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Abstract: I give an overview of some recent developments in using modern dynamical systems theory to derive
numerical discretisations of dissipative partial differential equations. The approach provides a systematic way
of deriving robust and accurate numerical models. This arises because the method automatically parametrises
subgrid scale processes. Good performance at finite grid size should greatly decrease the cost of numerical
simulations. Further, it is straightforward both to incorporate boundary conditions on the edges of the domain
and to provide initial conditions for forecasting. By making minor modifications of computer algebra programs
others may readily apply these methods to their own numerical approximation problems.
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1 Introduction

In the western Pacific ocean two dynamically active
broad layers have been identified as shown schemati-
cally in Fig. 1—to model their evolution we might sup-
pose the interaction between the layers is weak (x2).
The same assumption works generallyto form the basis
of numerical discretisations of partial differential equa-
tions (PDEs): we slice the domain into finite sized ele-
ments byinitially artificially insulating them from each
other (x3); then centre manifold theory [1, 2, e.g.] is ap-
plied (x4) to generate a discretisation that incorporates
the actual coupling between the elements.

There are manyfold benefits of this dynamical sys-
tems approach: inx4 we see it gives new theoretical
support for use of the discretisation at finite element
size [22]; in practise this comes from resolving subgrid
scale structures (x4) and subgrid interactions between
physical processes [21, 12]; which generally improves
the stability properties of the discretisation [22, 11] and
also promotes the use of relatively large grid spacing;
the numerical model may be systematically refined, see
x5, to higher order consistency and to include more

subgrid interactions; boundary conditions on the edges
of the domain are straightforwardly incorporated into
the same methodologyx6 [20]; whereasx8 illuminates
the initial conditions needed to ensure long termaccu-
racy [23, 19]; and inx9 the same modelling paradigm,
namely centre manifold theory, is used for both numer-
ical and analytic models.

The approach proposed here is based purely upon
the local dynamics on small elements while maintain-
ing, as do inertial manifolds [27, e.g.], fidelity with
the solutions of the original dissipativePDE across the
whole domain. Here the analysis rests upon the expo-
nential decay of the small, subgrid structures in each
local element, whereas the inertial manifold approach
seeks to construct global models [16, 4, 13, e.g.]. One
favourable consequence is that here there is no need
to invoke a highly restrictive spectral gap condition
[7, Eqn. (5.4) e.g.]. The nonlinear Galerkin method,
though appealing and though improving convergence
[10, e.g.], is impractical in applications with possibly
varying coefficients and complicated boundaries. Here
I overview recent developments in an immensely inter-
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Figure 1: schematic diagram of the mixed layer and the
barrier layer above a deep ocean: the main quantities
of interest are the thickness of each layer,�j , and the
mean velocity in each layer,�uj .

esting innovation in the application of dynamical sys-
tems theory to the construction of element based dis-
cretisations for numerical solution.

2 Two layers in the ocean suggest the
approach

Two identifiable layers, drawn in Fig. 1, can survive
near the surface of the western Pacific ocean by sup-
posing there is little mixing between the layers. Density
jumps do limit turbulent mixing. The mathematical ex-
pression of the ideal case of no mixing is to “insulate”
the layers from each other:

@u1

@z
=

@u2

@z
= 0 at the interface.

But we actually want a limited interaction between lay-
ers, say proportional to the velocity difference as the
faster layer drags the slower somewhat:

@u1

@z
=

@u2

@z
= (u2 � u1) ; (1)

where parametrises the interlayer coupling. Such in-
terlayer coupling must besmall in effectto reflect that
two identifiable layers exist.

Herein we discuss how the same idea of introducing
an artificial coupling between adjacent elements may
be applied quite generally. However, for the sake of a
clear exposition we consider primarily the well known
Burgers’ equation [21] for a scalar fieldu(x; t)

@u

@t
=

@2u

@x2
� u

@u

@x
; (2)
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Figure 2: divide the domain intom elements of widthh
by introducing artificial internal boundary conditions
and place grid points in the middle of each element.

which combines the core physical processes of dissi-
pation and nonlinear advection. (The same analysis
works for other dissipativePDEs such as the Kuramoto-
Sivashinsky equation [12].) A standard finite difference
approximation inx is

@uj

@t
=

1

h2
(uj+1 � 2uj + uj�1)

�
1

2h
uj (uj+1 � uj�1) ; (3)

to form a semi-discrete scheme [5, 7, e.g.] foruj(t),
the grid value ofu on a spatial grid with spacingh. But
other discretisations of the nonlinear term are also con-
sistent with Burgers’ equation [8, 5, e.g.]. For example,
we could equally as consistently approximate the non-
linear terms as

u
@u

@z
=

@

@x

�
1

2
u2
�
�

1

4h

�
u2j+1 � u2j�1

�
:

A challenge is to decidewhich should be used.
The answer deduced in our dynamical systems ap-

proach [21] is to nonlinearly enhance the dissipation!
Specifically

@uj

@t
=

1

h2

 
1 +

h2

12
u2j

!
(uj+1 � 2uj + uj�1)

�
1

2h
uj (uj+1 � uj�1) : (4)

We may also view this change as using upwind differ-
ences for the advection term. Either interpretation is
well recognised as improving the stability of the dis-
cretisation.

3 Slice the domain into finite elements

Suppose we wish to numerically solve for a fieldu(x; t)

on some domain. Divide the domain intom finite el-
ements (of sizeh) as shown in Fig. 2. This is done
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Figure 3: a domain divided into five elements,h =

0:2, by insulatingIBCs. After transients decaying like
exp(�t�2=h2), the initial field (solid) would evolve to
be constant in each element (dashed).

by introducing the following artificial internal bound-
ary conditions (IBCs) similar to (1):

@u+

@x
�

@u�

@x
= 0 and (5)

(1� )
h

2

 
@u+

@x
+

@u�

@x

!
= (u+ � u�) ; (6)

whereu� denotes the field just to the right/left of an
internal boundary:

� when the coupling parameter = 0 the right-hand
sides vanish and theseIBCs reduce to the insulat-
ing conditionsu�x = 0;

� whereas when = 1 theseIBCs require conti-
nuity of the field and its derivative to ensure that
the PDE, here Burgers’ equation (2), is satisfied
throughout the domain.

Linearly, ut = uxx, and in the absence of interele-
ment coupling, = 0, the diffusion acts independently
within each element to cause any initial field to decay
to a constant in each element as shown schematically
in Fig. 3. The constant in each element is independent
of the other elements (linearly it only depends upon the
initial field in each element). This decay occurs rapidly,
on a time scale ofh2=�2 . Thus, exponentially quickly

the system settles into a state parametrised bym grid
values, each characterising the field in each element.

With interelement coupling, 6= 0, and in the pres-
ence of nonlinearities, the field will evolve as “infor-
mation” flows between elements. However, the diffu-
sive decay in each element causes the field to be still
parametrised by them grid valuesuj . For example, we
find [21] that for Burgers’ equation (2) the field

u = uj + 
h
��uj � +

1

2
�2uj �

2
i

+ huj�
2uj

�
1

6
�3 � 1

8
�
�

(7)

+ h2u2j�
2uj

�
1

24
�4 � 1

48
�2
�
+ O(kuk4; 2) ;

where� = (x� xj)=h is an element based coordinate
and I have used centred difference and mean operators,
�uj = uj+1=2�uj�1=2 and�uj = 1

2
(uj+1=2+uj�1=2)

respectively. To parametrise the evolving field, these
grid values evolve according to some prescription, such
as (3) or (4). These form numerical models for the dy-
namics. We proceed to derive them by a perturbative
analysis in nonlinearity and the strength of the interele-
ment coupling; the analysis is based upon the uncou-
pled linear exponential collapse shown in Fig. 3, but
accounts for the consequently generated subgrid scale
fields such as (7).

4 Centre manifold theory assures fi-
delity

Centre manifold theory [1, 2, e.g.] addresses the dy-
namics of perturbed dynamical systems. Applied to
Burgers’ equation (2) withIBCs (5–6) and based upon
the linear picture of the previous section the theory
guarantees three things:

existence,there exists anm-dimensional model, com-
posed of actual solutions of thePDEas indicated in
Fig. 4, parametrised by them grid valuesuj (one
for each element) and the interelement coupling:

u(x; t) = v(u; x; ) s.t. _uj = gj(u; ) ; (8)

whereu = (u1; : : : ; um) ;

relevance, the model is exponentially quickly attrac-
tive toall nearby solutions of thePDE (sometimes
called asymptotic completeness [24, e.g.] or ex-
ponential tracking [6, e.g.]) so we are assured that
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Figure 4: schematic dynamical system view of the evo-
lution in m = 40 elements plotting the grid valueuj
horizontally and a measure of the subgrid structure ver-
tically. Starting (top) from some random initial con-
dition; after three decay times (middle) almost all el-
ements have collapsed onto a state where the subgrid
field is simply parametrised by the grid values; and
soon after (bottom) they just evolve along the centre
manifold.

the solutions of the model represent the dynamics
from a complete range of initial fields, as demon-
strated in Fig. 4;

approximation, to construct the model it is appropri-
ate to substitute the above ansatz (8) and solve
asymptotically whence the model has the same or-
der of error as the residuals of the governing equa-
tions.

Impressively, these properties all hold forfinite grid
sizeh—there is no need to invoke smallh in this ap-
proach. The only caveat to these amazingly strong re-
sults for the numerical model at finiteh is that they ap-
ply to some neighbourhood of small(u; ), whereas
we have to use the discretisation at finiteuj and for in-
terelement coupling = 1. We hope that the neigh-
bourhood of applicability includes these relevant pa-
rameter values; in [21,xA] I showed convergence when
evaluated at = 1 for periodic solutions to Burgers’
equation. There are as yet unresolved issues about how
reliable these assurances are in general. Seex5 for more
discussion about the new implications of the support
this theory gives numerical models.

The construction of the numerical model resolves
subgrid scale processes. A practical method to find the
centre manifold and the evolution thereon is to substi-
tute an approximate ansatz (8) into the governingPDE,
here Burgers’ equation (2), and iteratively refine (8).
Such an iterative algorithm using computer algebra is
described in [18]. Successive iterations involve solving
for correctionsv0 andg0 in each element the underlying
linear problem of thePDE: here the diffusion problem

@2v0

@x2
= g0 + PDE residual(u; x; ) ; (9)

forced by the residual of thePDE and theIBCs. Thus
in the process of forming the numerical model we con-
struct a detailed picture of the subgrid processes. For
Burgers’ equation (2) we determine the subgrid field (7)
in [21]. These resolved subgrid structures are not im-
posed arbitrarily upon the solution field, but are a natu-
ral consequence of the physical dynamics expressed in
thePDE through the interelement coupling. It is for this
reason I call the model a “holistic discretisation”.

Associated with the subgrid fields (7) of the centre
manifold is the corresponding evolution

@uj

@t
=



h2

 
1 +

h2

12
u2j

!
�2uj �



h
uj��uj
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+O(kuk4; 2) : (10)

Evaluating at = 1 we recover the discretisation (4)
for Burgers’ equation (2). Such a model has good non-
linear behaviour, as reported in [21], because of the res-
olution of subgrid scale processes.

5 High order consistent approxima-
tions

To date I have only presented formula with1 terms.
By, for example, determining2 terms we would obtain
a numerical discretisationof bandwidth5 in the indexj.
This allows us to develop higher order representations
of the spatial derivatives in aPDE.

The IBCs (5–6) may be changed in detail and still
behave usefully for interelement coupling ranging
from 0 to 1 . We may use this freedom to force the
discretisations to satisfy additional properties. Thus I
haveadditionallysought high order consistency as grid
size h ! 0 using specially craftedIBCs. In [22] I
proved that the following nonlocalIBCs ensure consis-
tency to all orders for general linearPDEs:

vj(u; xj�1; )� vj(u; xj; )| {z }
��h

@vj

@x
atx=xj�h=2

= (uj�1 � uj) ; (11)

wherevj(u; x; ) denotes the field of the centre man-
ifold in the jth element. Application to variousPDEs
have shown that theseIBCs generate high order consis-
tency for the nonlinear terms as well. For example, for
Burgers’ equation (2) the following numerical model is
obtained [20] by retaining2 terms:

@uj

@t
=

1

h2

"
�2uj �

2

12
�4uj

#

�
1

h
uj

"
��uj �

2

6
��3uj

#

+
2

24h
(�2uj ��

3uj + �4uj ��uj)

+
(1� )

12
u2j�

2uj �
2

30
u2j�

4uj

�
2

1440
uj

h
25�2uj �

4uj + 100��uj ��
3uj

+ 36(�2uj)
2
i

�
2

576

h
8�2uj ��uj (��uj + ��3uj) + 2(�2uj)

3

-h
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�
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Figure 5: conceptual diagram showing that with the dis-
crete IBCs (11) the numerical model is supported by
two independent bases: fromh = 0 and from = 0.

+ �4uj (4(��uj)
2 + (�2uj)

2)
i

+O(kuk4; 3) : (12)

See that when = 1: the first two lines areO(h4) di-
rect approximations of Burgers’ equation (2); the third
line modifies the nonlinear advection; the fourth lines
cancels the nonlinearly enhanced diffusion which ap-
pears atO() and replaces it with a nonlinearly en-
hanced fourth order dissipation; and the remaining lines
account for subtle effects of nonlinear subgrid scale
evolution, advection and diffusion. This discretisa-
tion is fourth order consistent with Burgers’ equation
ash! 0 [20].

I summarise the new view of numerical discretisa-
tions given by this approach as so far established. As
shown schematically in Fig. 5, employing the discrete
IBCs (11) invokes two independent theoretical supports
for the discretisation: by ensuring consistency as grid
sizeh ! 0 we invoke the traditional support for fi-
nite differences; and by applying centre manifold the-
ory based at = 0 we invoke the strong results of that
theory for the holistic approximation at finiteh. We
expect such dual support to form powerful numerical
approximations.

However, it is easy to imagine using the flexibility in-
herent in the introduction of the artificialIBCs in ways
other than consistency. For example, we could try to
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adapt theIBCs to generate the “flattest” centre mani-
fold in some sense, thus hoping for small errors upon
evaluation at = 1. This flexibility needs much more
exploration.

6 Boundary conditions are straight-
forward

Recall that in Fig. 2 I showed a finite domain sliced into
m elements. We applied artificialIBCs in between each
element, either (5–6) or (11); this is adequate for strictly
periodic problems as explored in [21]. Now we address
how to incorporate the original physical boundary con-
ditions at the extremes of the domain—for simplicity
I only discuss the left end of the leftmost element, the
right end is similar by symmetry.

The simplest case is that of a Neumann boundary
condition ofux = a(t) at the left endx = x1 � h=2 .
As explored in [20,x4], we may incorporate it by using

@v1

@x
= a(t) at x = x1 � h=2 : (13)

when = 0 the leftmost element is insulated as re-
quired for the application of centre manifold theory
(x4); whereas when = 1 the original Neumann
boundary condition is recovered. The construction of
the model then proceeds as before but with special
treatment for those few elements near the boundary.
We find, for example, that when keeping2 terms,
this boundary conditions affects the discretisationof the
first two elements. For example, it introduces terms in
the discretisation involving the not only the fluxa, but
also its time derivatives,h2 _a, h4�a, etc. The reason for
these time derivatives is that the flux feeds into the sub-
grid scale fields of the boundary elements and so affects
the interaction between the various physical processes.
The scope for such interaction increases with increas-
ing element sizeh and so accounts for the appearance
of theh2 factor in front of the time derivative_a. We
need to know such effects on coarse grids.

As discussed in [20,x3] the best way to incorporate
a Dirichlet boundary condition,u = a(t), appears to be
to apply it at a grid pointx = x0 = x1 � h . With the
discreteIBCs (11) we used

v1(u; x0; )� v1(u; x1; ) = (a� u1) ; (14)

which is effectively insulating when = 0 and requires
the Dirichlet condition is satisfied when = 1. The

construction proceeds as before and the same qualita-
tive observations apply as for Neumann boundary con-
ditions. This centre manifold approach to discretisation
provides a natural and unified method of determining
approximations near a domain boundary.

7 Higher dimensionalPDEs

So far we have only addressedPDEs in one spatial di-
mension. The same approach has the same theoretical
support for constructing numerical models for dissipa-
tive PDEs in higher spatial dimensions. MacKenzie [11]
is studying, for example, reaction-diffusion equations
in two dimensions:

@u

@t
= r2u+ reaction: (15)

The approach in [11] is to: tessellate space, by squares
for example; applyIBCs analogous to either (5–6)
or (11); invoke theory to support a model parametrised
by the grid values of the fieldu; find the subgrid scale
structures and the numerical model by iteratively solv-
ing Poisson’s equation,r2v0 = g0 + residual, in the
elements. For the Liouville reaction-diffusion equation
we find [11] the holistic model is more robust over a
wider range of parameters.

In ongoing research into the construction of numer-
ical models for the advection-diffusion in a channel
or pipe, we find that the holistic discretisation auto-
matically generates a model containing shear disper-
sion [26]. This is despite the analysis being for finite
element size. We do not invoke large scale variations
in the spread of material along the channel or pipe that
hitherto has been necessary to derive shear dispersion.

8 Initial conditions are subtle

Now consider using a numerical model such as (4) to
make a forecast. You have a given initial field u0(x),
as shown schematically in Fig. 6, and are asked to use
the numerical model to predict the field in the future.
You might simply use the grid values of the given field,
uj(0) = u0(xj), as the error would be at mostO(h).
However, in this approach the grid spacingh is treated
as finite so such an error is significant. Instead, recall
the Relevance theorem mentioned inx4: all small solu-
tions of thePDE exponentially quickly evolve to solu-
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Figure 6: you are given an initial field (solid) in a do-
main divided into five elements,h = 0:2 . The appro-
priate initial condition for the numerical model isnot
u0(xj) (circles) as implied by the definition ofuj , in-
steaduse element averages (crosses) withO() pertur-
bations.

tions of the model—see Fig. 4 for example. Remark-
ably, there is no mention of an error involving the grid
spacingh ! (Although recall the caveat that we have to
use the model at = 1 which is not necessarily small.)
Thus the issue is: given an initial fieldu0(x), what is
the correct initial numerical grid valuesuj(0) to use to
ensure the exponentially quick agreement assured by
theory?

Consider the abstract view of the evolution shown
in Fig. 4. The solutions from a wide variety of initial
conditions exponentially quickly settled onto the cen-
tre manifold. All those that arrive at the same place
at the same time on the centre manifold of the numer-
ical model should be given the same initial condition.
Thus we plot in Fig. 7 a contour plot of location on the
centre manifold as a function of initial position: all so-
lutions from any one contour have the same evolution
apart from exponentially quickly decaying transients.
Thus the initial condition problem is solved by project-
ing along the relevant contour onto the centre manifold
and using the correspondinguj as the initial condition
for the model. Only then will the model solution and
thePDE solution agree exponentially quickly.

The above geometric view of the projection of ini-
tial conditions was developed into an algebraic analy-
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Figure 7: contours of solutions which have the same
long term dynamics after exponential transients. The
projection of initial conditions onto the centre mani-
fold, symbolised by circles, is done along these con-
tours.

sis invoking an adjoint differential equation [15, 3, 19].
See that the projection involves a dependence upon the
initial subgrid fields so that the initial values for the
numerical model are not simply the initial field eval-
uated at the grid points (sometimes called “initial slip”
[9]). The projection for Burgers’ equation (2) is given
in [23]: it is a little involved but is the element aver-
age withO() corrections. For example, for a point
release in thekth element,u0(x) = �(x � xk � h�),
the dynamics of the linear diffusion equation [23,x3.1]
requires the following slightly distributed initial condi-
tion for the numerical model:

huj(0) =
�
7

6
� �2

�
�k;j

+
�
� 1

12
� 1

2
� + 1

2
�2
�
�k�1;j

+
�
� 1

12
+ 1

2
� + 1

2
�2
�
�k+1;j : (16)

This projection places most of the material in thekth el-
ement, but reasonably distributes some to the neigh-
bouring elements depending upon where the material
is released in thekth element.

9 Use the same paradigm

Recall the two layer model of the ocean, see Fig. 1.
We now recognise it as the case of two finite elements
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in the vertical with free surface boundary conditions
above and below, and an artificialIBC in between the
two layers. But further, for application to the broad
ocean we need to describe the evolution of structures
varying over large scales in the horizontal and how they
interact with the flow in the two layers. Centre mani-
fold theory has been invoked to model systematically
fluid flows and continuum dynamics with large lateral
extent [28, 17, 14, 25, e.g.]. Since the same dynamical
system paradigm is used to construct numerical and an-
alytical models it is straightforward to combine the two
analyses.

For the two layer model of the ocean, in as yet un-
concluded work, I have derived that the thickness and
velocities ineach layer evolve according to

@�j

@t
= �r � (�j �uj) ;

@ �u1

@t
= ��u1 �r�u1 + f �u1 � k �r(�1 + �2)

�
�2

3�1
r�1 �

�00

3

�
1 +

2�1H

15�1

�
r�1

+
8H

3�1
(�u2 � �u1) + �1r

2�u1 + 3�1r(r � �u1)

+ 2
�1

�1
r�1(r � �u1) + 2

�1

�1
(r�1 �r)�u1

+
�1

�1
r�1 � (r� �u1)�

H�2

3�1�2
s ;

and similarly for@ �u2=@t . Many terms are easily recog-
nised, for example, conservation of material, advection,
Corriolis force, hydrostatic pressure forcing, etc. Other
terms arise through subtle interactions between physi-
cal processes. The centre manifold approach resolves
such interactions.

10 Conclusion

In summary, this centre manifold approach to con-
structing numerical models of dissipativePDEs appears
to have many advantages:

� it gives new theoretical support for a systematic
discretisation at finite element size;

� in practise this comes from resolving subgrid scale
structures and interactions between physical pro-
cesses;

� boundary conditions are easily incorporated;

� it illuminates the initial conditions foraccuracy;
and

� the same modelling paradigm is used for both nu-
merical and analytic models.
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