
 Monotone Iterative Method and Adaptive Finite Volume Method for 
Parallel Numerical Simulation of Submicron MOSFET Devices 

 
YIMING LI1,2,*, CHENG-KAI CHEN2, and PU CHEN2 

1National Nano Device Laboratories, 1001 Ta Hsueh Rd., Hsinchu city, Hsinchu 300, TAIWAN 
2National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu city, Hsinchu 300, TAIWAN 

*Corresponding address: P.O. Box 25-178, Hsinchu city, Hsinchu 300, TAIWAN 

 
 

Abstract: - In this paper, we apply our proposed early parallel adaptive computing methodology for numerical 
solution of semiconductor device equations with triangular meshing technique. This novel simulation based on 
adaptive triangular mesh, finite volume, monotone iterative, and a posteriori error estimation methods, is 
developed and successfully implemented on a Linux-cluster with message passing interface (MPI) library. 
Parallel adaptive computing with triangular mesh has its flexibility to simulate multidimensional semiconductor 
devices with highly complicated geometry. Our approach fully exploits the inherent parallelism of the triangular 
mesh finite volume as well as monotone iterative methods for semiconductor drift diffusion equations on a 
Linux-cluster parallel computing system. Parallel simulation results demonstrate an excellent speedup with 
respect to the number of processors. Benchmarks and numerical results for a submicron N-MOSFET device are 
also presented to show the robustness and efficiency of the method. 
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1   Introduction 
The main task of a semiconductor device simulator is 
to analyze the intrinsic and extrinsic electrical 
behavior of the most basic device’s structures at a 
very fundamental physical level. In recent years, 
device simulation has been becoming a very 
important tool in the development of new devices and 
fabrication technologies (see [1] and references 
therein). According to the Maxwell’s equations and 
carriers’ conservation in transport, the drift diffusion 
(DD) equations that consist of Poisson equation and 
electron-hole current continuity equation have been 
successfully applied to describe the carriers’ 
transport phenomena [2-8, 10, 11]. When the device 
scale is down to deep submicron or nanometer 
regions, scientific computing becomes currently one 
of the major approaches to solve the device equations 
efficiently in semiconductor device simulation. 
Parallelization of such numerical simulations with 
adaptive triangular mesh is still a very complex task. 

In this paper, combining with triangular meshing 
technique we successfully extend our proposed 
parallel adaptive simulation methodology [4-8] to 
solve semiconductor device drift diffusion equations 
in C++ language. With the developed triangular mesh 
device simulator, one can analyze highly complicated 
and irregular multi-dimensional device with more 
precise estimation in its simulation domain. Our 

numerical results for a two-dimensional submicron 
N-MOSFET device are demonstrated to show the 
robustness and efficiency of the method. 

Considering an adaptive triangular unstructured 
mesh and finite volume discretization scheme [9], a 
set of device DD equations, three partial differential 
equations (PDE), is discretized firstly and then 
directly solved by means of the monotone iterative 
method instead of the conventional Newton's 
iteration method. The monotone iterative method is a 
constructive alternative for numerical solutions of 
PDEs [4-8]. Compared with Newton’s iterative 
method, major features of the present method for 
triangular mesh device simulation are as follows: (i) 
it converges globally with any arbitrary initial guess 
for submicron devices under various bias conditions, 
(ii) its implementation is much easier than Newton’s 
iterative method, and (iii) it is inherently ready for 
parallelization. 

To establish a physical based and efficient 
adaptive refinement scheme, we note a fact firstly 
that for most practical submicron devices (for 
example: MOSFET, HBT, SOI, and PN Diode [2]) 
the physical quantities, such as electrostatic potential 
and electron densities exhibit extreme variations 
within a quite small region, particularly in the 
inversion layer, depletion layer, and neighborhood of 
p-n junctions. The presence of layers implies that a 



local adaptive mesh refinement strategy for 
unstructured triangular mesh would capture the 
solution gradients in a very efficient manner. In this 
work, with this physical observation and a posteriori 
error estimation, an efficient adaptive triangular 
mesh refinement algorithm is now developed and 
successfully tested and implemented on our device 
simulator. The simulation starts from a simple initial 
triangular mesh, and automatically solve problem 
and refine mesh iteratively. The iteration will be 
terminated when a specified error criterion is reached. 
Numerical results for a typical N-MOSFET device 
are demonstrated to show the robustness and 
efficiency of the method. Our achieved parallel 
benchmarks, such as speedup, load balancing, and 
efficiency also show the good performance of the 
method through the work. 

This paper is organized as follows. In Sec. 2, we 
introduce the semiconductor device drift diffusion 
model and associated physical models. In Sec. 3, we 
present the triangular mesh adaptive finite volume 
scheme and state monotone iterative method. Sec. 4, 
sketches the parallel computing of the triangular 
mesh deice simulator. In Sec. 5, simulation results for 
a submicron N-MOSFET device are presented to 
demonstrate the robustness and parallel efficiency of 
the method. Sec. 6 draws the conclusions. 
 
 
2   Semiconductor Device Equations 
The DD model is the first model for semiconductor 
device simulation [2, 3, 10, 11]. It was derived from 
Maxwell’s equation as well as charges’ conservation 
law and has been successfully applied to study device 
transport behavior, in the past decades [2-8, 10, 11]. 
It assumes local isothermal conditions and is still 
widely employed in semiconductor device design. A 
set of the DD equation is as follows: 
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In above equations (1)-(5), the Eq. (1) derived 

from Maxwell’s equation is so-called the Poisson 
equation. The Eqs. (2) and (3) derived from the 
charge conservation law are the electron and hole 

continuity equations. The Eqs. (4) and (5) are 
electrons and holes current equations, respectively. 
The unknown φ = φ(x,y), in Eq. (1), to be solved is 
the electrostatic potential, n and p are electrons and 
holes concentrations. The function )( −+ −−= AD NND , 
in Eq. (1), is the specified ionized net doping profile 
and is a spatially-dependent given function, and R = 
R(n,p) is the recombination rate for electrons and 
holes. In this study, the R is assumed to be the 
Shockley-Read-Hall recombination process [2, 3]: 
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where tn and tp are the electron and hole lifetimes, 

respectively. The quantity C.q 1910602181 −×=  is 
the elementary charge, 09.11 εε =s  is silicon 

permittivity. The +
DN , and −

AN  are ionized donor and 

acceptor impurities, and cmF /1085418.8 14
0

−×=ε  is 
the permittivity in vacuum. The Dn, Dp, µn, and µp are 
electron and hole diffusion coefficients and mobility 
functions, respectively. In general, the mobility 
functions in DD model strongly depend on electric 
field, doping concentration, and electric current 
density [2, 3, 10, 11]. 
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Fig. 1. A two-dimensional domain of a submicron 

N-MOSFET device. 
 

As shown in Fig. 1, the DD equations (1)-(5) are 
subject to mixed type boundary conditions in a 
two-dimensional simulation domain. On the left and 
right sides, the homogeneous Neumann type 
boundary condition is considered. On the Source, 
Gate, Drain and Substrate contacts, the Dirichlet type 
boundary condition is applied.  



In conventional device DD model simulation, 
various numerical methods have been developed for 
the approximation solution of the system (1)-(5) with 
the primal state variables (φ, n, p) or (φ, ϕn, ϕp) [3] 
and have their advantages. Based on the Boltzmann 
statistics [2, 3], we solve the transferred DD 
equations (1)-(5) in terms of (φ, u, v) [2, 3]. This 
formulation of the model is a set of self-adjoint PDEs, 
and is very favorable for the triangular finite volume 
method and monotone iterative method. The Eqs. 
(1)-(5), in this work, are solved with Gummel’s 
decoupled algorithm, adaptive finite volume method, 
and monotone iterative method on a cluster parallel 
computing system. The Eqs. (1)-(5) together with 
applied finite volume and monotone iterative 
methods lead to a robust convergence property in 
computer simulation; hence, the parallization of this 
solution approach has also been developed and 
successfully implemented. In the next section, we 
describe the adaptive solution steps used in this 
simulation. 
 
 
3   Adaptive Computational Methods 
The Gummel’s decoupling algorithm, adaptive finite 
volume method, and monotone iterative method will 
be presented in this section.  

Applying the Gummel’s decoupling method to 
decouple three DD equations, we can prove 
mathematically the nonlinear system rising from the 
finite volume discretization [9] for the individually 
decoupled PDE on a triangular mesh has at most one 
solution. In addition, it also can be shown that the 
solution sequences constructing from monotone 
iterative formula converge to the solution of the 
nonlinear system monotonically. 
 
 
3.1   Gummel’s Decoupling Scheme 
One of efficient solution methods in semiconductor 
device simulation is often used Gummel’s decoupled 
method to decoupled these tree coupled PDEs and 
then solve each PDE iteratively. In this work, we 
solve the decoupled PDE with our proposed early 
adaptive computing procedure [4-8]. The basic idea 
of well-known Gummel’s decoupled [10] method is 
that the device equations are solved sequentially (see 
Fig. 2). In the DD model, Poisson’s equation is 

solved for )1( +gφ  given the previous states u(g) and 
v(g). The electron current continuity equation is 

solved for u(g+1) given )( gφ  and v(g). The hole current 

continuity equation is solved for v(g+1) given )( gφ  and 

u(g). The superscript index g denotes the Gummel’s 
iteration loops. Each decoupled PDE is solved with 
our adaptive computing algorithm. We describe this 
solution method in Sec. 3.2. 
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Fig. 2. A flowchart for Gummel’s decoupling 

algorithm in semiconductor device 
simulation. 

 
3.2   Adaptive Finite Volume Algorithm 
The theoretical concept of the adaptive finite volume 
method relies on the estimations of the solution 
gradient and variation of carrier lateral current 
density along the device channel surface. A posteriori 
error estimation provides not only a global 
assessment of the quality of numerical solutions but 
also a set of local error indicators to incorporate with 
refinement strategies. This physical based error 
estimation and error indicators applied here is not 
restricted to any particular types of mesh structure. In 
this work, we use triangular mesh refinement to 
simulate more complicated device geometry. The 
data structure of the triangular mesh is designed with 
hierarchical, and is suitable for the implementation of 
the adaptive algorithm by using the object-oriented 
programming concepts. 



As shown in Fig. 3, given a decoupled PDE in 
semiconductor device DD model, we first partition 
the solution domain into a set of finite volumes. The 
PDE is then approximated by finite volume method. 
For the electron and hole current continuity equations, 
we also apply the Scharfetter-Gummel exponential 
fitting [3] to locate the sharp variation of the solutions. 
With sparse matrix technique, we construct the 
global matrix and the corresponding vector. The 
monotone iterative [4-8] solver is directly applied to 
solve the system of nonlinear equations. 
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Fig. 3. Adaptive finite volume solution algorithm. 

 
Once an approximate solution is computed, an a 

posteriori error analysis is performed to assess the 
quality of the approximate solution. The error 
analysis will produce error indicators and an error 
estimator. If the estimator is less than a preset error 
tolerance (TOL), the adaptive process will be 
terminated and the approximate solution can be 
post-processed for further physical analysis. 
Otherwise, a refinement scheme will be employed to 
refine each of the current elementst. A finer partition 
of the domain is thus created and a new solution 
procedure is repeated. Using the maximum gradient 
of electrostatic potential φ in equation (1) and/or the 
variation of current density Jn in equation (4) as error 
estimation the discretization mesh is adaptively 
generated. A refinement scheme is employed to 
refine each of the current elements depending on the 
magnitude of the error indicator for that element. 
 
 
3.3   Monotone Iterative Method 
The classical Gummel’s decoupling and solution 
method for semiconductor device DD model has 

some steps: (I) Scharfetter-Gummel exponential 
fitting [11] for the electron and hole current 
continuity equations, (II) three inner loops of 
Newton’s iteration for each unknown function, and 
(III) an outer loop for all unknown functions [3, 10].  

Our method replaces Newton’s iteration by the 
monotone iteration in which the corresponding 
discrete system is of the following form [4-8]: 
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where Z is the unknown vector, F is the nonlinear 
vector form, and D, L, U, and I are diagonal, lower 
triangular, upper triangular, and identity matrices, 
respectively. The monotone iterative parameter λ is 
determined node-by-node depending on the device 
structure, doping concentration, bias condition, and 
nonlinear property of each decoupled equation.  

The monotone iterative method applies here for 
semiconductor device simulation [4-8] is a global 
method in the sense that it does not involve any 
Jacobian matrix. However, the Newton’s iterative 
method not only has Jacobian matrix but also 
inherently requires a sufficiently accurate initial 
guess to begin with the solutions. Note that the Eq. (7) 
is highly parallel; consequently, the monotone 
iterative method is very cost effective in terms of 
both computational time and storage memory. 
 
 

4   Parallel Simulation Algorithm 
After the calculation of error estimation and error 
indicators and checking adaptation stages, the next 
step is to determine whether workload balance still 
exists or not for all processors. When a refined tree 
structure is created, the number of processors for next 
computing will be dynamically assigned and 
allocated following the total number of nodes firstly. 
Then a geometric dynamic graph partitioning method 
in x- or y-direction, as shown in Fig. 4, is applied to 
partition the number of nodes to each processor. 

A computational procedure for parallel domain 
decomposition is as follows: (Di) Initialize the MPI 
environment and configuration parameters. (Dii) 
Based on unstructured triangular meshing rule, a tree 
structure and mesh are created. (Diii) Count number 
of nodes and apply a dynamic partition algorithm to 
determinate number of processors in the simulation. 
All nodes are numbered, besides that the boundary 
and critical points are identified. (Div) All assigned 
jobs are solved with equation (7). The computed data 
communicates by the MPI protocol. (Dv) Do 
convergence test for all elements and run the adaptive 
refinement for those needed elements. (Dvi) Repeats 



steps (Diii)-(Dv) until the error of all elements is less 
than a specified error bound. (Dvii) Host processor 
collects data and stops the MPI environment. 
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Fig. 4. An illustration of parallel dynamic partition of 

domain decomposition for a two-dimensional 
N-MOSFET. 

 
The load balancing dynamic partition algorithm in 

step (Diii) is outlined as follows: (Pa) Count the 
number of total nodes. (Pb) Find out the optimal 
number of processors. (Pc) Calculate how many 
nodes should be assigned to each processor. (Pd) 
Along x- or y-direction in device domain, search 
(from left to right and bottom to top) and assign 
nodes to these processors sequentially. Repeats this 
step until all nodes have been assigned. (Pe) In the 
neighborhood of p-n junction, one may have to 
change search path for obtaining a better 
load-balancing performance. 
 
 

5   Simulation Results and Discussions 
We now present some typical simulation results; the 
first example is a 0.25µm N-MOSFET device with 
the gate oxide thickness 7.0 nm. The device has 
elliptical 5*1020 cm-3 Gaussian doping profiles in 
source and drain regions, 1016 cm-3 in the p-substrate 
region, and a shallow 5*1017 cm-3 implantation in 
channel surface. The junction depth is 0.13µm and 
the lateral diffusion under gate is 0.09µm. Figs. 5, 6, 
and 7 show the initial and finial refined mesh, 
potential and electron concentration, respectively. In 
this example, the initial mesh has 162 elements and 
after about 10 refinement levels the finial mesh has 
2644 elements for a 5VT (VT = 0.0259V) mesh 
refinement criterion. The stopping error bound 
between any two successive iterations is less than 
10-5VT for all unknowns. 

Our next example is designed to demonstrate the 
robustness of the simulator for the same test device. 
As shown in the Fig. 8, the global convergence 
behavior in the Gummel’s iteration loop is confirmed, 
and the maximum norm error for both of the φ and u 

here are less than 10-5VT after 20 iterations. Our 
monotone iteration loop for a specified Gummel’s 
iteration loop also has similar excellent convergence 
property. In addition, as shown in Fig. 9, by setting a 
more strict refinement error 1VT for all elements, we 
find the simulator has a very good efficiency in 
refinement levels and error control. 
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Fig. 5 The left figure is the initial mesh and the right 

one is the refined mesh. A submicron 
N-MOSFET simulation at VD = VG = 1.0 V. 
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Fig. 6 The initial (left) and final (right) computed 

electrostatic potential, respectively. 
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Fig. 7 The initial (left) and final (right) computed 

electron concentration, respectively. 
 
Furthermore, performance of the parallel adaptive 

simulation approach for submicron N-MOSFET 
device simulation is also presented in this work. The 
device structure used for this test is the same with the 
first example and the refinement criterion is setting 
now to be 0.2VT in this simulation. A good speedup 
in parallel time can be observed in Table 1. The 
parallel efficiency for about 1,600,000 refined nodes 
is over 70%. The superior scalability of the parallel 
processing is mainly due to the nature of the 
monotone iterative method. A dynamic load 



balancing ~ 8% for the same refined nodes is also 
obtained successfully in this work. 
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Fig. 8 Convergence behavior for unknowns φ and u 

in the Gummel’s iteration loop. 
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Fig. 9 Number of nodes and maximum diagonal error 

(within an element) versus number of 
refinement levels. 

 
Table 1. Achieved parallel performance for the 

parallel adaptive triangular mesh finite 
volume simulation on a 8-processors 
Linux-cluster using MPI library. 

Number of 
processors 

1 2 4 8 

Parallel 
time (Sec.) 

239,241 
  

129,667  70,067  41,417  

Speedup -- 1.85 3.41 5.78 
Efficiency -- 92.25% 85.36% 72.2% 

 
 

6   Conclusions 
In this paper, we have successfully generalized our 
proposed early parallel adaptive computing 
methodology with triangular meshing technique in 
submicron MOSFET device simulation. This parallel 
simulation mainly relies on adaptive triangular mesh, 
finite volume, and monotone iterative methods. 

Parallel adaptive computing with triangular mesh has 
its flexible to simulate more realistic semiconductor 
devices with highly complicated and irregular 
geometry in 2D or 3D. Numerical results and 
benchmarks for a submicron N-MOSFET device are 
also presented to show the robustness, efficiency, and 
parallel performance of the method. 
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