3p-2, 9p+9, 3p-1, 9p+8)	
3			(9p+7, 3p, 9p+6)	
4	Ap	oly transforma	tion type 1 to the vertex labels (3p+4, 3p+5,, 4p, 4p+1, 4p+2) and (8p+5, 8p+6,,	
	9p+1, 9p+2, 9p+3) by choosing the two vertices 4p and 9p+1 as end points			
Cor	ndition	: m = p + 2,	p = 1,2,3	
р	m	$2C_{4p} {\cup} C_{4m}$	An α -valuation of the graph $2C_{4p} \cup C_{4m}$	
3	5	$2C_{12} \cup C_{20}$	[0, 44, 1, 43, 2, 42, 4, 41, 5, 40, 6, 39], [16, 28, 17, 27, 18, 26, 20, 25, 21, 24, 22, 23], [3, 34, 9, 33, 19, 32,	
			14, 29, 13, 30, 10, 31, 12, 38, 15, 37, 7, 36, 8, 35]	
2	4	$2C_8 \cup C_{16}$	[0, 29, 4, 30, 3, 31, 1, 32], [12, 19, 13, 18, 15, 17, 16, 20], [2, 26, 6, 21, 10, 22, 9, 23, 14, 24, 5, 27, 11,	
			28, 7, 25]	
1	3	$2C_4 \cup C_{12}$	[0, 19, 2, 20], [8, 11, 10, 12], [1, 16, 3, 15, 9, 14, 6, 13, 4, 18, 7, 17]	

Cond	itions	: m =	$p+1$, $p \ge 10$
Step			The successive vertex labels
1	(p,9	0+4); (j	p, 9p+3); (5p+2, 9p+3); (4p+1,8p+3); (5p+2,9p+5); (2p+1, 8p+6);
	(4p,1	0p+4);	(4p+1,10p+4); (4p-6, 8p+3);
2	(2p+	-1, 10p-	+3, 2p+2, 10p+2,, 3p-2, 9p+6, 3p-1, 9p+5)
3	(4p, 8	8p+4, 4	p-1, 8p+5, 4p-2, 8p+6)
4	(9p-3	8, 3p, 9	p+1, 3p+3, 9p+2, 3p+2, 9p+4)
5	Apply transformation type 1 to the vertex labels (3p+4, 3p+5,, 4p-6, 4p-5, 4p-4, 4p-3) and (8p+7,		
	8p+8	, , 9 ₁	p-3, 9p-2, 9p-1, 9p) by selecting the two vertices 4p-6 and 9p-3 as end points
Cond	itions	: m =	p + 1 , 1 ≤ p ≤ 9
р	m	C_{4m}	The labeling of the cycle C_{4m}
9	10	C ₄₀	[9, 84, 47, 86, 26, 87, 25, 88, 24, 89, 23, 90, 22, 91, 21, 92, 20, 93, 19, 78, 33, 80, 32, 81, 31, 82, 29, 83, 27, 79,
			35, 77, 34, 75, 37, 94, 36, 76, 30, 85]
8	9	C ₃₆	[8, 75, 42, 77, 23, 78, 22, 79, 21, 80, 20, 81, 19, 82, 18, 83, 17, 70, 30, 71, 29, 72, 28, 67, 33, 84, 32, 68, 31, 69,
			24, 73, 27, 74, 26, 76]
7	8	C ₃₂	[7, 66, 37, 68, 20, 69, 19, 70, 18, 71, 17, 72, 16, 73, 15, 62, 27, 61, 25, 63, 26, 59, 29, 74, 28, 60, 21, 64, 24, 65,

			23, 67]
6	7	C ₂₈	[6, 57, 32, 59, 17, 60, 16, 61, 15, 62, 14, 63, 13, 54, 22, 53, 23, 52, 24, 64, 25, 51, 18, 55, 21, 56, 20, 58]
5	6	C ₂₄	[5, 48, 27, 50, 14, 51, 13, 52, 12, 53, 11, 46, 15, 43, 21, 54, 20, 44, 19, 45, 18, 47, 17, 49]
4	5	C ₂₀	[4, 39, 22, 41, 11, 42, 10, 43, 9, 38, 15, 37, 12, 36, 16, 44, 17, 35, 14, 40]
3	4	C ₁₆	[3, 30, 17, 32, 7, 33, 9, 29, 11, 28, 12, 34, 13, 27, 8, 31]
2	3	C ₁₂	[2, 21, 12, 23, 6, 24, 8, 20, 5, 19, 9, 22]
1	2	C ₈	[1, 12, 7, 14, 5, 11, 3, 13]

Condition : $\mathbf{m} = \mathbf{p}$ [An α -valuation of 3 C_{4p} was constructed by Abrham and Kotzig in [1].

Appendix 3 : Case 3: $(1/2) p < m \le p-1$

Condi	Conditions : m = p-1	
Step	The successive vertex labels	
1	(9p-5, 3p, 9p-6, 3p+1,, 8p-2, 4p-3, 8p-3, 4p-2)	
	[Note: For $p = 2$ and $m = 1$ an example of an α -valuation of $2C_8 \cup C_4$ is as follows: [0, 17, 4, 18, 3, 19, 1,	
	20], [2, 13, 6, 16, 7, 15, 9, 14], [8, 11, 10, 12]. The missing value is 5]	

Conditions : $m = p-2, p \ge 13$		
Step)	The successive vertex labels
1	(p	, 9p-8); (2p+1, 10p-8); (p, 9p-10); (5p-2, 9p-9); (5p-2, 9p-8); (4p-2,10p-12); (4p-1,10p-9); (4p-1,10p-
	8);	(2p+1,10p-16);
2	(4	p-2, 8p-7, 4p-3, 8p-6,, 3p+2, 9p-11, 3p+1, 9p-10)
3	(9	p-9, 3p, 9p-4, 3p-4, 9p-5, 3p-3, 9p-6, 3p-1, 9p-7, 3p-8)
4	(1	0p-12, 2p+4, 10p-11, 2p+3, 10p-10, 2p+2, 10p-9)
5	Ap	oply transformation type 1 to the vertex labels: (2p+5, 2p+6, , 3p-8, 3p-7, 3p-6, 3p-5) and (9p-3, 9p-
	2, .	, 10p-16, 10p-15, 10p-14, 10p-13) by using the two vertices 3p-8 and 10p-16 as end points.
Con	ditior	$m = p-2, \ 3 \le p \le 12$
р	C_{4p}	The labeling of C_{4p}
12	C48	[12, 100, 58, 99, 36, 105, 31, 106, 30, 107, 29, 102, 35, 101, 33, 103, 32, 104, 25, 112, 47, 111, 26, 110, 27, 109, 28, 108, 100, 100, 100, 100, 100, 100, 10
		46, 89, 45, 90, 44, 91, 43, 92, 42, 93, 41, 94, 40, 95, 39, 96, 38, 97, 37, 98]
11	C ₄₄	[11, 91, 53, 90, 33, 96, 29, 95, 27, 97, 28, 93, 32, 92, 30, 94, 23, 102, 43, 101, 24, 100, 25, 99, 26, 98, 42, 81, 41, 82, 40, 83,
		39, 84, 38, 85, 37, 86, 36, 87, 35, 88, 34, 89]
10	C ₄₀	[10, 82, 48, 81, 30, 87, 25, 86, 26, 85, 27, 83, 29, 84, 21, 92, 39, 91, 22, 90, 23, 89, 24, 88, 38, 73, 37, 74, 36, 75, 35, 76, 34,
		77, 33, 78, 32, 79, 31, 80]
9	C ₃₆	[9, 73, 43, 72, 27, 77, 23, 76, 24, 75, 26, 74, 19, 82, 35, 81, 20, 80, 21, 79, 22, 78, 34, 65, 33, 66, 32, 67, 31, 68, 30, 69, 29,
		70, 28, 71]
8	C ₃₂	[8, 64, 38, 63, 24, 69, 19, 67, 20, 66, 23, 65, 21, 70, 18, 71, 31, 72, 17, 68, 30, 57, 29, 58, 28, 59, 27, 60, 26, 61, 25, 62]
7	C ₂₈	[7, 55, 33, 54, 21, 59, 15, 62, 27, 61, 16, 57, 20, 56, 17, 60, 18, 58, 26, 49, 25, 50, 24, 51, 23, 52, 22, 53]
6	C ₂₄	[6, 46, 28, 45, 18, 50, 15, 49, 13, 52, 23, 51, 14, 47, 17, 48, 22, 41, 21, 42, 20, 43, 19, 44]
5	C ₂₀	[5, 37, 23, 36, 15, 39, 14, 40, 12, 41, 19, 42, 11, 38, 18, 33, 17, 34, 16, 35]
4	C ₁₆	[4, 28, 18, 27, 12, 30, 11, 32, 9, 29, 15, 31, 14, 25, 13, 26]
3	C ₁₂	[3, 19, 11, 17, 8, 22, 9, 21, 10, 20, 13, 18]

Conditions : $(3/4) p - 1 < m \le p - 3$, $m \ne (5/6) p - (5/6)$

Step	The successive vertex labels	
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1,, 4p-m-5, 4p+5m+3, 4p-m-4, 4p+5m+2)	
2	(5p+4m+1, 5p-2m-4); (5p+4m, 7p-4m-5)	
3	(4p+5m+1, 4p-m-3, 4p+5m, 4p-m-2,, 3p+6m+3, 5p-2m-5, 3p+6m+2, 5p-2m-4)	
	Apply transformation type 2 to the vertex labels (5p-2m-3, 5p-2m-2,, 7p-4m-5,, 2p+2m,, 4p-3,	
	4p-2) and $(4p+4m+1, 4p+4m+2,, 3p+6m, 3p+6m+1)$ by selecting the vertices 7p-4m-5 and 2p+2m as	
	end vertices	
Cond	Conditions: $(3/4) p - 1 < m \le p-3$, $m = (5/6) p - (5/6)$, $m = 5$ [Note: This case was discussed in case $m = 1$	

p+2]

Conditions : $(3/4) p - 1 < m \le p - 3, m = (5/6) p - (5/6), m \ne 5$		
Step	The successive vertex labels	
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1,, 4p-m-5, 4p+5m+3, 4p-m-4, 4p+5m+2)	
2	(5p+4m+1,5p-2m-4); (5p+4m,7p-4m-6); (5p-2m-4, 4p+4m+2); (2p+2m-1, 6p+2m-2)	
3	(4p+5m+1, 4p-m-3, 4p+5m, 4p-m-2,, 3p+6m+3, 5p-2m-5, 3p+6m+2, 5p-2m-3, 3p+6m+1, 5p-2m-2,	
	, 2p+2m-3, 6p+2m+1, 2p+2m-2, 6p+2m, 2p+2m)	
	Apply transformation type 3 to the vertex labels (6p+2m-1, 6p+2m-2,, 4p+4m+2, 4p+4m+1) and (4p-	
	2, 4p-3,, $2p+2m+2$, $2p+2m+1$) by considering the vertices $6p+2m-2$ and $4p+4m+2$ as end points	

Conditions : $m = (3/4) p-1, p > 4$	[Note: For $p = 4$ this case was solved in case $m = p+2$]
-------------------------------------	---

Step	The successive vertex labels
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1,, 4p-m-5, 4p+5m+3, 4p-m-4, 4p+5m+2)
2	(5p+4m,5p-2m-2); (5p+4m+1, p+4m+1); (2p+2m-1,6p+2m-3)
3	(4p+5m+1, 4p-m-3, 4p+5m, 4p-m-2,, 6p+2m, 2p+2m-2, 6p+2m-1, 2p+2m)
4	Apply transformation type 1 to the vertex labels (2p+2m+1, 2p+2m+2,, 4p-4, 4p-3, 4p-2) and
	(4p+4m+1, 4p+4m+2,, 6p+2m-3, 6p+2m-2) by considering the vertices 4p-3 and 6p+2m-3 as end
	vertices

Conditions : (2/3) p -1 \le m < (3/4) p -1, m \ne (2/3) p -1

Step	The successive vertex labels	
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1,, 4p-m-5, 4p+5m+3, 4p-m-4, 4p+5m+2)	
2	(5p-2m-4,5p+4m+1); (p+4m+2,5p+4m); (2p+2m,10m+6)	
3	(4p+5m+1, 4p-m-3, 4p+5m, 4p-m-2,, 6p+2m-1, 2p+2m-1, 6p+2m-2, 2p+2m+1,, 3p+6m+4, 5p-	
	2m-5, 3p+6m+3, 5p-2m-4)	
4	Apply transformation type 1 to the vertex labels (5p-2m-3, 5p-2m-2,, p+4m+2,, 4p-3, 4p-2) and	
	(4p+4m+1, 4p+4m+2,, 10m+6,, 3p+6m+1, 3p+6m+2) by using the two vertices $p+4m+2$ and	
	10m+6 as end vertices	
Conditions : (2/3) p -1 \leq m < (3/4) p -1, m = (2/3) p -1		
Step	The successive vertex labels	
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1,, 4p-m-5, 4p+5m+3, 4p-m-4, 4p+5m+2)	
2	(2p+2m, 4p+5m+1); (p+4m+2,5p+4m+1); (p+4m+3,5p+4m)	
3	Apply transformation type 2 to the vertex labels (2p+2m+1, 2p+2m+2, 2p+2m+3,, p+4m+2, p+4m+3,	
	, 4p-3, 4p-2) and (4p+4m+1, 4p+4m+2,, 4p+5m-1, 4p+5m) by choosing the two vertices p+4m+2	
	and $p+4m+3$ as end vertices	

Condition : (3/5) p - 1 < m < (2/3) p - 1	
Step	The successive vertex labels
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1,, 2p+2m-2, 6p+2m, 2p+2m-1, 6p+2m-1, 2p+2m+1,, 4p-m-4,
	4p+5m+3, 4p-m-3, 4p+5m+2)
2	(p+4m+2, 5p+4m+1); $(5p-2m-4, 5p+4m)$; $(8p-2m-6, 2p+2m)$

	(4p+5m+1, 4p-m-2, 4p+5m, 4p-m-1,, 7p-2, p+4m+1, 7p-3, p+4m+2)
3	Apply transformation type 1 to the vertex labels (p+4m+3, p+4m+4,, 5p-2m-4,, 4p-4, 4p-3, 4p-2)
	and (4p+4m+1, 4p+4m+2,, 8p-2m-6,, 7p-6, 7p-5, 7p-4) by considering the two vertices 5p-2m-4
	and 8p-2m-6 as end vertices

Condition : $m = (3/5) p - 1$		
Step	The successive vertex labels	
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1, 5p+4m-3, 3p+2,, 6p+2m, 2p+2m-1, 6p+2m-1, 2p+2m)	
2	(2p+2m+1, 6p+2m-2, 2p+2m+2, 6p+2m-3,, 4p-m-4, 4p+5m+3, 4p-m-3, 4p+5m+2)	
	(5p+4m+1, p+4m+3); (2p+8m+5, 2p+2m+1); (4p+5m+1, p+4m+3); (5p+4m, 5p-2m-2)	
	Apply transformation type 1 to the vertex labels (p+4m+4, p+4m+5,, 5p-2m-2,, 4p-3, 4p-2) and	
	(4p+4m+1, 4p+4m+2,, 2p+8m+5,, 4p+5m-1, 4p+5m) by selecting the two end points 5p-2m-2 and	
	2p+8m+5.	

Cond	Conditions : $(4/7) p-(8/7) < m < (3/5) p-1$		
Step	The successive vertex labels		
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1, 5p+4m-3, 3p+2,, 6p+2m, 2p+2m-1, 6p+2m-1, 2p+2m)		
2	(p+4m+3, 5p+4m+1); (5p-3m-5, 5p+3m); (5p-2m-4,5p+4m); (2p+3m+1,4p+5m+2)		
3	Apply transformation type 2 to the vertex labels ($2p+2m+1$, $2p+2m+2$,, $5p-3m-5$,, $p+4m+3$,, $4p-m-4$, $4p-m-3$) and ($4p+5m+3$, $4p+5m+4$,, $6p+2m-3$, $6p+2m-2$) by selecting the two vertices $5p-3m-5$ and $p+4m+3$ as end points.		
4	(4p+5m+1, 4p-m-2, 4p+5m, 4p-m-1,, 5p+3m+2, 3p+m-3, 5p+3m+1, 3p+m-2, 5p+3m)		
5	Apply transformation type 2 to the vertex labels (3p+m-1, 3p+m, 3p+m+1,, 2p+3m+1,, 5p-2m-4,		
	, 4p-3, 4p-2) and (2p+4m+1, 2p+4m+2,, 5p+3m-2, 5p+3m-1) by using the two vertices 2p+3m+1		
	and 5p-2m-4 as end vertices		

Conditions : m = (4/7) p - (8/7)

Step	The successive vertex labels
1	(5p+4m-1, 3p, 5p+4m-2, 3p+1, 5p+4m-3, 3p+2,, 6p+2m, 2p+2m-1, 6p+2m-1, 2p+2m)
2	(p+4m+3, 5p+4m+1); (2p+2m+1, 8p-2m-6); (5p-2m-4, 5p+4m); (p+4m+4, p+10m+6)
3	(2p+2m+1, 6p+2m-2, 2p+2m+2, 6p+2m-3,, p+4m+1, 7p-2, p+4m+2, 7p-3, p+4m+3)
4	(p+4m+4, 7p-4, p+4m+5, 7p-5,, 4p-m-3, 4p+5m+3, 4p-m-2, 4p+5m+1)
5	Apply transformation type 1 to the vertex labels (4p-m-1, 4p-m, 4p-m+1,, 5p-2m-4,, 4p-3, 4p-2)
	and (4p+4m+1, 4p+4m+2,, p+10m+6,, 4p+5m-1, 4p+5m) by considering the two vertices 5p-2m-4
	and p+10m+6 as end vertices

Conditions : (1/2) p < m < (4/7)p-(8/7)

[Note: The rest of the edge labels are generated by the same method as the above case]

Step	The successive vertex labels
1	Apply transformation type 2 to the vertex labels(2p+2m+1, 2p+2m+2,, p+4m+3,, 5p-3m-5,,
	4p-m-4, 4p-m-3) and (4p+5m+3, 4p+5m+4,, 6p+2m-3, 6p+2m-2) by selecting the two vertices 5p-
	3m-5 and $p+4m+3$ as end points.