# CONSTRUCTION OF $\alpha$-VALUATIONS OF SPECIAL CLASSES OF 2-REGULAR GRAPHS 

Kourosh Eshghi<br>Department of Industrial Engineering<br>Sharif University of Technology<br>Iran

Michael W. Carter<br>Department of Industrial Engineering<br>University of Toronto<br>Canada

This work is dedicated to the memory of Jaromir Abrham, a true gentleman, a scholar, and the inspiration for this work.

In this paper, we show that every 2-regular graph with three components of the form $2 \mathrm{C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{~m}}$ has an $\alpha$ labeling, except for the case $\mathrm{p}=\mathrm{m}=1$. Furthermore, we present some general results for graphs composed of the disjoint union of cycles. The results considerably enlarge the class of 2-regular graphs known to have $\alpha$-valuations.

Key-Words: Graph Labeling, $\alpha$-valuation

## 1. BASIC DEFINITIONS

This paper is closely related to a companion paper by Eshghi, Carter \& Abrham [3] where we show that all 2-regular graphs with three components of the form $\mathrm{C}_{4 \mathrm{a}} \cup \mathrm{C}_{4 \mathrm{~b}} \cup \mathrm{C}_{4 \mathrm{c}}$ have an $\alpha$-labeling. Additional constructions are presented in Eshghi [4].
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with $\mathrm{m}=|\mathrm{V}|$ vertices and $\mathrm{n}=|\mathrm{E}|$ edges. By the term graph, we mean an undirected finite graph without loops or multiple edges.
A graceful labeling (or $\beta$-valuation) of a graph $\mathrm{G}=$ ( $\mathrm{V}, \mathrm{E}$ ) is a one-to-one mapping $\Psi$ of the vertex set $\mathrm{V}(\mathrm{G})$ into the set $\{0,1,2, \ldots, \mathrm{n}\}$ with this property: If we define, for any edge $\mathrm{e}=\{\mathrm{u}, \mathrm{v}\} \in \mathrm{E}(\mathrm{G})$, the value $\Psi^{\bullet}(\mathrm{e})=|\Psi(\mathrm{u})-\Psi(\mathrm{v})|$ then $\Psi^{\bullet}$ is a one-to-one mapping of the set $\mathrm{E}(\mathrm{G})$ onto the set $\{1,2, \ldots, \mathrm{n}\}$.
A graph is called graceful if it has a graceful labeling. An $\alpha$-labeling (or $\alpha$-valuation) of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graceful labeling of G which satisfies the following additional condition: There
exists a number $\gamma(0 \leq \gamma \leq|\mathrm{E}(\mathrm{G})|)$ such that, for any edge e
$\in \mathrm{E}(\mathrm{G})$ with end vertices $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$, min $[\Psi(\mathrm{u})$, $\Psi(\mathrm{v})] \leq \gamma<\max [\Psi(\mathrm{u}), \Psi(\mathrm{v})]$.
The concept of a graceful valuation and of an $\alpha$ valuation were introduced by Rosa [8]. Rosa proved that, if G is graceful and if all vertices of G are of even degree, then $|\mathrm{E}(\mathrm{G})| \equiv 0$ or $3(\bmod 4)$. This implies that if $G$ has an $\alpha$-valuation and if all vertices of $G$ are of even degree, then $|E(G)| \equiv 0$ $(\bmod 4)(G$ is bipartite). In [8] it is also shown that these conditions are also sufficient if $G$ is a cycle. The symbol $\mathrm{C}_{\mathrm{m}}$ will denote a cycle on m vertices. Abrham and Kotzig [2] proved that Rosa's condition is also sufficient for 2-regular graphs with two components.
A snake is a tree with exactly two vertices of degree 1. In [8], it was proved that every snake has an $\alpha$ valuation. A snake with $n$ edges will be denoted by $\mathrm{P}_{\mathrm{n}}$.
A detailed history of the graph labeling problem and related results appears in Gallian [5, 6]. One of the
results of Abrham and Kotzig should be mentioned here: If G is a 2-regular graph on n vertices and n edges which has a graceful valuation $\Psi$ then there exists exactly one number $x(0<x<\mathrm{n})$ such that $\Psi(\mathrm{v}) \neq x$ for all $\mathrm{v} \in \mathrm{V}(\mathrm{G})$; this number $x$ is referred to as the missing value of the graceful graph [2].
All parameters in this paper are positive integers. A sequence of numbers in parentheses or square brackets indicates the values of vertices of a graph or subgraph under consideration according to whether it is a snake or cycle respectively.

## 2. Transformations of Labeling of a Graph

The transformations presented below are used extensively in this paper.

Lemma 1: (Abrham \& Kotzig [1]) Let $r$ be a nonnegative integer and let s be an odd integer, $\mathrm{s}=$ $2 \mathrm{k}+1 \exists 2 \mathrm{r}+1$. Then $\mathrm{P}_{\mathrm{s}}$ has an $\alpha$-valuation P with endpoints labelled $w$ and $z$ that satisfies the conditions $\mathrm{z}-\mathrm{w}=\mathrm{k}+1$ and $\mathrm{w}=\mathrm{r}$. (w.l.o.g., we assume that $\mathrm{w}<\mathrm{z}$.)

Transformation 1: Given any $0<=\mathrm{w}<=\mathrm{k}$ and $\mathrm{k}+1$ \# z \# $2 \mathrm{k}+1$, and $\mathrm{z}-\mathrm{w}=\mathrm{k}+1$, we can always construct an $\alpha$-valuation for a snake $P_{2 k+1}$ with edge labels 1 through $2 \mathrm{k}+1$ and endpoints w and z , with (= k. i.e., the snake is bipartite. Since $w=r, z=$ $\mathrm{k}+\mathrm{r}+1$.


Figure 1: Arrangement of vertex labels of snake $\mathrm{P}_{2 \mathrm{k}+1}$ according to lemma 1

Suppose we now add $n$ to the top half, and add m$(k+1)$ to the bottom half for any positive integers $m$ and n where $\mathrm{m}>\mathrm{n}+\mathrm{k}$ :


Figure 2: Arrangement of vertex labels in transformation 1
Then the edge labels will all increase by precisely $\mathrm{m}-(\mathrm{k}+1)-\mathrm{n}$. The transformation produces the edge labels from $[m-k-n]$ through $[m+k-n]$.

Lemma 2: (Abrham \& Kotzig [1]) Let $r$ be a nonnegative integer and let $s$ be an even integer, $s=2 k$ $\exists 4 \mathrm{r}+2$. Then $\mathrm{P}_{\mathrm{s}}$ has an $\alpha$-valuation P with endpoints labelled w and z that satisfies the conditions $\mathrm{z}+\mathrm{w}=$ k and $\mathrm{w}=\mathrm{r}$. (w.l.o.g., we assume that $\mathrm{w}<\mathrm{z}$.)

Transformation 2: Given any 0 \# w $<(\mathrm{k} / 2)<\mathrm{z}$ \# k and $\mathrm{w}+\mathrm{z}=\mathrm{k}$ we can always construct an $\alpha-$ valuation for a snake $P_{2 k}$ with endpoints $w$ and $z$, with ( $=$ k. i.e., the snake is bipartite. Since $w=r, z$ $=\mathrm{k}-\mathrm{r}$, and $\mathrm{r}<\mathrm{k} / 2$.


Figure 3: Arrangement of vertex labels of snake $P_{2 k}$ according to lemma 2

Suppose we now add $n$ to the top half, and add m$(k+1)$ to the bottom half for any positive integers $m$ and n where $\mathrm{m}>\mathrm{n}+\mathrm{k}$ :


Figure 4: Arrangement of vertex labels in transformation 2

Then the edge labels will all increase by precisely $\mathrm{m}-(\mathrm{k}+1)-\mathrm{n}$. The transformation produces the edge labels from $[\mathrm{m}-\mathrm{k}-\mathrm{n}]$ through $[\mathrm{m}+\mathrm{k}-1-\mathrm{n}]$.

Transformation 3: This transformation is derived similar to transformation 2 . Given any $\alpha$-valuation P of a graph on s edges, the complementary valuation is defined by substituting the labels of $\mathrm{P}(\mathrm{v})$ with $\mathrm{s}-\mathrm{P}(\mathrm{v})$. The new valuation is again graceful. If we apply this transformation to the snake $P_{2 k}$ in transformation 2, we get:

Given any $2 \mathrm{k} \exists \mathrm{w} \exists(3 \mathrm{k} / 2) \exists \mathrm{z} \exists \mathrm{k}$ and $\mathrm{w}+\mathrm{z}=3 \mathrm{k}$, we can always construct an $\alpha$-valuation for a snake $\mathrm{P}_{2 \mathrm{k}}$ with edge labels 1 through 2 k and endpoints w and z , with ( $=\mathrm{k}$. i.e., the snake is bipartite. Since w $=2 \mathrm{k}-\mathrm{r}, \mathrm{z}=\mathrm{k}+\mathrm{r}$, and $0 \# \mathrm{r}<\mathrm{k} / 2$. (In the complement, $\mathrm{w}>\mathrm{z}$.)

|  | 0 | 1 |  | ... | k-2 | k-1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | O |  |  | 0 | 0 |  |
| O | 0 |  | 0 | $\bigcirc$ | 0 | O | 0 |
| 2k | 2k-1 | ... | w | 3k/2 | z | k+1 | k |

Figure 5: Arrangement of vertex labels of snake $P_{2 k}$ used in transformation 3

Suppose we add n to the top half, and add $\mathrm{m}-\mathrm{k}$ to the bottom half for any positive integers m and n where $\mathrm{m}>\mathrm{n}+\mathrm{k}-1$ :


Figure 6: Arrangement of vertex labels in transformation 3

Then the edge labels will all increase by precisely $\mathrm{m}-\mathrm{k}-\mathrm{n}$. The transformation produces the edge labels from [m-k-n-1] through [m+k-n].

## 3. The Construction of an $\alpha$-valuation of the graph $\mathbf{2 C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{~m}}$

Theorem 1: The graph $2 \mathrm{C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{~m}}$ has an $\alpha$ valuation for all $m, p \geq 1$ with the exception of $p=$ $\mathrm{m}=1$.

Proof: Since in [1] it was proved that if $\mathrm{p}, \mathrm{q} \geq 1$ and $\mathrm{p}+\mathrm{q} \leq \mathrm{m}$ then the graph $\mathrm{C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{q}} \cup \mathrm{C}_{4 \mathrm{~m}}$ has an $\alpha$ valuation, we only need to consider the case $m<2 p$ in this theorem. We also know that $3 \mathrm{C}_{4}$ does not have an $\alpha$-valuation [7]. Now we will organize the following cases, covering different special cases of this theorem, and prove each of them separately:

### 3.1 Case 1: $p+2<m<2 p$

The vertices of the first $\mathrm{C}_{4 \mathrm{p}}$ will be successively labeled as follows: $[0,8 p+4 m, 1,8 p+4 m-1,2$, $8 p+4 m-2, \ldots, p-1,7 p+4 m+1, p+1,7 p+4 m, \ldots, 2 p-1$, $6 p+4 m+2,2 p, 6 p+4 m+1]$. The resulting edge values of the first $\mathrm{C}_{4 \mathrm{p}}$ are then $8 \mathrm{p}+4 \mathrm{~m}, 8 \mathrm{p}+4 \mathrm{~m}-1,8 \mathrm{p}+4 \mathrm{~m}-2$, $\ldots, 6 p+4 m+2,6 p+4 m, \ldots, 4 p+4 m+2,4 p+4 m+1$ and $6 \mathrm{p}+4 \mathrm{~m}+1$.
The vertices of the second $\mathrm{C}_{4 \mathrm{p}}$ will be consecutively labeled by the numbers $[2 p+2 m, 6 p+2 m, 2 p+2 m+1$, $6 p+2 m-1, \quad 2 p+2 m+2, \quad 6 p+2 m-2, \quad . ., 3 p+2 m-1$, $5 p+2 m+1, \quad 3 p+2 m+1, \quad 5 p+2 m, \quad \ldots, \quad 4 p+2 m-1$,
$4 p+2 m+2,4 p+2 m, 4 p+2 m+1]$. The resulting edge values of the second $\mathrm{C}_{4 \mathrm{p}}$ are then: $1,2,3, \ldots, 2 \mathrm{p}-1$, $2 p, 2 p+2, \ldots, 4 p-1,4 p, 2 p+1$. The missing value of the first $\mathrm{C}_{4 \mathrm{p}}$ is equal to p and the missing value of the second $C_{4 p}$ is equal to $3 p+2 m$. The missing value of the main graph is equal to $2 \mathrm{p}+\mathrm{m}$.

Now we must label the cycle $\mathrm{C}_{4 \mathrm{~m}}$. The cycle $\mathrm{C}_{4 \mathrm{~m}}$ can be labeled based on the following stages:
i. Join the missing value of the first $\mathrm{C}_{4 \mathrm{p}}$, i.e., p to the vertices labeled $5 \mathrm{p}+4 \mathrm{~m}$ and $5 \mathrm{p}+4 \mathrm{~m}-1$. This generates the edges labeled $4 p+4 m$ and $4 p+4 m-1$.
ii. Join the missing value of the second $\mathrm{C}_{4 \mathrm{p}}$, i.e., $3 p+2 m$ to the vertices labeled $7 p+2 m+1$ and $7 p+2 m+2$. This generates the edges labeled $4 p+1$ and $4 p+2$.
iii. Construct the snake $(6 p+4 m-1,2 p+1$, $6 p+4 m-2,2 p+2, \ldots, 5 p+4 m+1,3 p-1,5 p+4 m)$. Thus the edge labels $4 p+4 m-2,4 p+4 m-3$, $4 p+4 m-4, \ldots, 2 p+4 m+2,2 p+4 m+1$ will be generated by this snake.
iv. Form another snake in such a way that its vertices are labeled as follows: ( $5 \mathrm{p}+4 \mathrm{~m}-1,3 \mathrm{p}$, $5 p+4 m-2, \quad 3 p+1, \quad 5 p+4 m-3, \quad . ., 2 p+m-3$, $6 p+3 m+1,2 p+m-2,6 p+3 m)$. The value of the edges are then $4 p+2 m+2,4 p+2 m+3, \ldots$, $2 \mathrm{p}+4 \mathrm{~m}-2,2 \mathrm{p}+4 \mathrm{~m}-1$.
v. Join the vertex labeled $2 p+2 m-1$ to the vertices labeled $6 p+4 m-1$ and $6 p+4 m$. The value of the edges will be $4 p+2 m$ and $4 p+2 m+1$. Next join the two vertices $4 p$ and $6 p+4 m$ and produce the edge labeled $2 p+4 m$.

Now we have to distinguish ten special cases to cover the rest of the edge values of $\mathrm{C}_{4 \mathrm{~m}}$ by considering this fact that the missing value of the main graph is equal to $2 \mathrm{p}+\mathrm{m}$. The details of construction of $\mathrm{C}_{4 \mathrm{~m}}$ in each of these cases are given in Appendix 1.

### 3.2 Case 2: $m=p+i \quad i=2,1,0$

The labeling of the vertices of the first and the second $C_{4 p}$ will be the same as case 1 . Now we
have to organize three special cases to label the edges of the cycle $\mathrm{C}_{4 \mathrm{~m}}$. The details of each case are given in Appendix 2.

### 3.3 Case 3: (1/2) $\mathbf{p}<\mathbf{m} \leq \mathbf{p}-1$

The vertices of the first $\mathrm{C}_{4 \mathrm{p}}$ will be successively labeled as follows: $[0,8 p+4 m, 1,8 p+4 m-1,2$, $8 p+4 m-2, \ldots, p-1,7 p+4 m+1, p+1,7 p+4 m, \ldots, 2 p-1$, $6 p+4 m+2,2 p, 6 p+4 m+1]$. The resulting edge values of the first $\mathrm{C}_{4 \mathrm{p}}$ are then $8 \mathrm{p}+4 \mathrm{~m}, 8 \mathrm{p}+4 \mathrm{~m}-1,8 \mathrm{p}+4 \mathrm{~m}-2$, $\ldots, 6 p+4 m+1,6 p+4 m, \ldots, 4 p+4 m+2,4 p+4 m+1$. As we can see the first cycle $C_{4 p}$ is constructed exactly the same as the first cycle $\mathrm{C}_{4 \mathrm{p}}$ in the case 1 .
The vertices of the $\mathrm{C}_{4 \mathrm{~m}}$ will then be consecutively labeled by the numbers $[4 p, 4 p+4 m, 4 p+1,4 p+4 m-$ $1, \ldots, 4 p+m-1,4 p+3 m+1,4 p+m+1,4 p+3 m, \ldots$, $4 p+2 m-1,4 p+2 m+2,4 p+2 m, 4 p+2 m+1]$; this yields the edge values $4 \mathrm{~m}, 4 \mathrm{~m}-1,4 \mathrm{~m}-2, \ldots, 2 \mathrm{~m}+2,2 \mathrm{~m}+1$, $2 \mathrm{~m}, 2 \mathrm{~m}-1, \ldots, 3,2,1$.

The second cycle $\mathrm{C}_{4 \mathrm{p}}$ can be labeled based on the following stages with the exception of case $m=p-2$ :
i. The missing value of the first $\mathrm{C}_{4 \mathrm{p}}, \mathrm{p}$, is joined to the vertices $5 \mathrm{p}+4 \mathrm{~m}$ and $5 \mathrm{p}+4 \mathrm{~m}-1$ to generate the edges labeled $4 p+4 m$ and $4 p+4 m-$ 1.
ii. Join the missing value of $\mathrm{C}_{4 \mathrm{~m}}, 4 \mathrm{p}+\mathrm{m}$, to the vertices labeled $4 p+5 m+2$ and $4 p+5 m+1$. This yields the edges labeled 4 m and $4 \mathrm{~m}+1$.
iii. Form the following snake in such a way that its vertices are labeled by $(6 p+4 m-1$, $2 p+1,6 p+4 m-2,2 p+2, \ldots, 2 p+m-2,6 p+3 m+1$, $2 p+m-1,6 p+3 m)$. The corresponding values of the edges are then $4 p+4 m-2,4 p+4 m-3$, $4 p+4 m-4, \ldots, 4 p+2 m+3,4 p+2 m+2,4 p+2 m+1$.
iv. The edge labeled $4 p+2 m$ is obtained by connecting the vertex labeled $6 p+4 m$ to the vertex labeled $2 \mathrm{p}+2 \mathrm{~m}$.
v. The edges labeled $2 p+4 m+1$ and $2 p+4 m$ are generated by joining the vertex labeled $4 \mathrm{p}-1$ to the vertices labeled $6 p+4 m$ and $6 p+4 m-1$ respectively.
vi. For ( $1 / 2$ ) $\mathrm{p}<\mathrm{m} \leq \mathrm{p}$-3 form the snake $(6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2, \ldots, 3 p-$ $2,5 p+4 m+2,3 p-1,5 p+4 m+1)$. The values of the edges of this snake are $(4 p+2 m-1,4 p+2 m-$ $2,4 p+2 m-3, \quad . ., 2 p+4 m+4,2 p+4 m+3$, $2 p+4 m+2$.

Now we have to distinguish ten special cases to generate the remaining edge labels of $\mathrm{C}_{4 \mathrm{p}}$. The details are given in Appendix 3.

### 3.4 Case 4: $1<\mathrm{m} \leq(1 / 2) \mathrm{p}$

The vertices of the first $\mathrm{C}_{4 \mathrm{p}}$ will be successively labeled as follows: $[0,8 p+4 m, 1,8 p+4 m-1$, $\ldots 7 \mathrm{p}+4 \mathrm{~m}+3, \quad \mathrm{p}-2, \quad 7 \mathrm{p}+4 \mathrm{~m}+2, \quad \mathrm{p}-1,7 \mathrm{p}+4 \mathrm{~m}+1, \mathrm{p}$, $7 p+4 m-1, \ldots, 2 p-2,6 p+4 m+1,2 p-1,6 p+4 m]$. The resulting edge values of the first $\mathrm{C}_{4 \mathrm{p}}$ are then $8 p+4 m, \quad 8 p+4 m-1, \quad 8 p+4 m-2, \quad . . \quad 4 p+4 m+3$, $4 p+4 m+2,4 p+4 m+1$. The vertex labeled $7 p+4 m$ is the missing value of the first $\mathrm{C}_{4 \mathrm{p}}$.

Suppose that $\mathrm{m}<(1 / 2) \mathrm{p}$. The vertices of $\mathrm{C}_{4 \mathrm{~m}}$ will be consecutively labeled by the numbers $[2 p, 6 p+4 m-$ $1,2 p+1,6 p+4 m-2, \ldots .2 p+m-2,6 p+3 m+1,2 p+m-1$, $6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2,6 p+3 m-2, \ldots$ , $2 p+2 m-1,6 p+2 m+1,2 p+2 m, 6 p+2 m]$; this yields the edge values $4 p+4 m-1,4 p+4 m-2,4 p+4 m-3, \ldots$, $4 p+2,4 p+1,4 p$. The vertex labeled $2 p+m$ is the missing value of $2 \mathrm{C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{~m}}$. The construction of $\mathrm{C}_{4 \mathrm{~m}}$ is shown in figure 11 as follows:

Now join the missing value of the first $\mathrm{C}_{4 \mathrm{p}}$ to the vertices labeled $3 p$ and $3 p+4 m+1$. This generates the edges labeled $4 p+4 m$ and $4 p-1$. Then we apply transformation type 2 to the vertex labels $(2 p+2 m+1,2 p+2 m+2, \ldots, 3 p, \ldots, 3 p+4 m+1, \ldots$, $4 p+2 m-1,4 p+2 m)$ and $(4 p+2 m+1,4 p+2 m+2, \ldots$ $, 6 p+2 m-2,6 p+2 m-1)$ by using the two vertices $3 p$ and $3 p+4 m+1$ as end vertices. Note that since $1<m$ $<(1 / 2) \mathrm{p}$ we have $2 \mathrm{p}+2 \mathrm{~m}+1 \leq 3 \mathrm{p}<3 \mathrm{p}+4 \mathrm{~m}+1 \leq$ $4 p+2 m$. This transformation generates the edge labels $4 \mathrm{p}-2,4 \mathrm{p}-3, \ldots ., 3,2,1$ and the construction of the second $\mathrm{C}_{4 \mathrm{p}}$ will be completed.

For $m=(1 / 2) p$ the construction of $\mathrm{C}_{4 \mathrm{~m}}$ and the second $\mathrm{C}_{4 \mathrm{p}}$ will be similar to the above case with a minor modification. The vertices of $\mathrm{C}_{4 \mathrm{~m}}$ in this case will be labeled by the numbers $[2 p, 6 p+4 m-1,2 p+1$, $6 p+4 m-2, \quad \ldots ., 2 p+m-2, \quad 6 p+3 m+1, \quad 2 p+m-1$, $6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2,6 p+3 m-2, \ldots$ , $2 p+2 m-1,6 p+2 m+1,2 p+2 m+1,6 p+2 m]$; this yields the edge values $4 \mathrm{p}+4 \mathrm{~m}-1,4 \mathrm{p}+4 \mathrm{~m}-2,4 \mathrm{p}+4 \mathrm{~m}-$ $3, \ldots, 4 p+2,4 p, 4 p-1$. Now we connect the missing value of the first $C_{4 p}$, i.e., $7 p+4 m$ to the vertices labeled $2 p+2 m$ and $3 p+4 m-1(=5 p-1)$ to generate the edges labeled $4 p+4 m$ and $4 p+1$. The edge labeled $4 \mathrm{p}-2$ is obtained by joining the two vertices $2 p+2 m$ and $6 p+2 m-2$. Next, we apply transformation type 1 to the vertex labels $(2 p+2 m+2,2 p+2 m+3, \ldots, 4 p+2 m-1,4 p+2 m)$ and $(4 p+2 m+1,4 p+2 m+2, \ldots, 6 p+2 m-2,6 p+2 m-1)$ by using the two vertices $4 \mathrm{p}+2 \mathrm{~m}-1 \quad(=5 \mathrm{p}-1)$ and $6 p+2 m-2$ as end vertices. This transformation generates the edge labels $4 p-3,4 p-4, \ldots ., 3,2,1$ and the construction of the second $C_{4 p}$ will be completed.

### 3.5 Case 5: $\mathrm{m}=1$

As mentioned earlier, Abrham and Kotzig [1] showed that the case $p=1$ has no graceful valuation. The case $p=2$ was handled in case 4 . Now suppose $p$ $>3$. The labeling of the vertices of the first $\mathrm{C}_{4 \mathrm{p}}$ will be successively as follows: $[6 p+5,2 p, 6 p+6,2 p-1$, $\ldots, 7 p+4, p+1,7 p+5, p-1,7 p+6, p-2, \ldots, 8 p+3,1$, $8 p+4,0]$. The edge labels of this cycle will be $4 p+5$, $4 p+6,4 p+7, \ldots, 8 p+2,8 p+3,8 p+4$. The missing value of this cycle, p , will be used in the $\mathrm{C}_{4}$.
The vertices of $\mathrm{C}_{4}$ will be labeled as follows: [ p , $5 p+4,3 p+3,5 p+3]$. The corresponding edge values of this cycle are then $4 p+4,2 p+1,2 p, 4 p+3$. The missing value of the whole graph is $2 \mathrm{p}+1$.
Now we will construct the second $\mathrm{C}_{4 \mathrm{p}}$. First we generate a snake with vertices labeled ( $3 \mathrm{p}+2,5 \mathrm{p}+5$, $3 p+1,5 p+6, \ldots, 2 p+4,6 p+3,2 p+3,6 p+4,2 p+2)$. The resulting values of the edges are then $2 p+3$, $2 p+4,2 p+5, \ldots, 4 p-1,4 p, 4 p+1,4 p+2$. The edges labeled $2 \mathrm{p}+2$ and $2 \mathrm{p}-1$ are obtained by connecting
the following pairs of vertices: $2 \mathrm{p}+2$ and $4 \mathrm{p}+4$; $3 p+2$ and $5 p+1$. In order to make the rest of the edge labels we will perform transformation type 3 to the vertex labels $(5 p+2,5 p+1,5 p, \ldots, 4 p+5$, $4 p+4,4 p+3)$ and $(4 p+2,4 p+1,4 p, \ldots, 3 p+5,3 p+4)$ where we select the two vertices $5 p+1$ and $4 p+4$ as end vertices. Therefore the edge labels $1,2,3, \ldots$, $2 \mathrm{p}-3,2 \mathrm{p}-2$ will be obtained and the construction of the second $\mathrm{C}_{4 \mathrm{p}}$ will be completed.
For $\mathrm{p}=3$, we will have the graph $2 \mathrm{C}_{12} \cup \mathrm{C}_{4}$ and an $\alpha$-valuation of this graph could have the following vertex labels: $[0,23,6,24,5,25,4,26,2,27,1$, 28], $[3,19,11,18],[8,22,13,15,14,17,12,16$, 10, 20, 9, 21].

## 4. THE STANDARD VALUATIONS OF $\mathrm{C}_{4 \mathrm{k}}$

Definition 1: The standard $\alpha$-valuations of $\mathrm{C}_{4 \mathrm{k}}$ are given by any of the following sequence of values of the consecutive vertices of $\mathrm{C}_{4 \mathrm{k}}$ :
i) $[4 \mathrm{k}, 0,4 \mathrm{k}-1,1,4 \mathrm{k}-2,2, \ldots, \mathrm{k}-2,3 \mathrm{k}+1, \mathrm{k}-1,3 \mathrm{k}$, $\mathrm{k}+1,3 \mathrm{k}-1, \mathrm{k}+2,3 \mathrm{k}-2, \ldots, 2 \mathrm{k}+2,2 \mathrm{k}-1, \quad 2 \mathrm{k}+1$, 2 k ] with missing value $\mathrm{x}=\mathrm{k}$.
ii) $[0,4 \mathrm{k}, 1,4 \mathrm{k}-1,2,4 \mathrm{k}-2, \ldots, \mathrm{k}-2,3 \mathrm{k}+2, \mathrm{k}-1,3 \mathrm{k}-1$, $\mathrm{k}+1,3 \mathrm{k}, \mathrm{k}+2,3 \mathrm{k}-1, \ldots, 2 \mathrm{k}-2,2 \mathrm{k}+2$, $2 \mathrm{k}, 2 \mathrm{k}+1]$ with missing value $\mathrm{x}=\mathrm{k}$.
iii) $[4 \mathrm{k}, 0,4 \mathrm{k}-1,1,4 \mathrm{k}-2,2, \ldots, \mathrm{k}-2,3 \mathrm{k}+1, \mathrm{k}-1,3 \mathrm{k}-1$, $\mathrm{k}, 3 \mathrm{k}-2, \ldots, 2 \mathrm{k}+1,2 \mathrm{k}-2,2 \mathrm{k}, 2 \mathrm{k}-1]$ with missing value $\mathrm{x}=3 \mathrm{k}$.
iv) $[0,4 \mathrm{k}, 1,4 \mathrm{k}-1,2,4 \mathrm{k}-2, \ldots, \mathrm{k}-2,3 \mathrm{k}+2, \mathrm{k}-1,3 \mathrm{k}+1$, $\mathrm{k}, 3 \mathrm{k}-1, \mathrm{k}+1, \ldots, 2 \mathrm{k}-2,2 \mathrm{k}+1,2 \mathrm{k}-1,2 \mathrm{k}]$ with missing value $\mathrm{x}=3 \mathrm{k}$.
In figure 7 one of the standard $\alpha$-valuations of $\mathrm{C}_{12}$ has been shown:


Figure 7: A standard $\alpha$-valuation of $\mathrm{C}_{12}$

A standard $\alpha$-valuation of $\mathrm{C}_{4 \mathrm{k}}$ can be replaced by any other $\alpha$-valuations of $\mathrm{C}_{4 \mathrm{k}}$. For example, an $\alpha$ valuation of $\mathrm{C}_{12}$ in figure 13 is replaced by an $\alpha$ valuation of $2 \mathrm{C}_{6}$ in figure 8 :


Figure 8: An $\alpha$-valuation of $2 \mathrm{C}_{6}$

Definition 2: The graph $\mathrm{C}_{4 \mathrm{k}}$ has a standard labeling ( or standard valuation) if the values of the vertices of $\mathrm{C}_{4 \mathrm{k}}$ can be generated from a standard $\alpha$-labeling of $\mathrm{C}_{4 \mathrm{k}}$ differ by a constant factor.

For example, $\mathrm{C}_{12}$ in the $\alpha$-labeling of $\mathrm{C}_{12} \cup \mathrm{C}_{20}$ shown in figure 9 has a standard labeling because it can be generated from a standard $\alpha$-labeling of $\mathrm{C}_{12}$ that differs by a constant factor 10 :


Figure 9: An $\alpha$-valuation of $C_{12} \cup C_{20}$

If a graph has a standard labeling it can be replaced by any $\alpha$-labeling of $\mathrm{C}_{4 \mathrm{k}}$ by considering the constant factor. For instance, the standard labeling of $\mathrm{C}_{12}$ in figure 10 can be replaced by an $\alpha$-labeling of $2 \mathrm{C}_{6}$ to form an $\alpha$-valuation of $2 \mathrm{C}_{6} \cup \mathrm{C}_{20}$ if we increase the values of the $\alpha$-labeling $2 \mathrm{C}_{6}$ in figure 14 by constant factor i.e. 10 :

Figure 10: An $\alpha$-valuation of $\mathrm{C}_{12}$

## 5. EXISTENCE OF CONDITIONAL $\alpha$ VALUATIONS OF GENERAL CLASSES OF 2-REGULAR GRAPHS

Now we present some general results for the graphs composed of the disjoint union of cycles. The results considerably enlarge the class of 2-regular graphs known to have $\alpha$-valuations.

Theorem 2: The graph $\bigcup_{i=0}^{n} C_{4 m_{i}}$ has an $\alpha$ valuation if $\sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{m}_{\mathrm{j}} \leq \mathrm{m}_{\mathrm{i}}$ for $\mathrm{i}=0,1,2, \ldots, \mathrm{n}$ 1.

Proof: According to the definition of standard labeling, we notice that in the construction of an $\alpha$ valuation of the graph $C_{4 p} \cup C_{4 m} ; p \leq m$, which was constructed by Abrham and Kotzig [2], $\mathrm{C}_{4 \mathrm{p}}$ has a standard valuation. Suppose that $\mathrm{C}_{4 \mathrm{k}} \cup \mathrm{C}_{4 \mathrm{~m}_{0}} ; \mathrm{k} \leq$ $m_{0}$, has an $\alpha$-valuation. Now we replace $C_{4 k}$, which has a standard labeling, by the graph $\mathrm{C}_{4 \mathrm{k}_{1}} \cup \mathrm{C}_{4 \mathrm{~m}_{1}} ; \mathrm{k}_{1}$ $\leq \mathrm{m}_{1} ; \mathrm{k}=\mathrm{k}_{1}+\mathrm{m}_{1}$. In this construction $\mathrm{C}_{4 \mathrm{k}_{1}}$ again has a standard valuation and we can replace it by $C_{4 \mathrm{k}_{2}} \cup \mathrm{C}_{4 \mathrm{~m}_{2}} ; \mathrm{k}_{1}=\mathrm{k}_{2}+\mathrm{m}_{2} ; \mathrm{k}_{2} \leq \mathrm{m}_{2}$. If we repeat this kind of replacement in such a way that each time we replace a standard valuation of the graph $\mathrm{C}_{4 \mathrm{k}_{\mathrm{i}}}$ by $\mathrm{C}_{4 \mathrm{k}_{\mathrm{i}+1}} \cup \mathrm{C}_{4 \mathrm{~m}_{\mathrm{i}+1}} ; \mathrm{k}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}+1}+\mathrm{k}_{\mathrm{i}+1} ; \mathrm{k}_{\mathrm{i}+1} \leq \mathrm{m}_{\mathrm{i}+1}$ for $\mathrm{i}=2, \ldots, \mathrm{n}-2$ and $\mathrm{k}_{\mathrm{n}-1}=\mathrm{m}_{\mathrm{n}}$; we will obtain an $\alpha$-labeling of the graph $\bigcup_{i=0}^{n} C_{4 m_{i}}$.

For example, the graph $\mathrm{C}_{72} \cup \mathrm{C}_{40} \cup \mathrm{C}_{12} \cup \mathrm{C}_{8} \cup \mathrm{C}_{4}$ has an $\alpha$-valuation according to the theorem 2 since
we have $\mathrm{m}_{0}=18, \mathrm{~m}_{1}=10, \mathrm{~m}_{2}=3, \mathrm{~m}_{3}=2$ and $\mathrm{m}_{4}=$ 1 and the condition of the theorem is satisfied.

Theorem 3: The graph $C_{4 p} \cup C_{4 r} \cup C_{4 m}$ has an $\alpha$ labeling where $C_{4 m}=\bigcup_{i=1}^{n} C_{4 m_{i}}$ and $p \geq r+$
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}} ; \mathrm{r}=\sum_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}} ; \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{m}_{\mathrm{j}} \leq \mathrm{m}_{\mathrm{i}}$ for $\mathrm{i}=1,2$, $\ldots, \mathrm{n}-1$.

Proof: In the construction of an $\alpha$-valuation of $\mathrm{C}_{4 \mathrm{k}}$ $\cup \mathrm{C}_{4 \mathrm{p}} ; \mathrm{k} \leq \mathrm{p}$; we replace a standard labeling of $\mathrm{C}_{4 \mathrm{k}}$ by $\mathrm{C}_{4 \mathrm{~m}_{1}} \cup 2 \mathrm{C}_{4 \mathrm{p}_{1}} ; \mathrm{k}=\mathrm{m}_{1}+2 \mathrm{p}_{1}$. We know that in an $\alpha$-labeling of $\mathrm{C}_{4 \mathrm{~m}} \quad \cup 2 \mathrm{C}_{4 \mathrm{p}}$ we are always able to construct at least one of $\mathrm{C}_{4 \mathrm{p}}$ by using a standard labeling; thus in an $\alpha$-labeling of $\mathrm{C}_{4 \mathrm{~m}_{1}} \cup 2 \mathrm{C}_{4 \mathrm{p}_{1}}$ we can replace one of the $C_{4 p_{1}}$ by $C_{4 p_{2}} \cup C_{4 m_{2}} ; p_{1}=p_{2}$ $+\mathrm{m}_{2} ; \mathrm{p}_{2} \leq \mathrm{m}_{2}$. Now we use the same replacement procedure as theorem 2 in such a way that each time we replace a standard labeling of the graph $\mathrm{C}_{4 \mathrm{p}_{\mathrm{i}}}$ by $C_{4 p_{i+1}} \cup C_{4 m_{i+1}} ; p_{i}=m_{i+1}+p_{i+1} ; p_{i+1} \leq m_{i+1}$ for $i=2$, $\ldots, \mathrm{n}-2$ and $\mathrm{p}_{\mathrm{n}-1}=\mathrm{m}_{\mathrm{n}}$.

For instance, the graph $\mathrm{C}_{140} \cup \mathrm{C}_{60} \cup \mathrm{C}_{32} \cup \mathrm{C}_{20} \cup$ $\mathrm{C}_{8} \cup \mathrm{C}_{4}$ has an $\alpha$-valuation because the conditions of theorem 3 will be satisfied by assuming $\mathrm{p}=35$, r $=15, \mathrm{~m}_{1}=8, \mathrm{~m}_{2}=5, \mathrm{~m}_{3}=2$ and $\mathrm{m}_{4}=1$.

Theorem 4: The graph $\mathrm{C}_{4 \mathrm{~s}} \cup \mathrm{C}_{4 \mathrm{r}} \cup \mathrm{C}_{4 \mathrm{~m}} \cup \mathrm{C}_{4 \mathrm{p}}$ has an $\alpha$-labeling where $\mathrm{C}_{4 \mathrm{~m}}=\bigcup_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{4 \mathrm{~m}_{\mathrm{i}}}, \mathrm{C}_{4 \mathrm{p}}=$ $\bigcup_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{4 \mathrm{p}_{\mathrm{i}}}$ and $\mathrm{s} \geq \mathrm{r}+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{m}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}}\right) ; \mathrm{r}=\mathrm{p}_{\mathrm{n}}$ and $\mathrm{p}_{\mathrm{i}}=$ $m_{i+1}+2 p_{i+1}$ for $i=1,2, \ldots, n-1$.

Proof: In the construction of an $\alpha$-valuation of $\mathrm{C}_{4 \mathrm{k}}$ $\cup \mathrm{C}_{4 \mathrm{p}} ; \mathrm{k} \leq \mathrm{p}$; first we replace a standard labeling of $\mathrm{C}_{4 \mathrm{k}}$ by $\mathrm{C}_{4 \mathrm{~m}_{1}} \cup 2 \mathrm{C}_{4 \mathrm{p}_{1}} ; \mathrm{k}=\mathrm{m}_{1}+2 \mathrm{p}_{1}$. Then we apply the replacement procedure by substituing a standard labeling of the graph $C_{4 p_{i}}$ by
$2 \mathrm{C}_{4 \mathrm{p}_{\mathrm{i}+1}} \cup \mathrm{C}_{4 \mathrm{~m}_{\mathrm{i}+1}} ; \mathrm{p}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}+1}+2 \mathrm{p}_{\mathrm{i}+1}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}-$ 1.

For example, the graph $\mathrm{C}_{200} \cup \mathrm{C}_{16} \cup \mathrm{C}_{80} \cup \mathrm{C}_{8} \cup$ $\mathrm{C}_{36} \cup \mathrm{C}_{12} \cup \mathrm{C}_{12} \cup \mathrm{C}_{4} \cup \mathrm{C}_{4}$ has an $\alpha$-valuation according to the theorem 4 if we assume $\mathrm{s}=50, \mathrm{r}$ $=1, \mathrm{p}_{1}=20, \mathrm{~m}_{1}=4, \mathrm{p}_{2}=9, \mathrm{~m}_{2}=2, \mathrm{p}_{3}=\mathrm{m}_{3}=3$ and $\mathrm{p}_{4}=\mathrm{m}_{4}=1$.

Theorem 5: The graph $\mathrm{C}_{4 \mathrm{t}} \cup \mathrm{C}_{4 \mathrm{~s}} \cup \mathrm{C}_{4 \mathrm{r}} \cup \mathrm{C}_{4 \mathrm{~m}} \cup$ $\mathrm{C}_{4 \mathrm{p}}$ has an $\alpha$-labeling where $\mathrm{C}_{4 \mathrm{~m}}=\bigcup_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{4 \mathrm{~m}_{\mathrm{i}}}, \mathrm{C}_{4 \mathrm{p}}=$ $\bigcup_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{4 \mathrm{p}_{\mathrm{i}}}$ and $\mathrm{s}=\mathrm{r}+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{m}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}}\right) ; \mathrm{r}=\mathrm{p}_{\mathrm{n}}$ and $\mathrm{p}_{\mathrm{i}}=$ $m_{i+1}+2 p_{i+1}$ for $i=1,2, \ldots, n-1$.

Proof: First we consider an $\alpha$-valuation of $\mathrm{C}_{4 \mathrm{t}} \cup$ $2 \mathrm{C}_{4 \mathrm{~s}}$. Then we replace a standard labeling of $\mathrm{C}_{4 \mathrm{~s}}$ by $\mathrm{C}_{4 \mathrm{~m}_{1}} \cup 2 \mathrm{C}_{4 \mathrm{p}_{1}} ; \mathrm{s}=\mathrm{m}_{1}+2 \mathrm{p}_{1}$. Next we apply the replacement procedure by substituting a standard labeling of the graph $\mathrm{C}_{4 \mathrm{p}_{\mathrm{i}}}$ by $2 \mathrm{C}_{4 \mathrm{p}_{\mathrm{i}+1}} \cup \mathrm{C}_{4 \mathrm{~m}_{\mathrm{i}+1}} ; \mathrm{p}_{\mathrm{i}}=$ $m_{i+1}+2 p_{i+1}$ for $i=1,2, \ldots, n-1$.

Theorem 6: The graph $\mathrm{C}_{4 \mathrm{~m}} \cup \mathrm{C}_{4 \mathrm{~s}} \cup \mathrm{C}_{4 \mathrm{r}}$ has an $\alpha$ labeling where $C_{4 m}=\bigcup_{i=0}^{n} C_{4 m_{i}}, C_{4 r}=\bigcup_{j=0}^{t} C_{4 r_{j}}, s$ $=\sum_{i=0}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}} ; \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{m}_{\mathrm{j}} \leq \mathrm{m}_{\mathrm{i}}$ for $\mathrm{i}=0,1,2, \ldots, \mathrm{n}-$ $1 ; \sum_{l=j+1}^{t} r_{1} \leq r_{j}$ for $j=0,1,2, \ldots, t-1 ; 1<\sum_{j=0}^{t} r_{j}$ $<\sum_{i=0}^{n} m_{i}$ and $\sum_{j=0}^{t} r_{j} \quad(1 / 2) \sum_{i=0}^{n} m_{i}$.

Proof: We have seen that in construction of an $\alpha$ valuation of $2 \mathrm{C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{~m}}$ for $1<\mathrm{m}<\mathrm{p} ; \mathrm{m}(1 / 2) \mathrm{p}$ we are always able to construct at least one of $\mathrm{C}_{4 \mathrm{p}}$ and $\mathrm{C}_{4 \mathrm{~m}}$ by using standard labelings; thus we use the same replacement procedure as theorem 2 for each of these graphs to obtain the an $\alpha$-valuation of the graph $\mathrm{C}_{4 \mathrm{~m}} \cup \mathrm{C}_{4 \mathrm{~s}} \cup \mathrm{C}_{4 \mathrm{r}}$.

Theorem 7: a) The graph $\mathrm{C}_{4 \mathrm{~m}} \cup 2 \mathrm{C}_{4 \mathrm{~s}}$ has an $\alpha$ labeling where $\mathrm{C}_{4 \mathrm{~m}}=\bigcup_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{C}_{4 \mathrm{~m}_{\mathrm{i}}} ; \mathrm{s}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}}$; $\sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{m}_{\mathrm{j}} \leq \mathrm{m}_{\mathrm{i}}$ for $\mathrm{i}=0,1,2, \ldots, \mathrm{n}-1$.
b) The graph $\mathrm{C}_{4 \mathrm{~m}} \cup \mathrm{C}_{4 \mathrm{~s}} \cup \mathrm{C}_{4 \mathrm{r}}$ has an $\alpha$-labeling where $C_{4 m}=\bigcup_{i=0}^{n} C_{4 m_{\mathrm{i}}}, C_{4 \mathrm{r}}=\bigcup_{\mathrm{j}=0}^{\mathrm{t}} \mathrm{C}_{4 \mathrm{r}_{\mathrm{j}}}, \mathrm{s}=$ $\sum_{i=0}^{n} m_{i} ; \sum_{j=i+1}^{n} m_{j} \leq m_{i}$ for $\mathrm{i}=0,1,2, \ldots, n-1$; $\sum_{\mathrm{l}=\mathrm{j}+1}^{\mathrm{t}} \mathrm{r}_{1} \leq \mathrm{r}_{\mathrm{j}}$ for $\mathrm{j}=0,1,2, \ldots, \mathrm{t}-1$ and $\quad \sum_{\mathrm{j}=0}^{\mathrm{t}} \mathrm{r}_{\mathrm{j}}$ $=\sum_{i=0}^{n} m_{i}$.

Proof: In construction of $\mathrm{C}_{3 \mathrm{a}}$, we have seen that two isomorphic components of $\mathrm{C}_{3 \mathrm{a}}$ have standard labelings. In part (a) of theorem 7 we use the same replacement procedure as theorem 2 for one of these components and in part (b) we use it for both of them. In fact in part $b$ each standard labeling of $C_{4 a}$ decompose to the different components which are not necessarily isomorphic to each other.

## References:

1. J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996) 3-15.
2. J. Abrham and A. Kotzig, On the missing value in graceful numbering of a 2-regular graph, Cong. Numer. 65 (1988) 261-266.
3. K. Eshghi, M.W. Carter and J. Abrham, On the Construction of an $\alpha$-Valuation of the Graph $\mathrm{C}_{4 \mathrm{a}} \cup \mathrm{C}_{4 \mathrm{~b}} \cup \mathrm{C}_{4 \mathrm{c}}$, Working paper, Mechanical and Industrial Engineering, University of Toronto, 1997.
4. K. Eshghi, The Existence and Construction of Alpha-Valuations of 2-Regular Graphs with Three Components, Ph.D. thesis, Mechanical and Industrial Engineering, University of Toronto, June 1997.
5. J. A. Gallian, A survey: recent results, conjectures and open problems on labeling graphs, J. Graph Theory 13 (1989) 491-504.
6. J. A. Gallian, A guide to the graph labeling zoo, Discrete Appl. Math. 49 (1994) 213-229.
7. A. Kotzig, $\beta$-valuations of quadratic graphs with isomorphic components, Utilitas Math. 7 (1975) 263-279.
8. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), Gordon and

Breach, New York and Dunod Paris (1967) 349355.

## APPENDIX 1: Case 1: $\mathbf{p + 2}<\mathbf{m}<\mathbf{2 p}$

| Conditions: $\mathrm{m}=2 \mathrm{p}-1, \mathrm{p} \geq 13$ |  |  |
| :---: | :---: | :---: |
| Step |  | The successive vertex labels |
| 1 |  | p-2,12p-5); (4p, 12p-8); $4 \mathrm{p}-2,10 \mathrm{p}-1)$ |
| 2 |  | 2p-3, 4p+1, 12p-4, 4p+2, 12p-5) |
| 3 | (11p-1, 5p-4, 11p-2, 5p-2, 11p-3, 5p-1, .., 10p+1, 6p-5, 10p, 6p-4, 10p-1) |  |
| 4 | $(11 p, 5 p-5,11 p+1,5 p-3,11 p+4)$ |  |
| 5 | Apply the transformation type 3 $5 p-7,5 p-8, \ldots, 4 p+4,4 p+3)$ by |  |
| Conditions: $\mathbf{m}=\mathbf{2 p - 1 , 4} \mathbf{4} \mathbf{p} \leq 12$ |  |  |
| p | m | The successive vertex labels of $\mathrm{C}_{4 \mathrm{~m}}$ |
| 12 | 23 | $\begin{aligned} & {[12,152,35,153,34,154,33,155,32,156,31,157,30,158,29,159,28,160,27,161,26,162,25,163,69,164,48,136,} \\ & 52,137,51,138,55,134,54,135,53,131,82,132,57,133,56,130,58,129,59,128,60,127,61,126,62,125,63,124, \\ & 64,123,65,122,66,121,67,120,68,119,46,139,50,140,49,141,45,142,44,143,43,144,42,145,41,146,40,147, \\ & 39,148,38,149,37,150,36,151] \end{aligned}$ |
| 11 | 21 | $\begin{aligned} & {[11,139,32,140,31,141,30,142,29,143,28,144,27,145,26,146,25,147,24,148,23,149,63,150,44,124,48,123,} \\ & 49,126,47,125,52,122,50,121,75,120,51,119,53,118,54,117,55,116,56,115,57,114,58,113,59,112,60,111, \\ & 61,110,62,109,42,127,46,128,45,129,41,130,40,131,39,132,38,133,37,134,36,135,35,136,34,137,33,138] \end{aligned}$ |
| 10 | 19 | $\begin{aligned} & {[10,125,30,124,31,123,32,122,33,121,34,120,35,119,36,118,37,117,41,116,42,115,38,110,68,109,46,111,} \\ & 45,112,44,113,43,114,52,103,53,102,54,101,55,100,56,99,47,108,48,107,49,106,50,105,51,104,40,136,57, \\ & 135,21,134,22,133,23,132,24,131,25,130,26,129,27,128,28,127,29,126] \end{aligned}$ |
| 9 | 17 | $\begin{aligned} & {[9,112,27,111,28,110,29,109,30,108,31,107,32,106,33,105,37,104,38,103,34,98,61,99,41,100,40,101,39,} \\ & 102,46,94,45,95,44,96,43,97,42,89,50,90,49,91,48,92,47,93,36,122,51,121,19,120,20,119,21,118,22,117, \\ & 23,116,24,115,25,114,26,113] \end{aligned}$ |
| 8 | 15 | $\begin{aligned} & {[8,99,24,98,25,97,26,96,27,95,28,94,29,93,33,92,34,91,30,86,37,87,54,88,36,89,35,90,42,81,41,82,44,} \\ & 79,43,80,38,85,39,84,40,83,32,108,45,107,17,106,18,105,19,104,20,103,21,102,22,101,23,100] \end{aligned}$ |
| 7 | 13 | $\begin{aligned} & {[7,86,21,85,22,84,23,83,24,82,25,81,29,80,30,79,26,74,33,75,32,76,47,77,31,78,38,69,37,70,36,71,35,} \\ & 72,34,73,28,94,39,93,15,92,16,91,17,90,18,89,19,88,20,87] \end{aligned}$ |
| 6 | 11 | $[6,73,18,72,19,71,20,70,21,69,25,68,26,67,22,62,29,61,30,60,31,59,32,66,40,65,27,64,28,63,24,80,33$, $79,13,78,14,77,15,76,16,75,17,74]$ |
| 5 | 9 | $[5,60,15,59,16,58,17,57,21,54,33,55,18,53,22,56,24,51,23,52,26,49,25,50,20,66,27,65,11,64,12,63,13$, $62,14,61]$ |
| 4 | 7 | $[4,47,12,46,13,45,17,44,26,43,14,40,19,39,20,42,18,41,16,52,21,51,9,50,10,49,11,48]$ |


| Conditions: (9/5) $\mathbf{p + 1}<\mathbf{m} \leq \mathbf{2 p - 2} \quad[\mathrm{Note}: ~ \sigma=3 \mathrm{~m}-5 \mathrm{p}-3, \omega=4 \mathrm{p}-2 \mathrm{~m}+3, \mathrm{~N}=\lfloor\sigma / \omega\rfloor-1, \mathrm{r}=\sigma-(\mathrm{N}+1) \omega$ ] |  |
| :---: | :---: |
| Step | The successive vertex labels |
| 1 | $(6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2, \ldots, 4 p-1,4 p+4 m+1,4 p+1,4 p+4 m, \ldots, 6 p-m, 2 p+5 m+1,6 p-m+1$ $2 p+5 m$ ) when $m<2 p-2$. For $m=2 p-2$ the vertex labels have the following order: ( $12 p-6,4 p-1,12 p-7$, |


|  | $4 \mathrm{p}+1,12 \mathrm{p}-8,4 \mathrm{p}+2,12 \mathrm{p}-9,4 \mathrm{p}+3,12 \mathrm{p}-10)$ |
| :--- | :--- |
| 2 | $(2 \mathrm{p}+\mathrm{m}-\mathrm{p}, 2 \mathrm{p}+5 \mathrm{~m}) ;(2 \mathrm{p}+\mathrm{m}-1,7 \mathrm{~m}-2 \mathrm{p}-3) ;(11 \mathrm{p}+\mathrm{r}+5,5 \mathrm{p}-\mathrm{r}) ;(4 \mathrm{p}, 10 \mathrm{p}+4) ;(7 \mathrm{p}+2 \mathrm{~m}+2+\mathrm{r}, 9 \mathrm{p}-2 \mathrm{~m}-\mathrm{r}+4) \mathrm{4})$ |
| 3 | $(7 \mathrm{p}+2 \mathrm{~m}+\mathrm{r}+2, \mathrm{p}+2 \mathrm{~m}-\mathrm{r}-2,7 \mathrm{p}+2 \mathrm{~m}+\mathrm{r}+1, \mathrm{p}+2 \mathrm{~m}-\mathrm{r}-1, \ldots, 7 \mathrm{p}+2 \mathrm{~m}+3 \mathrm{p}+2 \mathrm{~m}-3,7 \mathrm{p}+2 \mathrm{~m}+2)$ <br> $[$ Note: If $\mathrm{r}=0$, we need to exclude this snake from our consideration $]$ |
| 4 | Apply the transformation type 3 on the vertex labels $(6 \mathrm{p}-\mathrm{m}+2,6 \mathrm{p}-\mathrm{m}+3, \ldots, \mathrm{p}+2 \mathrm{~m}-\mathrm{r}-4, \mathrm{p}+2 \mathrm{~m}-\mathrm{r}-3)$ and <br> $(7 \mathrm{p}+2 \mathrm{~m}+\mathrm{r}+3,7 \mathrm{p}+2 \mathrm{~m}+\mathrm{r}+4, \ldots, 2 \mathrm{p}+5 \mathrm{~m}-2,2 \mathrm{p}+5 \mathrm{~m}-1)$ by using the end vertices $11 \mathrm{p}+\mathrm{r}+5$ and $7 \mathrm{~m}-2 \mathrm{p}-3$. |
| 5 | $(7 \mathrm{p}+2 \mathrm{~m}+1, \mathrm{p}+2 \mathrm{~m}-2,7 \mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}-1, \ldots, 3 \mathrm{p}+4 \mathrm{~m}+\mathrm{r}, 5 \mathrm{p}-\mathrm{r}-1,3 \mathrm{p}+4 \mathrm{~m}+\mathrm{r}-1,5 \mathrm{p}-\mathrm{r})$ |$|$


| Condition: $\mathbf{m}=(\mathbf{9 / 5}) \mathbf{p}+(\mathbf{3} / \mathbf{5})$ |  |
| :--- | :--- |
| Step | $\quad$ The successive vertex labels |
| 1 | $(6 \mathrm{p}+3 \mathrm{~m}, 2 \mathrm{p}+\mathrm{m}+1,6 \mathrm{p}+3 \mathrm{~m}-1,2 \mathrm{p}+\mathrm{m}+2, \ldots, 4 \mathrm{p}-1,4 \mathrm{p}+4 \mathrm{~m}+1,4 \mathrm{p}+1,4 \mathrm{p}+4 \mathrm{~m}, \ldots, 6 \mathrm{p}-\mathrm{m}, 2 \mathrm{p}+5 \mathrm{~m}+1,6 \mathrm{p}-\mathrm{m}+1$, <br> $2 \mathrm{p}+5 \mathrm{~m}-1, \ldots, \mathrm{p}+2 \mathrm{~m}-3,7 \mathrm{p}+2 \mathrm{~m}+3, \mathrm{p}+2 \mathrm{~m}-2,7 \mathrm{p}+2 \mathrm{~m}+2)$ |
| 2 | $(2 \mathrm{p}+\mathrm{m}-1,2 \mathrm{p}+5 \mathrm{~m}) ;(2 \mathrm{p}+\mathrm{m}-1,7 \mathrm{~m}-2 \mathrm{p}-2) ;(2 \mathrm{p}+5 \mathrm{~m}, 5 \mathrm{~m}-4 \mathrm{p}-3) ;(4 \mathrm{p}, 10 \mathrm{p}+2)$ |
| 3 | Apply transformation type 1 to the vertex labels $(\mathrm{p}+2 \mathrm{~m}-1, \mathrm{p}+2 \mathrm{~m}, \ldots, 5 \mathrm{~m}-4 \mathrm{p}-3, \ldots, 2 \mathrm{p}+2 \mathrm{~m}-3,2 \mathrm{p}+2 \mathrm{~m}-2)$ <br> and $(6 \mathrm{p}+2 \mathrm{~m}+1,6 \mathrm{p}+2 \mathrm{~m}+2, \ldots, 10 \mathrm{p}+2, \ldots, 7 \mathrm{p}+2 \mathrm{~m}-1,7 \mathrm{p}+2 \mathrm{~m})$ by using the two vertices $5 \mathrm{~m}-4 \mathrm{p}-3$ and <br> $10 \mathrm{p}+2$ as end vertices |

## Condition: $\mathbf{m}=(\mathbf{9 / 5}) \mathrm{p}+(\mathbf{4} / 5)$

[Note: The rest of the edge labels are generated by the same method as the above case]

| Step | The successive vertex labels |
| :--- | :--- |
| 1 | $(6 \mathrm{p}+3 \mathrm{~m}, 2 \mathrm{p}+\mathrm{m}+1,6 \mathrm{p}+3 \mathrm{~m}-1,2 \mathrm{p}+\mathrm{m}+2, \ldots, 4 \mathrm{p}-1,4 \mathrm{p}+4 \mathrm{~m}+1,4 \mathrm{p}+1,4 \mathrm{p}+4 \mathrm{~m}, \ldots, 6 \mathrm{p}-\mathrm{m}, 2 \mathrm{p}+5 \mathrm{~m}+1,6 \mathrm{p}-\mathrm{m}+1$, <br> $2 \mathrm{p}+5 \mathrm{~m}-1, \ldots, \mathrm{p}+2 \mathrm{~m}-3,7 \mathrm{p}+2 \mathrm{~m}+3, \mathrm{p}+2 \mathrm{~m}-2,7 \mathrm{p}+2 \mathrm{~m}+1)$ |
| 2 | $(2 \mathrm{p}+5 \mathrm{~m}, 5 \mathrm{~m}-4 \mathrm{p}-4) ;(2 \mathrm{p}+\mathrm{m}-1,7 \mathrm{p}+2 \mathrm{~m}+2)$ |$|$| Apply the transformation type 1 to the vertex labels $(\mathrm{p}+2 \mathrm{~m}-1, \mathrm{p}+2 \mathrm{~m}, \ldots, 5 \mathrm{~m}-4 \mathrm{p}-4, \ldots, 2 \mathrm{p}+2 \mathrm{~m}-3,2 \mathrm{p}+2 \mathrm{~m}-$ |
| :--- |
| $2)$ and $(6 \mathrm{p}+2 \mathrm{~m}+1,6 \mathrm{p}+2 \mathrm{~m}+2, \ldots, 10 \mathrm{p}+2, \ldots, 7 \mathrm{p}+2 \mathrm{~m}-1,7 \mathrm{p}+2 \mathrm{~m})$ by using the two vertices $5 \mathrm{~m}-4 \mathrm{p}-4$ and |
| $10 \mathrm{p}+2$ as end vertices. |


| Condition: $m=(9 / 5) p+1$ |  |
| :---: | :---: |
| Step | The successive vertex labels |
| 1 | $\begin{aligned} & (6 \mathrm{p}+3 \mathrm{~m}, 2 \mathrm{p}+\mathrm{m}+1,6 \mathrm{p}+3 \mathrm{~m}-1,2 \mathrm{p}+\mathrm{m}+2, \ldots, 4 \mathrm{p}-1,4 \mathrm{p}+4 \mathrm{~m}+1,4 \mathrm{p}+1,4 \mathrm{p}+4 \mathrm{~m}, \ldots, 6 \mathrm{p}-\mathrm{m}, 2 \mathrm{p}+5 \mathrm{~m}+1,6 p- \\ & \mathrm{m}+1,2 \mathrm{p}+5 \mathrm{~m}-1, \ldots, \mathrm{p}+2 \mathrm{~m}-4,7 \mathrm{p}+2 \mathrm{~m}+4, \mathrm{p}+2 \mathrm{~m}-3,7 \mathrm{p}+2 \mathrm{~m}+2) \end{aligned}$ |
| 2 | $(2 \mathrm{p}+\mathrm{m}-1,2 \mathrm{p}+5 \mathrm{~m}) ;(2 \mathrm{p}+\mathrm{m}-1,7 \mathrm{p}+2 \mathrm{~m}+3) ;(2 \mathrm{p}+5 \mathrm{~m}, 5 \mathrm{~m}-4 \mathrm{p}-6) ;(7 \mathrm{p}+2 \mathrm{~m}+3, \mathrm{p}+2 \mathrm{~m}-1) ;(4 \mathrm{p}, 10 \mathrm{p})$ |
| 3 | $(7 \mathrm{p}+2 \mathrm{~m}+1, \mathrm{p}+2 \mathrm{~m}-2,7 \mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}-1)$ |
| 4 | Apply the transformation type 1 to the vertices ( $\mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}+1, \ldots, 5 \mathrm{~m}-4 \mathrm{p}-6, \ldots, 2 \mathrm{p}+2 \mathrm{~m}-3,2 \mathrm{p}+2 \mathrm{~m}-2$ ) and $(6 p+2 m+1,6 \mathrm{p}+2 \mathrm{~m}+2, \ldots, 10 \mathrm{p}, \ldots, 7 \mathrm{p}+2 \mathrm{~m}-2,7 \mathrm{p}+2 \mathrm{~m}-1)$ by using the vertices $5 \mathrm{~m}-4 \mathrm{p}-6$ and 10 p as end vertices. |


| Condition: $\quad(7 / 4) \mathbf{p}+(\mathbf{1 / 2})<\mathbf{m} \leq \mathbf{( 9 / 5}) \mathbf{p}+\mathbf{( 2 / 5})$ |  |
| :--- | :---: |
| Step | The successive vertex labels |
| 1 | $(6 \mathrm{p}+3 \mathrm{~m}, 2 \mathrm{p}+\mathrm{m}+1,6 \mathrm{p}+3 \mathrm{~m}-1,2 \mathrm{p}+\mathrm{m}+2, \ldots, 4 \mathrm{p}-1,4 \mathrm{p}+4 \mathrm{~m}+1,4 \mathrm{p}+1,4 \mathrm{p}+4 \mathrm{~m}, \ldots, 6 \mathrm{p}-\mathrm{m}, 2 \mathrm{p}+5 \mathrm{~m}+1,6 \mathrm{p}-\mathrm{m}+1$, <br> $2 \mathrm{p}+5 \mathrm{~m}-1, \ldots, 7 \mathrm{p}+2 \mathrm{~m}+3, \mathrm{p}+2 \mathrm{~m}-2,7 \mathrm{p}+2 \mathrm{~m}+2)$ |
| 2 | $(2 \mathrm{p}+\mathrm{m}-1,7 \mathrm{~m}-2 \mathrm{p}-2) ;(2 \mathrm{p}+\mathrm{m}-1,2 \mathrm{p}+5 \mathrm{~m}) ;(2 \mathrm{p}+5 \mathrm{~m}, 5 \mathrm{~m}-4 \mathrm{p}-3) ;(4 \mathrm{p}, 10 \mathrm{~m}-8 \mathrm{p}-4)$ |
| 3 | $(7 \mathrm{~m}-2 \mathrm{p}-2,10 \mathrm{p}-3 \mathrm{~m}+1,7 \mathrm{~m}-2 \mathrm{p}-1,10 \mathrm{p}-3 \mathrm{~m}, \ldots, 7 \mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}-1,7 \mathrm{p}+2 \mathrm{~m}+1)$ |

$4 \quad$ Apply transformation type 1 to the vertex labels (10p-3m+2, 10p-3m+3, ... $5 \mathrm{~m}-4 \mathrm{p}-3, \ldots, 2 \mathrm{~m}+2 \mathrm{p}-3$, $2 m+2 p-2)$ and $(6 p+2 m+1,6 p+2 m+2, \ldots, 10 m-8 p-4, \ldots, 7 m-2 p-4,7 m-2 p-3)$ and choose the two vertices $5 m-4 p-3$ and $10 m-8 p-4$ as end vertices

| Conditions: (5/3) $p+1 \leq m \leq$ (7/4) $p+(1 / 2), m \neq(22 / 13) p+(7 / 13)$ |  |
| :---: | :---: |
| Step | The successive vertex labels |
| 1 | $\begin{aligned} & (6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2, \ldots, 4 p-1,4 p+4 m+1,4 p+1,4 p+4 m, \ldots, 6 p-m, 2 p+5 m+1,6 p-m+1, \\ & 2 p+5 m-1, \ldots, 7 p+2 m+3, p+2 m-2,7 p+2 m+2) \end{aligned}$ |
| 2 | $(2 \mathrm{p}+\mathrm{m}-1,2 \mathrm{p}+5 \mathrm{~m}) ;(2 \mathrm{p}+5 \mathrm{~m}, 5 \mathrm{~m}-4 \mathrm{p}-3) ;(2 \mathrm{p}+\mathrm{m}-1,7 \mathrm{~m}-2 \mathrm{p}-2) ;(4 \mathrm{p}, 20 \mathrm{p}-6 \mathrm{~m}+5)$ |
| 3 | $(5 \mathrm{~m}-4 \mathrm{p}-3,12 \mathrm{p}-\mathrm{m}+3,5 \mathrm{~m}-4 \mathrm{p}-4,12 \mathrm{p}-\mathrm{m}+4, \ldots, \mathrm{p}+2 \mathrm{~m}, 7 \mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}-1,7 \mathrm{p}+2 \mathrm{~m}+1)$ |
| 4 | Apply transformation type 3 to the vertex labels (12p-m+2, 12p-m+1, ... $7 \mathrm{~m}-2 \mathrm{p}-2, \ldots, 20 \mathrm{p}-6 \mathrm{~m}+5, \ldots$, $6 \mathrm{p}+2 \mathrm{~m}+2,6 \mathrm{p}+2 \mathrm{~m}+1)$ and $(2 \mathrm{p}+2 \mathrm{~m}-2,2 \mathrm{p}+2 \mathrm{~m}-3, \ldots, 5 \mathrm{~m}-4 \mathrm{p}-1,5 \mathrm{~m}-4 \mathrm{p}-2)$ by using the two vertices $7 \mathrm{~m}-2 \mathrm{p}-$ 2 and $20 p-6 m+5$ as end points |
| Conditions: (5/3) $p+1 \leq m \leq(7 / 4) p+(1 / 2), m=(22 / 13) p+(7 / 13)$ <br> [Note: The rest of the edge labels are generated by the same method as the above case] |  |
| Step | The successive vertex labels |
| 1 | (2p+m-1,18p-5m+4); (4p, 6m-1) |
| 2 | Apply transformation type 3 to the vertex labels ( $12 \mathrm{p}-\mathrm{m}+2,12 \mathrm{p}-\mathrm{m}+1, \ldots, 6 \mathrm{~m}-1, \ldots, 18 \mathrm{p}-5 \mathrm{~m}+4, \ldots$, $6 p+2 m+2,6 p+2 m+1)$ and $(2 p+2 m-2,2 p+2 m-3, \ldots, 5 m-4 p-1,5 m-4 p-2)$ and select the two vertices $6 m-1$ and $18 p-5 m+4$ as end vertices |


| Condition: $\mathrm{m}=(5 / 3) \mathrm{p}+(1 / 3)$ |  |
| :---: | :---: |
| Step | The successive vertex labels |
| 1 | $\begin{aligned} & (6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2, \ldots, 4 p-1,4 p+4 m+1,4 p+1,4 p+4 m, \ldots, 7 p+2 m+3, p+2 m-1, \\ & 7 p+2 m+2) \end{aligned}$ |
| 2 | $(2 \mathrm{p}+\mathrm{m}-1,7 \mathrm{p}+2 \mathrm{~m}+1) ;(2 \mathrm{p}+\mathrm{m}-1,8 \mathrm{p}+\mathrm{m}+1)$ |
| 3 | Apply transformation type 3 to the vertex labels $(7 \mathrm{p}+2 \mathrm{~m}, 7 \mathrm{p}+2 \mathrm{~m}-1, \ldots, 10 \mathrm{p}+1, \ldots, 8 \mathrm{p}+\mathrm{m}+1, \ldots$, $6 p+2 m+2,6 p+2 m+1)$ and $(2 p+2 m-2,2 p+2 m-3, \ldots, p+2 m+1, p+2 m)$ by using the two vertices $10 p+1$ and $8 p+m+1$ would be end vertices |

Condition: $\mathbf{m}=(\mathbf{5} / \mathbf{3}) \mathbf{p}+(\mathbf{2} / \mathbf{3}) \quad$ [Note: The case where $\mathrm{p}=5, \mathrm{~m}=9$ was discussed in $\mathrm{m}=2 \mathrm{p}-1$; so we can assume that the first values of $p$ and $m$ that satisfy the criteria are $p=8$ and $m=14$.]

| Step | The successive vertex labels |
| :--- | :--- |
| 1 | $(6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+2 m+2, \ldots, 4 p-1,4 p+4 m+1,4 p+1,4 p+4 m, \ldots, p+2 m-2,7 p+2 m+3$, <br> $p+2 m-1,7 p+2 m+1)$ |
| 2 | $(2 p+m-1,7 p+2 m+2) ;(2 p+m-1,8 p+m+2) ;(4 p, 10 p+1)$ |
| 3 | Apply transformation type 3 to the vertex labels $(7 p+2 m, 7 p+2 m-1, \ldots, 10 p+1, \ldots, 8 p+m+2, \ldots$, <br> $6 p+2 m+1)$ and $(2 p+2 m-2,2 p+2 m-3, \ldots, p+2 m+1, p+2 m)$ by choosing the vertices $10 p+1$ and $8 p+m+2$ <br> as end vertices |


| Conditions: $\mathbf{( 3 / 2 )} \mathbf{p}+\mathbf{1 < \mathbf { m } \leq ( \mathbf { 5 } / \mathbf { 3 } ) \mathbf { p } , \mathbf { m } \neq \mathbf { ( 8 / 5 } ) \mathbf { p } + ( \mathbf { 2 } / \mathbf { 5 } )}$ |  |
| :--- | :--- |
| Step | The successive vertex labels |
| 1 | $(6 \mathrm{p}+3 \mathrm{~m}, 2 \mathrm{p}+\mathrm{m}+1,6 \mathrm{p}+3 \mathrm{~m}-1,2 \mathrm{p}+\mathrm{m}+2,6 \mathrm{p}+3 \mathrm{~m}-2, \ldots, 4 \mathrm{p}-1,4 \mathrm{p}+4 \mathrm{~m}+1,4 \mathrm{p}+1,4 \mathrm{p}+4 \mathrm{~m}, 4 \mathrm{p}+2, \ldots$, <br> $7 \mathrm{p}+2 \mathrm{~m}+4, \mathrm{p}+2 \mathrm{~m}-2,7 \mathrm{p}+2 \mathrm{~m}+3, \mathrm{p}+2 \mathrm{~m}-1,7 \mathrm{p}+2 \mathrm{~m}+2)$. |
| 2 | $(2 \mathrm{p}+\mathrm{m}-1,2 \mathrm{p}+5 \mathrm{~m}) ;(2 \mathrm{p}+\mathrm{m}-1,8 \mathrm{p}+\mathrm{m}+1) ;(4 \mathrm{p}, 6 \mathrm{~m}-1)$ |
| 3 | $(7 \mathrm{p}+2 \mathrm{~m}+1, \mathrm{p}+2 \mathrm{~m}, 7 \mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}+1, \ldots, 2 \mathrm{p}+5 \mathrm{~m}+1,6 \mathrm{p}-\mathrm{m}, 2 \mathrm{p}+5 \mathrm{~m})$ |


| 4 | Apply transformation type 3 to the vertex labels $(2 p+5 m-1,2 p+5 m-2, \ldots, 6 m-1, \ldots, 8 p+m+1, \ldots$, <br> $6 p+2 m+2,6 p+2 m+1)$ and $(2 p+2 m-2,2 p+2 m-3, \ldots, 6 p-m+2,6 p-m+1)$ by selecting the vertices $6 m-$ <br> 1 and $8 p+m+1$ as end vertices |
| :--- | :--- |
| Conditions: $(\mathbf{3 / 2}) \mathbf{p}+\mathbf{1}<\mathbf{m} \leq(\mathbf{5} / \mathbf{3}) \mathbf{p}, \mathbf{m}=(\mathbf{8} / \mathbf{5}) \mathbf{p}+(\mathbf{2 / 5})[$ Note: The first snake and the edge labeled $4 \mathrm{~m}+1$ <br> will be obtained by the same procedure as case $m \neq(8 / 5) p+(2 / 5)]$ |  |
| Step | The successive vertex labels |
| 1 | $(4 \mathrm{p}, 10 \mathrm{p}+2) ;(2 \mathrm{p}+\mathrm{m}-1,6 \mathrm{p}+2 \mathrm{~m}+1)$ |
| 2 | $(7 \mathrm{p}+2 \mathrm{~m}+1, \mathrm{p}+2 \mathrm{~m}, 7 \mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}-1, \ldots, 10 \mathrm{p}+4,6 \mathrm{p}-\mathrm{m}-1,10 \mathrm{p}+3,6 \mathrm{p}-\mathrm{m})$ |
| 3 | $(6 \mathrm{p}-\mathrm{m}, 10 \mathrm{p}+1,6 \mathrm{p}-\mathrm{m}+1,10 \mathrm{p}, \ldots, 2 \mathrm{p}+2 \mathrm{~m}-3,6 \mathrm{p}+2 \mathrm{~m}+2,2 \mathrm{p}+2 \mathrm{~m}-2,6 \mathrm{p}+2 \mathrm{~m}+1)$ |


| Con |  | s: m = (3/2) | $p+1, p \geq 8$ |
| :---: | :---: | :---: | :---: |
| Step | The successive vertex labels |  |  |
| 1 | $(6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2, \ldots, 4 p-1,7 \mathrm{p}+2 \mathrm{~m}+3,4 \mathrm{p}+1,7 \mathrm{p}+2 \mathrm{~m}+2)$ |  |  |
| 2 | (2p+m-1, 2p+5m); ( $2 \mathrm{p}+\mathrm{m}-1,8 \mathrm{p}+\mathrm{m}+1) ;(4 \mathrm{p}, 9 \mathrm{p}+5)$ |  |  |
| 3 | (10p+3, 4p+2, 10p+2, 4p+3, .., (9/2)p-2, (19/2)p+6, (9/2)p-1, (19/2)p+5) |  |  |
| 4 | Apply transformation type 3 to the vertex labels ((19/2)p+4, (19/2)p+3, (19/2)p+2, .., 9p+5, 9p+4, $9 p+3)$ and $(5 p, 5 p-1, \ldots,(9 / 2) p+1,(9 / 2) p)$ by using the two vertices $(19 / 2) p+2$ and $9 p+5$ as end vertices |  |  |
| Conditions: $\mathbf{m}=(\mathbf{3} / 2) \mathbf{p}+\mathbf{1}, \mathbf{p} \leq \mathbf{6}$ |  |  |  |
| p | m | $2 \mathrm{C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{~m}}$ | An $\alpha$-valuation of $2 \mathrm{C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{~m}}$ |
| 4 | 7 | $2^{2} \mathrm{C}_{16} \cup \mathrm{C}_{28}$ | See case m $=2 \mathrm{p}-1,4 \leq \mathrm{p} \leq 12$ |
| 6 | 1 0 | $2 \mathrm{C}_{24} \cup \mathrm{C}_{40}$ | $[0,77,12,78,11,79,10,80,9,81,8,82,7,83,5,84,4,85,3,86,2,87,1,88],[32,45,44,46,43,47$, $42,48,41,49,40,50,39,51,37,52,36,53,35,54,34,55,33,56]$, $[6,70,17,71,16,72,15,73,14,74$, $13,75,31,76,24,57,30,58,29,59,28,60,21,62,26,61,27,64,38,63,25,65,23,66,20,67,19,68$, 18, 69] |


| Condition: $\mathbf{m}=\mathbf{( 3 / 2}) \mathbf{p}+(\mathbf{1} / \mathbf{2})$ |  |
| :--- | :--- |
| Step | The successive vertex labels |
| 1 | $((21 / 2) p+3 / 2,(7 / 2) p+3 / 2,(21 / 2) p+1 / 2, \ldots, 4 p-2,10 p+4,4 p-1,10 p+3)$ |
| 2 | $((7 / 2) p-(1 / 2),(19 / 2) p+3 / 2) ;((7 / 2) p-(1 / 2),(19 / 2) p+5 / 2) ;(4 p, 9 p+2)$ |
| 3 | $(10 p+2,4 p+1,10 p+1,4 p+2, \ldots,(9 / 2) p-(3 / 2),(19 / 2) p+(7 / 2),(9 / 2) p-1 / 2,(19 / 2) p+5 / 2)$ |
| 4 | $(10 p+2,6 p+1,10 p+3)$ |
| 5 | $((19 / 2) p+(3 / 2),(9 / 2) p+(1 / 2),(19 / 2) p+(1 / 2), \ldots, 5 p-2,9 p+3,5 p-1,9 p+2)$ |


| Conditions: (4/3) $p+(2 / 3)<m \leq(3 / 2) p, m \neq(10 / 7) p+(4 / 7)$ |  |
| :---: | :---: |
| Step | The successive vertex labels |
| 1 | $(6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2, \ldots, p+2 m-3,7 p+2 m+3, p+2 m-2,7 p+2 m+2)$ |
| 2 | $(2 \mathrm{p}+\mathrm{m}-1,8 \mathrm{p}+\mathrm{m}+2) ;(2 \mathrm{p}+\mathrm{m}-1,2 \mathrm{p}+5 \mathrm{~m}-1) ;(4 \mathrm{p}, 12 \mathrm{p}-2 \mathrm{~m}+3)$ |
| 3 | $\begin{aligned} & (7 p+2 m+1, p+2 m-1,7 p+2 m, p+2 m, \ldots, 4 p-1,4 p+4 m, 4 p+1,4 p+4 m-1, \ldots, 3 m-3,8 p+m+3,3 m-2, \\ & 8 p+m+2) \end{aligned}$ |
| 4 | Apply transformation type 3 to the vertex labels ( $8 \mathrm{p}+\mathrm{m}+1,8 \mathrm{p}+\mathrm{m}, \ldots, 2 \mathrm{p}+5 \mathrm{~m}-1, \ldots, 12 \mathrm{p}-2 \mathrm{~m}+3, \ldots$, $6 p+2 m+2,6 p+2 m+1)$ and $(2 p+2 m-2,2 p+2 m-3, \ldots, 3 m, 3 m-1)$ by selecting the two vertices $2 p+5 m-1$ and $12 p-2 m+3$ as end vertices |
| Conditions: (4/3) $p+(2 / 3)<m \leq(3 / 2) p, m=(10 / 7) p+(4 / 7)$ |  |
| Step | The successive vertex labels |
| 1 | $(6 p+3 m, 2 p+m+1,6 p+3 m-1,2 p+m+2, \ldots, p+2 m-3,7 p+2 m+3, p+2 m-2,7 p+2 m+2)$ |
| 2 | $\begin{aligned} & (2 \mathrm{p}+\mathrm{m}-1,8 \mathrm{p}+\mathrm{m}+2) ;(2 \mathrm{p}+\mathrm{m}-1,8 \mathrm{p}+\mathrm{m}+1) ;(7 \mathrm{p}-2 \mathrm{~m}+2,7 \mathrm{p}+2 \mathrm{~m}+1) ;(13 \mathrm{p}-6 \mathrm{~m}+4,7 \mathrm{p}+2 \mathrm{~m}) ;(7 \mathrm{p}-2 \mathrm{~m}+2,15 \mathrm{p}- \\ & 4 \mathrm{~m}+5) ;(4 \mathrm{p}, 26 \mathrm{p}-12 \mathrm{~m}+10) \end{aligned}$ |
| 3 | $\begin{aligned} & (7 \mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}-1,7 \mathrm{p}+2 \mathrm{~m}-1, \mathrm{p}+2 \mathrm{~m}, \ldots, 4 \mathrm{p}+4 \mathrm{~m}, 4 \mathrm{p}-1,4 \mathrm{p}+4 \mathrm{~m}-1,4 \mathrm{p}+1, \ldots, \mathrm{p}+6 \mathrm{~m}-1,7 \mathrm{p}-2 \mathrm{~m}+1, \mathrm{p}+6 \mathrm{~m}-2, \\ & 7 \mathrm{p}-2 \mathrm{~m}+3, \ldots, 3 \mathrm{~m}-3,8 \mathrm{p}+\mathrm{m}+3,3 \mathrm{~m}-2,8 \mathrm{p}+\mathrm{m}+2) \end{aligned}$ |
| 4 | $(8 p+m+1,3 m-1,8 p+m, 3 m, \ldots, 8 m-7 p-7,15 p-4 m+6,8 m-7 p-6,15 p-4 m+5)$ |


| 5 | Apply transformation type 1 to the vertex labels ( $8 \mathrm{~m}-7 \mathrm{p}-5,8 \mathrm{~m}-7 \mathrm{p}-4, \ldots, 2 \mathrm{p}+2 \mathrm{~m}-3,2 \mathrm{p}+2 \mathrm{~m}-2$ ) and |
| :--- | :--- | $(6 p+2 m+1,6 p+2 m+2, \ldots, 15 p-4 m+3,15 p-4 m+4)$ by choosing the vertices $8 m-7 p-4$ and $6 p+2 m+2$ as end points


| Condition : $\quad \mathbf{p}+\mathbf{3} \leq \mathbf{m} \leq \mathbf{( 4 / 3 )} \mathbf{p}+\mathbf{( 2 / 3})$ |  |
| :--- | :---: |
| Step | The successive vertex labels |
| 1 | $(6 \mathrm{p}+3 \mathrm{~m}, 2 \mathrm{p}+\mathrm{m}+1,6 \mathrm{p}+3 \mathrm{~m}-1,2 \mathrm{p}+\mathrm{m}+2, \ldots, \mathrm{p}+2 \mathrm{~m}-3,7 \mathrm{p}+2 \mathrm{~m}+3, \mathrm{p}+2 \mathrm{~m}-2,7 \mathrm{p}+2 \mathrm{~m}+2)$ |
| 2 | $(7 \mathrm{p}+2 \mathrm{~m}+1, \mathrm{p}+2 \mathrm{~m}-1,7 \mathrm{p}+2 \mathrm{~m}, \mathrm{p}+2 \mathrm{~m}, \ldots, 3 \mathrm{~m}-4,8 \mathrm{p}+\mathrm{m}+3,3 \mathrm{~m}-3,8 \mathrm{p}+\mathrm{m}+2) ;(2 \mathrm{p}+\mathrm{m}-1,10 \mathrm{p}-\mathrm{m}+3)$ |
| 3 | Apply transformation type 1 to the vertex labels $(3 \mathrm{~m}-2,3 \mathrm{~m}-1, \ldots, 4 \mathrm{p}, \ldots, 2 \mathrm{p}+2 \mathrm{~m}-3,2 \mathrm{p}+2 \mathrm{~m}-2)$ and <br>  <br>  <br>  <br> $(6 \mathrm{p}+2 \mathrm{~m}+1,6 \mathrm{p}+2 \mathrm{~m}+2, \ldots, 10 \mathrm{p}-\mathrm{m}+3, \ldots, 8 \mathrm{p}+\mathrm{m}, 8 \mathrm{p}+\mathrm{m}+1)$ by selecting the two end vertices 4 p and $10 \mathrm{p}-$ <br> $\mathrm{m}+3$ |

## Appendix 2: Case 2: $m=p+i \quad i=2,1,0$

| Condition: m $=\mathrm{p}+2, \mathrm{p} \geq 4$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Step |  |  | The successive vertex labels |
| 1 | $\begin{aligned} & \begin{array}{l} \mathrm{p}, 9 \mathrm{p}+7) ;(\mathrm{p}, 9 \mathrm{p}+8) ;(3 \mathrm{p}+2 \mathrm{~m}, 9 \mathrm{p}+5) ;(3 \mathrm{p}+2 \mathrm{~m}, 9 \mathrm{p}+6) ;(4 \mathrm{p}, 10 \mathrm{p}+8) ;(4 \mathrm{p}+3,10 \mathrm{p}+8) ;(4 \mathrm{p}+3,10 \mathrm{p}+7) ; \\ (3 \mathrm{p}+1,9 \mathrm{p}+4) ;(3 \mathrm{p}+3,9 \mathrm{p}+5) ;(3 \mathrm{p}+3,9 \mathrm{p}+4) ;(3 \mathrm{p}+1,9 \mathrm{p}+1) \end{array} \\ & \hline \end{aligned}$ |  |  |
| 2 | ( $10 \mathrm{p}+7,2 \mathrm{p}+1,10 \mathrm{p}+6,2 \mathrm{p}+2, \ldots, 3 \mathrm{p}-2,9 \mathrm{p}+9,3 \mathrm{p}-1,9 p+8)$ |  |  |
| 3 | (9p+7, 3p, 9p+6) |  |  |
| 4 | Apply transformation type 1 to the vertex labels $(3 p+4,3 p+5, \ldots, 4 p, 4 p+1,4 p+2)$ and $(8 p+5,8 p+6, \ldots$, $9 p+1,9 p+2,9 p+3)$ by choosing the two vertices $4 p$ and $9 p+1$ as end points |  |  |
| Condition: $\mathbf{m}=\mathbf{p + 2 , p}=\mathbf{1 , 2 , 3}$ |  |  |  |
| p | m | $2_{4 \mathrm{c}} \cup \mathrm{C}_{4 \mathrm{~m}}$ | An $\alpha$-valuation of the graph $2 \mathrm{C}_{4 \mathrm{p}} \cup \mathrm{C}_{4 \mathrm{~m}}$ |
| 3 | 5 | ${ }_{2} \mathrm{C}_{12} \cup \mathrm{C}_{20}$ | $[0,44,1,43,2,42,4,41,5,40,6,39]$ ] [16, 28, 17, 27, 18, 26, 20, 25, 21, 24, 22, 23], [3, 34, 9, 33, 19, 32, $14,29,13,30,10,31,12,38,15,37,7,36,8,35]$ |
| 2 | 4 | ${ }^{2} \mathrm{C}_{8} \cup \mathrm{C}_{16}$ | $\begin{aligned} & {[0,29,4,30,3,31,1,32],[12,19,13,18,15,17,16,20],[2,26,6,21,10,22,9,23,14,24,5,27,11,} \\ & 28,7,25] \end{aligned}$ |
| 1 | 3 | ${ }_{2} \mathrm{C}_{4} \mathrm{UC}_{12}$ | [0, 19, 2, 20], [8, 11, 10, 12], [1, 16, 3, 15, 9, 14, 6, 13, 4, 18, 7, 17] |


| Conditions: m = p+1, p $\mathbf{1 0}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Step |  |  | The successive vertex labels |
| 1 | $\begin{aligned} & \text { (p,9p+4); (p, 9p+3); (5p+2, 9p+3); (4p+1,8p+3); (5p+2,9p+5); (2p+1, } 8 \mathrm{p}+6) ; \\ & (4 \mathrm{p}, 10 \mathrm{p}+4) ;(4 \mathrm{p}+1,10 \mathrm{p}+4) ;(4 \mathrm{p}-6,8 \mathrm{p}+3) ; \end{aligned}$ |  |  |
| 2 | $(2 \mathrm{p}+1,10 \mathrm{p}+3,2 \mathrm{p}+2,10 \mathrm{p}+2, \ldots, 3 \mathrm{p}-2,9 \mathrm{p}+6,3 \mathrm{p}-1,9 \mathrm{p}+5)$ |  |  |
| 3 | $(4 \mathrm{p}, 8 \mathrm{p}+4,4 \mathrm{p}-1,8 \mathrm{p}+5,4 \mathrm{p}-2,8 \mathrm{p}+6)$ |  |  |
| 4 | (9p-3, 3p, 9p+1, 3p+3, 9p+2, 3p+2, 9p+4) |  |  |
| 5 | Apply transformation type 1 to the vertex labels ( $3 \mathrm{p}+4,3 \mathrm{p}+5, \ldots, 4 \mathrm{p}-6,4 \mathrm{p}-5,4 \mathrm{p}-4,4 \mathrm{p}-3$ ) and ( $8 \mathrm{p}+7$, $8 p+8, \ldots, 9 p-3,9 p-2,9 p-1,9 p$ ) by selecting the two vertices $4 p-6$ and $9 p-3$ as end points |  |  |
| Conditions : $\mathbf{m}=\mathbf{p + 1 , 1 \leq p} \leq \mathbf{9}$ |  |  |  |
| p | m | $\mathrm{C}_{4 \mathrm{~m}}$ | The labeling of the cycle $\mathrm{C}_{4 \mathrm{~m}}$ |
| 9 | 10 | $\mathrm{C}_{40}$ | $[9,84,47,86,26,87,25,88,24,89,23,90,22,91,21,92,20,93,19,78,33,80,32,81,31,82,29,83,27,79$, 35, 77, 34, 75, 37, 94, 36, 76, 30, 85] |
| 8 | 9 | $\mathrm{C}_{36}$ | $\begin{aligned} & {[8,75,42,77,23,78,22,79,21,80,20,81,19,82,18,83,17,70,30,71,29,72,28,67,33,84,32,68,31,69,} \\ & 24,73,27,74,26,76] \end{aligned}$ |
| 7 | 8 | $\mathrm{C}_{32}$ | $[7,66,37,68,20,69,19,70,18,71,17,72,16,73,15,62,27,61,25,63,26,59,29,74,28,60,21,64,24,65$, |


|  |  |  | $23,67]$ |
| :--- | :--- | :--- | :--- |
| 6 | 7 | $\mathrm{C}_{28}$ | $[6,57,32,59,17,60,16,61,15,62,14,63,13,54,22,53,23,52,24,64,25,51,18,55,21,56,20,58]$ |
| 5 | 6 | $\mathrm{C}_{24}$ | $[5,48,27,50,14,51,13,52,12,53,11,46,15,43,21,54,20,44,19,45,18,47,17,49]$ |
| 4 | 5 | $\mathrm{C}_{20}$ | $[4,39,22,41,11,42,10,43,9,38,15,37,12,36,16,44,17,35,14,40]$ |
| 3 | 4 | $\mathrm{C}_{16}$ | $[3,30,17,32,7,33,9,29,11,28,12,34,13,27,8,31]$ |
| 2 | 3 | $\mathrm{C}_{12}$ | $[2,21,12,23,6,24,8,20,5,19,9,22]$ |
| 1 | 2 | $\mathrm{C}_{8}$ | $[1,12,7,14,5,11,3,13]$ |

Condition : $\quad \mathbf{m}=\mathbf{p} \quad\left[\right.$ An $\alpha$-valuation of $3 \mathrm{C}_{4 \mathrm{p}}$ was constructed by Abrham and Kotzig in [1].

## Appendix 3 : Case 3: (1/2) $p<m \leq p-1$

| Conditions : m = p-1 |  |
| :--- | :--- |
| Step | The successive vertex labels |
| 1 | $(9 \mathrm{p}-5,3 \mathrm{p}, 9 \mathrm{p}-6,3 \mathrm{p}+1, \ldots, 8 \mathrm{p}-2,4 \mathrm{p}-3,8 \mathrm{p}-3,4 \mathrm{p}-2)$ <br>  <br>  <br>  <br> $\left[\right.$ Note: For $\mathrm{p}=2$ and $m=1$ an example of an $\alpha$-valuation of $2 \mathrm{C}_{8} \cup \mathrm{C}_{4}$ is as follows: $[0,17,4,18,3,19,1$, <br> $20],[2,13,6,16,7,15,9,14],[8,11,10,12]$. The missing value is 5] |

## Conditions: $\quad \mathrm{m}=\mathrm{p}-2, \mathrm{p} \geq 13$

| Step | The successive vertex labels |
| :--- | :--- |
| 1 | $(\mathrm{p}, 9 \mathrm{p}-8) ;(2 \mathrm{p}+1,10 \mathrm{p}-8) ;(\mathrm{p}, 9 \mathrm{p}-10) ;(5 \mathrm{p}-2,9 \mathrm{p}-9) ;(5 \mathrm{p}-2,9 \mathrm{p}-8) ;(4 \mathrm{p}-2,10 \mathrm{p}-12) ;(4 \mathrm{p}-1,10 \mathrm{p}-9) ;(4 \mathrm{p}-1,10 \mathrm{p}-$ <br> $8) ;(2 \mathrm{p}+1,10 \mathrm{p}-16) ;$ |
| 2 | $(4 \mathrm{p}-2,8 \mathrm{p}-7,4 \mathrm{p}-3,8 \mathrm{p}-6, \ldots, 3 \mathrm{p}+2,9 \mathrm{p}-11,3 \mathrm{p}+1,9 \mathrm{p}-10)$ |
| 3 | $(9 \mathrm{p}-9,3 \mathrm{p}, 9 \mathrm{p}-4,3 \mathrm{p}-4,9 \mathrm{p}-5,3 \mathrm{p}-3,9 \mathrm{p}-6,3 \mathrm{p}-1,9 \mathrm{p}-7,3 \mathrm{p}-8)$ |
| 4 | $(10 \mathrm{p}-12,2 \mathrm{p}+4,10 \mathrm{p}-11,2 \mathrm{p}+3,10 \mathrm{p}-10,2 \mathrm{p}+2,10 \mathrm{p}-9)$ |
| 5 | Apply transformation type 1 to the vertex labels: $(2 \mathrm{p}+5,2 \mathrm{p}+6, \ldots, 3 \mathrm{p}-8,3 \mathrm{p}-7,3 \mathrm{p}-6,3 \mathrm{p}-5)$ and $(9 \mathrm{p}-3,9 \mathrm{p}-$ <br> $2, \ldots, 10 \mathrm{p}-16,10 \mathrm{p}-15,10 \mathrm{p}-14,10 \mathrm{p}-13)$ by using the two vertices $3 \mathrm{p}-8$ and $10 \mathrm{p}-16$ as end points. |

Conditions : $\quad \mathbf{m}=\mathbf{p}-\mathbf{2}, \mathbf{3} \leq \mathbf{p} \leq \mathbf{1 2}$

| p | $\mathrm{C}_{4 \mathrm{p}}$ | The labeling of $\mathrm{C}_{4 \mathrm{p}}$ |
| :---: | :--- | :--- |
| 12 | $\mathrm{C}_{48}$ | $[12,100,58,99,36,105,31,106,30,107,29,102,35,101,33,103,32,104,25,112,47,111,26,110,27,109,28,108$, <br> $46,89,45,90,44,91,43,92,42,93,41,94,40,95,39,96,38,97,37,98]$ |
| 11 | $\mathrm{C}_{44}$ | $[11,91,53,90,33,96,29,95,27,97,28,93,32,92,30,94,23,102,43,101,24,100,25,99,26,98,42,81,41,82,40,83$, <br> $39,84,38,85,37,86,36,87,35,88,34,89]$ |
| 10 | $\mathrm{C}_{40}$ | $[10,82,48,81,30,87,25,86,26,85,27,83,29,84,21,92,39,91,22,90,23,89,24,88,38,73,37,74,36,75,35,76,34$, <br> $77,33,78,32,79,31,80]$ |
| 9 | $\mathrm{C}_{36}$ | $[9,73,43,72,27,77,23,76,24,75,26,74,19,82,35,81,20,80,21,79,22,78,34,65,33,66,32,67,31,68,30,69,29$, <br> $70,28,71]$ |
| 8 | $\mathrm{C}_{32}$ | $[8,64,38,63,24,69,19,67,20,66,23,65,21,70,18,71,31,72,17,68,30,57,29,58,28,59,27,60,26,61,25,62]$ |
| 7 | $\mathrm{C}_{28}$ | $[7,55,33,54,21,59,15,62,27,61,16,57,20,56,17,60,18,58,26,49,25,50,24,51,23,52,22,53]$ |
| 6 | $\mathrm{C}_{24}$ | $[6,46,28,45,18,50,15,49,13,52,23,51,14,47,17,48,22,41,21,42,20,43,19,44]$ |
| 5 | $\mathrm{C}_{20}$ | $[5,37,23,36,15,39,14,40,12,41,19,42,11,38,18,33,17,34,16,35]$ |
| 4 | $\mathrm{C}_{16}$ | $[4,28,18,27,12,30,11,32,9,29,15,31,14,25,13,26]$ |
| 3 | $\mathrm{C}_{12}$ | $[3,19,11,17,8,22,9,21,10,20,13,18]$ |

Conditions: (3/4) p-1<m<p-3, $\quad m \neq(5 / 6) p-(5 / 6)$

| Step | The successive vertex labels |
| :---: | :---: |
| 1 | $(5 \mathrm{p}+4 \mathrm{~m}-1,3 \mathrm{p}, 5 \mathrm{p}+4 \mathrm{~m}-2,3 \mathrm{p}+1, \ldots, 4 \mathrm{p}-\mathrm{m}-5,4 \mathrm{p}+5 \mathrm{~m}+3,4 \mathrm{p}-\mathrm{m}-4,4 \mathrm{p}+5 \mathrm{~m}+2)$ |
| 2 | $(5 p+4 m+1,5 p-2 m-4) ;(5 p+4 m, 7 p-4 m-5)$ |
| 3 | $(4 \mathrm{p}+5 \mathrm{~m}+1,4 \mathrm{p}-\mathrm{m}-3,4 \mathrm{p}+5 \mathrm{~m}, 4 \mathrm{p}-\mathrm{m}-2, \ldots, 3 \mathrm{p}+6 \mathrm{~m}+3,5 \mathrm{p}-2 \mathrm{~m}-5,3 \mathrm{p}+6 \mathrm{~m}+2,5 \mathrm{p}-2 \mathrm{~m}-4)$ |
|  | Apply transformation type 2 to the vertex labels ( $5 \mathrm{p}-2 \mathrm{~m}-3,5 \mathrm{p}-2 \mathrm{~m}-2, \ldots, 7 \mathrm{p}-4 \mathrm{~m}-5, \ldots, 2 \mathrm{p}+2 \mathrm{~m}, \ldots, 4 \mathrm{p}-3$, $4 p-2)$ and $(4 p+4 m+1,4 p+4 m+2, \ldots, 3 p+6 m, 3 p+6 m+1)$ by selecting the vertices $7 p-4 m-5$ and $2 p+2 m$ as end vertices |
| Conditions: (3/4) $\mathbf{p - 1}<\mathrm{m} \leq \mathrm{p}-\mathbf{3}, \quad \mathrm{m}=(\mathbf{5} / \mathbf{6}) \mathrm{p}-\mathbf{( 5 / 6 ) , m} \mathbf{m} \mathbf{5}$ [Note: This case was discussed in case $\mathrm{m}=$ p+2] |  |
| Conditions : (3/4) p-1<m<p-3, m= (5/6) p- (5/6), m $\mathrm{m}=5$ |  |
| Step | The successive vertex labels |
| 1 | $(5 \mathrm{p}+4 \mathrm{~m}-1,3 \mathrm{p}, 5 \mathrm{p}+4 \mathrm{~m}-2,3 \mathrm{p}+1, \ldots, 4 \mathrm{p}-\mathrm{m}-5,4 \mathrm{p}+5 \mathrm{~m}+3,4 \mathrm{p}-\mathrm{m}-4,4 \mathrm{p}+5 \mathrm{~m}+2)$ |
| 2 | $(5 \mathrm{p}+4 \mathrm{~m}+1,5 \mathrm{p}-2 \mathrm{~m}-4) ;(5 \mathrm{p}+4 \mathrm{~m}, 7 \mathrm{p}-4 \mathrm{~m}-6) ;(5 \mathrm{p}-2 \mathrm{~m}-4,4 \mathrm{p}+4 \mathrm{~m}+2) ;(2 \mathrm{p}+2 \mathrm{~m}-1,6 \mathrm{p}+2 \mathrm{~m}-2)$ |
| 3 | $\begin{aligned} & (4 p+5 m+1,4 p-m-3,4 p+5 m, 4 p-m-2, \ldots, 3 p+6 m+3,5 p-2 m-5,3 p+6 m+2,5 p-2 m-3,3 p+6 m+1,5 p-2 m-2, \\ & \ldots, 2 p+2 m-3,6 p+2 m+1,2 p+2 m-2,6 p+2 m, 2 p+2 m) \end{aligned}$ |
|  | Apply transformation type 3 to the vertex labels ( $6 \mathrm{p}+2 \mathrm{~m}-1,6 \mathrm{p}+2 \mathrm{~m}-2, \ldots ., 4 \mathrm{p}+4 \mathrm{~m}+2,4 \mathrm{p}+4 \mathrm{~m}+1$ ) and ( $4 \mathrm{p}-$ $2,4 p-3, \ldots, 2 p+2 m+2,2 p+2 m+1)$ by considering the vertices $6 p+2 m-2$ and $4 p+4 m+2$ as end points |


| Conditions: $\mathbf{m}=\mathbf{( 3 / 4 )} \mathbf{p - 1 ,} \mathbf{p > 4} \quad$ [Note: For $p=4$ this case was solved in case $m=p+2]$ |  |
| :--- | :--- |
| Step | The successive vertex labels |
| 1 | $(5 p+4 m-1,3 p, 5 p+4 m-2,3 p+1, \ldots, 4 p-m-5,4 p+5 m+3,4 p-m-4,4 p+5 m+2)$ |
| 2 | $(5 p+4 m, 5 p-2 m-2) ;(5 p+4 m+1, p+4 m+1) ;(2 p+2 m-1,6 p+2 m-3)$ |
| 3 | $(4 p+5 m+1,4 p-m-3,4 p+5 m, 4 p-m-2, \ldots, 6 p+2 m, 2 p+2 m-2,6 p+2 m-1,2 p+2 m)$ |
| 4 | Apply transformation type 1 to the vertex labels $(2 p+2 m+1,2 p+2 m+2, \ldots, 4 p-4,4 p-3,4 p-2)$ and <br> $(4 p+4 m+1,4 p+4 m+2, \ldots, 6 p+2 m-3,6 p+2 m-2)$ by considering the vertices $4 p-3$ and $6 p+2 m-3$ as end <br> vertices |


| Conditions : (2/3) p-1 m < (3/4) p-1, m |  |
| :---: | :---: |
| Step | The successive vertex labels |
| 1 | $(5 \mathrm{p}+4 \mathrm{~m}-1,3 \mathrm{p}, 5 \mathrm{p}+4 \mathrm{~m}-2,3 \mathrm{p}+1, \ldots, 4 \mathrm{p}-\mathrm{m}-5,4 \mathrm{p}+5 \mathrm{~m}+3,4 \mathrm{p}-\mathrm{m}-4,4 \mathrm{p}+5 \mathrm{~m}+2)$ |
| 2 | $(5 \mathrm{p}-2 \mathrm{~m}-4,5 \mathrm{p}+4 \mathrm{~m}+1) ;(\mathrm{p}+4 \mathrm{~m}+2,5 \mathrm{p}+4 \mathrm{~m}) ;(2 \mathrm{p}+2 \mathrm{~m}, 10 \mathrm{~m}+6)$ |
| 3 | $\begin{aligned} & (4 p+5 m+1,4 p-m-3,4 p+5 m, 4 p-m-2, \ldots, 6 p+2 m-1,2 p+2 m-1,6 p+2 m-2,2 p+2 m+1, \ldots, 3 p+6 m+4,5 p- \\ & 2 m-5,3 p+6 m+3,5 p-2 m-4) \end{aligned}$ |
| 4 | Apply transformation type 1 to the vertex labels ( $5 \mathrm{p}-2 \mathrm{~m}-3,5 \mathrm{p}-2 \mathrm{~m}-2, \ldots, \mathrm{p}+4 \mathrm{~m}+2, \ldots, 4 \mathrm{p}-3,4 \mathrm{p}-2$ ) and $(4 p+4 m+1,4 p+4 m+2, \ldots, 10 m+6, \ldots, 3 p+6 m+1,3 p+6 m+2)$ by using the two vertices $p+4 m+2$ and $10 m+6$ as end vertices |
| Conditions : (2/3) p-1 m < (3/4) p-1, m=(2/3) p-1 |  |
| Step | The successive vertex labels |
| 1 | $(5 \mathrm{p}+4 \mathrm{~m}-1,3 \mathrm{p}, 5 \mathrm{p}+4 \mathrm{~m}-2,3 \mathrm{p}+1, \ldots, 4 \mathrm{p}-\mathrm{m}-5,4 \mathrm{p}+5 \mathrm{~m}+3,4 \mathrm{p}-\mathrm{m}-4,4 \mathrm{p}+5 \mathrm{~m}+2)$ |
| 2 | $(2 p+2 m, 4 p+5 m+1) ;(p+4 m+2,5 p+4 m+1) ;(p+4 m+3,5 p+4 m)$ |
| 3 | Apply transformation type 2 to the vertex labels $(2 p+2 m+1,2 p+2 m+2,2 p+2 m+3, \ldots, p+4 m+2, p+4 m+3$, $\ldots, 4 p-3,4 p-2)$ and $(4 p+4 m+1,4 p+4 m+2, \ldots, 4 p+5 m-1,4 p+5 m)$ by choosing the two vertices $p+4 m+2$ and $p+4 m+3$ as end vertices |


| Condition : $\quad(\mathbf{3} / \mathbf{5}) \mathbf{p}-\mathbf{1}<\mathbf{m}<(\mathbf{2} / \mathbf{3}) \mathbf{p - 1}$ |  |
| :--- | :---: |
| Step | The successive vertex labels |
| 1 | $(5 \mathrm{p}+4 \mathrm{~m}-1,3 \mathrm{p}, 5 \mathrm{p}+4 \mathrm{~m}-2,3 \mathrm{p}+1, \ldots, 2 \mathrm{p}+2 \mathrm{~m}-2,6 \mathrm{p}+2 \mathrm{~m}, 2 \mathrm{p}+2 \mathrm{~m}-1,6 \mathrm{p}+2 \mathrm{~m}-1,2 \mathrm{p}+2 \mathrm{~m}+1, \ldots, 4 \mathrm{p}-\mathrm{m}-4$, <br> $4 \mathrm{p}+5 \mathrm{~m}+3,4 \mathrm{p}-\mathrm{m}-3,4 \mathrm{p}+5 \mathrm{~m}+2)$ |
| 2 | $(\mathrm{p}+4 \mathrm{~m}+2,5 \mathrm{p}+4 \mathrm{~m}+1) ;(5 \mathrm{p}-2 \mathrm{~m}-4,5 \mathrm{p}+4 \mathrm{~m}) ;(8 \mathrm{p}-2 \mathrm{~m}-6,2 \mathrm{p}+2 \mathrm{~m})$ |


|  | $(4 p+5 m+1,4 p-m-2,4 p+5 m, 4 p-m-1, \ldots, 7 p-2, p+4 m+1,7 p-3, p+4 m+2)$ |
| :--- | :--- |
| 3 | Apply transformation type 1 to the vertex labels $(p+4 m+3, p+4 m+4, \ldots, 5 p-2 m-4, \ldots, 4 p-4,4 p-3,4 p-2)$ <br> and $(4 p+4 m+1,4 p+4 m+2, \ldots, 8 p-2 m-6, \ldots, 7 p-6,7 p-5,7 p-4)$ by considering the two vertices $5 p-2 m-4$ <br> and $8 p-2 m-6$ as end vertices |


| Condition : $\mathbf{m}=(\mathbf{3 / 5}) \mathbf{p - 1}$ |  |
| :--- | :--- |
| Step | The successive vertex labels |
| 1 | $(5 \mathrm{p}+4 \mathrm{~m}-1,3 \mathrm{p}, 5 \mathrm{p}+4 \mathrm{~m}-2,3 \mathrm{p}+1,5 \mathrm{p}+4 \mathrm{~m}-3,3 \mathrm{p}+2, \ldots, 6 \mathrm{p}+2 \mathrm{~m}, 2 \mathrm{p}+2 \mathrm{~m}-1,6 \mathrm{p}+2 \mathrm{~m}-1,2 \mathrm{p}+2 \mathrm{~m})$ |
| 2 | $(2 \mathrm{p}+2 \mathrm{~m}+1,6 \mathrm{p}+2 \mathrm{~m}-2,2 \mathrm{p}+2 \mathrm{~m}+2,6 \mathrm{p}+2 \mathrm{~m}-3, \ldots, 4 \mathrm{p}-\mathrm{m}-4,4 \mathrm{p}+5 \mathrm{~m}+3,4 \mathrm{p}-\mathrm{m}-3,4 \mathrm{p}+5 \mathrm{~m}+2)$ |
|  | $(5 \mathrm{p}+4 \mathrm{~m}+1, \mathrm{p}+4 \mathrm{~m}+3) ;(2 \mathrm{p}+8 \mathrm{~m}+5,2 \mathrm{p}+2 \mathrm{~m}+1) ;(4 \mathrm{p}+5 \mathrm{~m}+1, \mathrm{p}+4 \mathrm{~m}+3) ;(5 \mathrm{p}+4 \mathrm{~m}, 5 \mathrm{p}-2 \mathrm{~m}-2)$ |
|  | Apply transformation type 1 to the vertex labels $(\mathrm{p}+4 \mathrm{~m}+4, \mathrm{p}+4 \mathrm{~m}+5, \ldots, 5 \mathrm{p}-2 \mathrm{~m}-2, \ldots, 4 \mathrm{p}-3,4 \mathrm{p}-2)$ and <br> $(4 \mathrm{p}+4 \mathrm{~m}+1,4 \mathrm{p}+4 \mathrm{~m}+2, \ldots, 2 \mathrm{p}+8 \mathrm{~m}+5, \ldots, 4 \mathrm{p}+5 \mathrm{~m}-1,4 \mathrm{p}+5 \mathrm{~m})$ by selecting the two end points $5 \mathrm{p}-2 \mathrm{~m}-2$ and <br> $2 \mathrm{p}+8 \mathrm{~m}+5$. |


| Conditions : (4/7) p-(8/7) < $\mathbf{m}<(\mathbf{3 / 5}) \mathbf{p - 1}$ |  |
| :--- | :--- |
| Step | The successive vertex labels |
| 1 | $(5 \mathrm{p}+4 \mathrm{~m}-1,3 \mathrm{p}, 5 \mathrm{p}+4 \mathrm{~m}-2,3 \mathrm{p}+1,5 \mathrm{p}+4 \mathrm{~m}-3,3 \mathrm{p}+2, \ldots, 6 \mathrm{p}+2 \mathrm{~m}, 2 \mathrm{p}+2 \mathrm{~m}-1,6 \mathrm{p}+2 \mathrm{~m}-1,2 \mathrm{p}+2 \mathrm{~m})$ |
| 2 | $(\mathrm{p}+4 \mathrm{~m}+3,5 \mathrm{p}+4 \mathrm{~m}+1) ;(5 \mathrm{p}-3 \mathrm{~m}-5,5 \mathrm{p}+3 \mathrm{~m}) ;(5 \mathrm{p}-2 \mathrm{~m}-4,5 \mathrm{p}+4 \mathrm{~m}) ;(2 \mathrm{p}+3 \mathrm{~m}+1,4 \mathrm{p}+5 \mathrm{~m}+2)$ |
| 3 | Apply transformation type 2 to the vertex labels $(2 \mathrm{p}+2 \mathrm{~m}+1,2 \mathrm{p}+2 \mathrm{~m}+2, \ldots, 5 \mathrm{p}-3 \mathrm{~m}-5, \ldots, \mathrm{p}+4 \mathrm{~m}+3, \ldots$, <br> $4 \mathrm{p}-\mathrm{m}-4,4 \mathrm{p}-\mathrm{m}-3)$ and $(4 \mathrm{p}+5 \mathrm{~m}+3,4 \mathrm{p}+5 \mathrm{~m}+4, \ldots, 6 \mathrm{p}+2 \mathrm{~m}-3,6 \mathrm{p}+2 \mathrm{~m}-2)$ by selecting the two vertices $5 \mathrm{p}-3 \mathrm{~m}-$ <br> 5 and $\mathrm{p}+4 \mathrm{~m}+3$ as end points. |
| 4 | $(4 \mathrm{p}+5 \mathrm{~m}+1,4 \mathrm{p}-\mathrm{m}-2,4 \mathrm{p}+5 \mathrm{~m}, 4 \mathrm{p}-\mathrm{m}-1, \ldots, 5 \mathrm{p}+3 \mathrm{~m}+2,3 \mathrm{p}+\mathrm{m}-3,5 \mathrm{p}+3 \mathrm{~m}+1,3 \mathrm{p}+\mathrm{m}-2,5 \mathrm{p}+3 \mathrm{~m})$ |
| 5 | Apply transformation type 2 to the vertex labels $(3 \mathrm{p}+\mathrm{m}-1,3 \mathrm{p}+\mathrm{m}, 3 \mathrm{p}+\mathrm{m}+1, \ldots, 2 \mathrm{p}+3 \mathrm{~m}+1, \ldots, 5 \mathrm{p}-2 \mathrm{~m}-4$, <br> $\ldots, 4 \mathrm{p}-3,4 \mathrm{p}-2)$ and $(2 \mathrm{p}+4 \mathrm{~m}+1,2 \mathrm{p}+4 \mathrm{~m}+2, \ldots, 5 \mathrm{p}+3 \mathrm{~m}-2,5 \mathrm{p}+3 \mathrm{~m}-1)$ by using the two vertices $2 \mathrm{p}+3 \mathrm{~m}+1$ <br> and $5 \mathrm{p}-2 \mathrm{~m}-4$ as end vertices |


| Conditions : $\mathbf{m}=(4 / 7) \mathbf{p - ( 8 / 7 )}$ |  |
| :--- | :--- |
| Step | The successive vertex labels |
| 1 | $(5 p+4 m-1,3 p, 5 p+4 m-2,3 p+1,5 p+4 m-3,3 p+2, \ldots, 6 p+2 m, 2 p+2 m-1,6 p+2 m-1,2 p+2 m)$ |
| 2 | $(p+4 m+3,5 p+4 m+1) ;(2 p+2 m+1,8 p-2 m-6) ;(5 p-2 m-4,5 p+4 m) ;(p+4 m+4, p+10 m+6)$ |
| 3 | $(2 p+2 m+1,6 p+2 m-2,2 p+2 m+2,6 p+2 m-3, \ldots, p+4 m+1,7 p-2, p+4 m+2,7 p-3, p+4 m+3)$ |
| 4 | $(p+4 m+4,7 p-4, p+4 m+5,7 p-5, \ldots, 4 p-m-3,4 p+5 m+3,4 p-m-2,4 p+5 m+1)$ |
| 5 | Apply transformation type 1 to the vertex labels $(4 p-m-1,4 p-m, 4 p-m+1, \ldots, 5 p-2 m-4, \ldots, 4 p-3,4 p-2)$ <br> and $(4 p+4 m+1,4 p+4 m+2, \ldots, p+10 m+6, \ldots, 4 p+5 m-1,4 p+5 m)$ by considering the two vertices $5 p-2 m-4$ <br> and $p+10 m+6$ as end vertices |

## Conditions: (1/2) p < m < (4/7)p-(8/7)

[Note: The rest of the edge labels are generated by the same method as the above case]

| Step | The successive vertex labels |
| :--- | :---: |
| 1 | Apply transformation type 2 to the vertex labels $2 \mathrm{p}+2 \mathrm{~m}+1,2 \mathrm{p}+2 \mathrm{~m}+2, \ldots, \mathrm{p}+4 \mathrm{~m}+3, \ldots, 5 \mathrm{p}-3 \mathrm{~m}-5, \ldots$, |
|  | $4 \mathrm{p}-\mathrm{m}-4,4 \mathrm{p}-\mathrm{m}-3)$ and $(4 \mathrm{p}+5 \mathrm{~m}+3,4 \mathrm{p}+5 \mathrm{~m}+4, \ldots, 6 \mathrm{p}+2 \mathrm{~m}-3,6 \mathrm{p}+2 \mathrm{~m}-2) \quad$ by selecting the two vertices $5 \mathrm{p}-$ <br> $3 \mathrm{~m}-5$ and $\mathrm{p}+4 \mathrm{~m}+3$ as end points. |

