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Abstract: | give an overview of some recent developments in using modern dynamical systems theory to derive
numerical discretisations of dissipative partial differential equations. The approach provides a systematic way
of deriving robust and accurate numerical models. This arises because the method automatically parametrises
subgrid scale processes. Good performance at finite grid size should greatly decrease the cost of numerical
simulations. Further, it is straightforward both to incorporate boundary conditions on the edges of the domain
and to provide initial conditions for fecasting. By making minor modifications of computer algebra programs
others may readily apply these methods to their own numerical approximation problems.
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1 Introduction subgrid interactions; boundary conditions on the edges
of the domain are straightforwardly incorporated into
In the western Pacific ocean two dynamically activBe same methodolody [20]; whereag8 illuminates
broad layers have been identified as shown schemgie initial conditions needed to ensure long texccu-
cally in Fig. 1—to model their evolution we might supracy [23, 19]; and ir§9 the same modelling paradigm,
pose the interaction between the layers is weii.( namely centre manifold theory, is used for both numer-
The same assumption works generédljorm the basis jcal and analytic models.
of numerical discretisations of partial differential equa-
tions (PDEs): we slice the domain into finite sized ele- The approach proposed here is based purely upon
ments byinitially artificially insulating them from eachthe local dynamics on small elements while maintain-
other ¢3); then centre manifold theory [1, 2, e.g.] isapng, as do inertial manifolds [27, e.g.], fidelity with
plied (§4) to generate a discretisation that incorporatége solutions of the original dissipatiw®E across the
the actual coupling between the elements. whole domain. Here the analysis rests upon the expo-
There are manyfold benefits of this dynamical sysential decay of the small, subgrid structures in each
tems approach: i§4 we see it gives new theoreticalocal element, whereas the inertial manifold approach
support for use of the discretisation at finite elemesgeks to construct global models [16, 4, 13, e.g.]. One
size [22]; in practise this comes from resolving subgridvourable consequence is that here there is no need
scale structures;4) and subgrid interactions betweeto invoke a highly restrictive spectral gap condition
physical processes [21, 12]; which generally improvgg Eqgn. (5.4) e.g.]. The nonlinear Galerkin method,
the stability properties of the discretisation [22, 11] antHough appealing and though improving convergence
also promotes the use of relatively large grid spacirfi@0, e.g.], is impractical in applications with possibly
the numerical model may be systematically refined, sesying coefficients and complicated boundaries. Here
§5, to higher order consistency and to include mofreverview recent developments in an immensely inter-
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thickness n 5

which combines the core physical processes of dissi-
deep ocean pation and nonlinear advection. (The same analysis
orks for other dissipativeDEs such as the Kuramoto-

Elgu_re T: sche[)natlc dlsgram of the. r?rl]xed Ia}yer_tz;md t ‘Tn\/ashinsky equation[12].) A standard finite difference
arrier layer above a deep ocean: the main tjtias approximation in: is

of interest are the thickness of each laygr, and the

mean velocity in each layei,; . du; 1
a0 = gz (U= 205+ )
esting innovation in the application of dynamical sys - i (wjp1 — uj_1) 3)

tems theory to the construction of element based dis-

retisations for numerical solution. -
cretisations for numericat solutio to form a semi-discrete scheme [5, 7, e.g.] Q(t),

the grid value ot on a spatial grid with spacing But
2 Two layers in the ocean suggest theother discretisations of the nonlinear term are also con-
approach sistent with Burgers equapon [8,5, e.g.].. For example,
we could equally as consistently approximate the non-

Two identifiable layers, drawn in Fig. 1, can survivinear terms as

near the surface of the western Pacific ocean by sup- 5~ 5 1

posing there is little mixing between the layers. Density Y T (%UQ) =~ (Ufﬂ - Uf_l) .
jumps do limit turbulent mixing. The mathematical ex-

pression of the ideal case of no mixing is to “insulateX challenge is to decidahich should be used.

the layers from each other: The answer deduced in our dynamical systems ap-
proach [21] is to nonlinearly enhance the dissipation!
Ou, _ Juz _ 0 atthe interface ificall P
92 0. . Specifically
But we actually want a limited interaction between lay- O 1 h?
ers, say proportional to the velocity difference as theﬁ ) (1 + Euj) (wjt1 — 2uj + uj_1)
faster layer drags the slower somewhat: )
uy  Ouy = 57t (g1 = wj1) - “4)

EIEI’Y(W—M% 1)

h " he interl lina. Such .We may also view this change as using upwind differ-
wherey parame rises the mter_ayer coupling. SUCN 11405 for the advection term. Either interpretation is
terlayer coupling must bemall in effecto reflect that well recognised as improving the stability of the dis-
two identifiable layers exist. cretisation

Herein we discuss how the same idea of introducing '
an artificial coupling between adjacent elements may
be applied quite generally. However, for the sake off2 =~ Glice the domain into finite elements
clear exposition we consider primarily the well known
Burgers’ equation [21] for a scalar field .z, ¢) Suppose we wish to numerically solve for a field:, ¢)

ou  9u I on some domain. Divide the domain inte finite el-

=92 Y (2) ements (of sizeh) as shown in Fig. 2. This is done
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the system settles into a state parametrisednbgrid
values, each characterising the field in each element.

With interelement couplingy # 0, and in the pres-
ence of nonlinearities, the field will evolve as “infor-
mation” flows between elements. However, the diffu-
sive decay in each element causes the field totitle s
parametrised by the: grid valuesu;. For example, we
find [21] that for Burgers’ equation (2) the field

uo= ujy pduy €+ 1%, €
+ yhuotu; (167 - L) W
+ R (356 = £€7) + Ollul!, 7).

where¢ = (z — z;)/h is an element based coordinate

Figure 3: a domain divided into five elements,= and | have used centred difference and mean operators,

0.2, by insulatingiBcs. After transients decaying liked i = Ujt1/2 — Uj1/2 @NApu; = %(UHI/_?"‘“_J‘—U?)
exp(—t7?/h?), the initial field (solid) would evolve to re_spectlvely. To parame'Frlse the evolving f_|el_d, these
be constant in each element (dashed). grid values evolve according to some prescription, such
as (3) or (4). These form numerical models for the dy-
namics. We proceed to derive them by a perturbative
by introducing the following artificial internal boundanalysis in nonlinearity and the strength of the interele-

ary conditionsigcs) similar to (1): ment couplingy; the analysis is based upon the uncou-
pled linear exponential collapse shown in Fig. 3, but
dut  Ou” :
= 2 _— 0 and (5) accounts for the consequently generated subgrid scale
Ll TC 5 dx fields such as (7).
o fout  oum )y +_ oy
(1 7)2(8$+8$) vt —u7), (6)

4 Centre manifold theory assures fi-

whereu* denotes the field just to the right/left of an  delity

internal boundary:
Centre manifold theory [1, 2, e.g.] addresses the dy-

e when the coupling parameter= 0 the right-hand namics of perturbed dynamical systems. Applied to
sides vanish and thesgcs reduce to the insulat-Burgers’ equation (2) withecs (5-6) and based upon
ing conditionsu: = 0; the linear picture of the previous section the theory

_ . guarantees three things:
e whereas wheny = 1 theselBCs require conti-

nuity of the field and its derivative to ensure th&Xxistence,there exists am-dimensional model, com-
the PDE, here Burgers’ equation (2), is satisfied posed of actual solutions of ti@E as indicated in
throughout the domain. Fig. 4, parametrised by the grid valuesu; (one
for each element) and the interelement coupling
Linearly, u; = u,;, and in the absence of interele-
ment couplingy = 0, the diffusion acts independently w(,t) = v(w,x,y) st d;=g;(uw,7), (8)
within each element to cause anytial field to decay
to a constant in each element as shown schematically
in Fig. 3. The constant in each element is independegievance, the model is exponentially quickly attrac-
of the other elements (linearly it only depends upon the tive toall nearby solutions of theDE (sometimes
initial field in each element). This decay occurs rapidly, called asymptotic completeness [24, e.g.] or ex-
on a time scale ofi?/x%. Thus, exponentially quickly ponential tracking [6, e.g.]) so we are assured that

whereu = (uq, ..., up);
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the solutions of the model represent the dynamics
from a complete range of initial fields, as demon-
strated in Fig. 4;

approximation, to construct the model it is appropri-
ate to substitute the above ansatz (8) and solve
asymptotically whence the model has the same or-
der of error as the residuals of the governing equa-
tions.

Impressively, these properties all hold flanite grid
sizeh—there is no need to invoke sméilin this ap-
proach. The only caveat to these amazingly strong re-
sults for the numerical model at finiteis that they ap-

ply to some neighbourhood of smdl, ), whereas
we have to use the discretisation at finiteand for in-
terelement coupling = 1. We hope that the neigh-
bourhood of applicability includes these relevant pa-
rameter values; in [2BA] | showed convergence when
evaluated aty = 1 for periodic solutions to Burgers’
equation. There are as yet unresolved issues about how
reliable these assurances are in general §Séar more
discussion about the new implications of the support
this theory gives numerical models.

The construction of the numerical model resolves
subgrid scale processes. A practical method to find the
centre manifold and the evolution thereon is to substi-
tute an approximate ansatz (8) into the goverrmpg,
here Burgers’ equation (2), and iteratively refine (8).
Such an iterative algorithm using computer algebra is
described in [18]. Successive iterations involve solving
for correctionsy’ andg’ in each element the underlying
linear problem of theDE here the diffusion problem

82?]/

Oz? ©)
forced by the residual of thebe and thelBcs. Thus
in the process of forming the numerical model we con-

= ¢’ + ppEresidualu, =, 7) ,

Figure 4: schematic dynamical system view of the evgyyct a detailed picture of the subgrid processes. For
lution in 7 = 40 elements plotting the grid value; gy rgers’ equation (2) we determine the subgrid field (7)
horizontally and a measure of the subgrid structure V§{T21]. These resolved subgrid structures are not im-

tically. Starting (top) from some random initial con
dition; after three decay times (middle) almost all e

ijosed arbitrarily upon the solution field, but are a natu-
al consequence of the physical dynamics expressed in

ements have collapsed onto a state where the subgfighpe through the interelement coupling. Itis for this
field is simply parametrised by the grid values; angdason | call the model a “holistic discretisation”.
soon after (bottom) they just evolve along the centreagsociated with the subgrid fields (7) of the centre

manifold.

manifold is the corresponding evolution

Ju; ol h? v
R (1 + Eu?) 52uj — Euj,u(Suj

at k2
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+O(Jull*,7?) - (10) nonlinearity

Evaluating aty = 1 we recover the discretisation (4)
for Burgers’ equation (2). Such a model has good non-
linear behaviour, as reported in [21], because of the res-

olution of subgrid scale processes. 4 gonsistency gBurgers’ equation
5 High order consistent approxima- holistic

tions 0 L L
To date | have only presented formula with terms. olistic
By, for example, determining?® terms we would obtain v consistency
a numerical discretisation of bandwidtin the index;. linear diffusion
This allows us to develop higher order representations v

of the spatial derivatives in @DE.

The 18Cs (5-6) may be changed in detail and Sﬁll!igure 5: conceptual diagram showing that with the dis-

behave usefully for interelement couplingranging creteiBCs (11) the numerical model is supported by
from 0 to 1. We may use this freedom to force thF

. " : ' t : froln= 0 and f =0.
discretisations to satisfy additional properties. Thus,VY0 independent bases: fr anc frormy
haveadditionallysought high order consistency as grid
size h — 0 using specially craftedscs. In [22] | + 5% (4(pbu;)? + (52%)2)}
proved that the following nonlocacs ensure consis- 4 3
tency to all orders for general lineRDEs: +O(lull ) (12)

vi(u, xjr1,7) — vi(w,xj,v) = v(uj£1 — u;), (11) See that when = 1: the first two lines are?(h*) di-
o0 rect approximations of Burgers’ equation (2); the third
rth Gy Alo=e,th/2 line modifies the nonlinear advection; the fourth lines
wherev; (u, z,v) denotes the field of the centre martancels the nonlinearly enhanced diffusion which ap-
ifold in the jth element. Application to variouspes Pears atO(y) and replaces it with a nonlinearly en-
have shown that thesecs generate high order consishanced fourth order dissipation; and the remaining lines
tency for the nonlinear terms as well. For example, fagcount for subtle effects of nonlinear subgrid scale
Burgers’ equation (2) the following numerical model igvolution, advection and diffusion. This discretisa-

obtained [20] by retaining? terms: tion is fourth order consistent with Burgers’ equation
) ash — 0[20].
Iy _ L [ 52u. — 7_54%] | summarise the new view of numerical discretisa-
ot h? T tions given by this approach as so far established. As
1 v, shown schematically in Fig. 5, employing the discrete
T l’ﬂwuy‘ - glﬂs Uj] IBCs (11) invokes two independent theoretical supports
5 for the discretisation: by ensuring consistency as grid
+ ;l_h((S?uj M53Uj + 54uj (o) S|.ze h. — 0 Wellnvoke the trgdltlonal suppor.t for fi-
, nite differences; and by applying centre manifold the-
+ Mu%?uj _ 7_u254uj ory based aty = 0 we invoke the strong results of that
212 ! 30 theory for the holistic approximation at finite We
_ {2552% 5y + 100pbu; pb>u; expect such dual support to form powerful numerical
1440 7 e approximations.
+ 36(52%‘)2} However, itis easy to imagine using the flexibility in-
2 herent in the introduction of the artificiscs in ways

~ 56 {852%‘ pdu; (pdu; + pduj) + 2(6%u;)®  other than consistency. For example, we could try to
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adapt theiBCs to generate the “flattest” centre mantonstruction proceeds as before and the samétgua
fold in some sense, thus hoping for small errors uptive observations apply as for Neumann boundary con-
evaluation aty = 1. This flexibility needs much moreditions. This centre manifold approach to discretisation
exploration. provides a natural and unified method of determining
approximations near a domain boundary.

6 Boundary conditions are straight-
forward 7 Higher dimensionalPDES

Recall that in Fig. 2 | showed a finite domain sliced int@© far we have only addressedes in one spatial di-
m elements. We applied artificigdcs in between eachMension. The same approach has the same theoretical
element, either (5-6) or (11); this is adequate for stric@PPort for constructing numerical models for dissipa-
periodic problems as explored in [21]. Now we addrel¥e PDES in higher spatial dimensions. MacKenzie [11]
how to incorporate the original physical boundary coff studying, for example, reaction-diffusion equations
ditions at the extremes of the domain—for simplicity? two dimensions:
| only discuss the left end of the leftmost element, the ou , _
right end is similar by symmetry. 5 = ¥ utreaction (15)

The simplest case is that of a Neumann boundary
condition ofu, = a(t) at the left end: = 2, — h/2. The approachin [11]is to: tessellate space, by squares

As explored in [20§4], we may incorporate it by usingfor example; applyiscs analogous to either (5-6)
P or (11); invoke theory to support a model parametrised
1

— =~a(t) at z=z1—h/2: (13) by the grid values of the field; find the subgrid scale

h O he left | i< insulated structures and the numerical model by iteratively solv-
wheny = 0 the leitmost element Is insulated as refﬁg Poisson’s equatiorly?v’ = ¢’ + residual, in the

quired for the application of centre manifold theor(glements. For the Liouvilleslaction-diffusion equation
(§4); whereas whery = 1 the original Neumann

bound dition i 4. Th i we find [11] the holistic model is more robust over a
oundary condition is recovered. The construction Tfier range of parameters.

the model then proceeds as before but with special, ongoing research into the construction of numer-

i/r\t/aatfr.nt(ajntffor thoselfewhelemcre]nts lr:ear_the bound%\él models for the advection-diffusion in a channel
< find, for exampe, that when (_aepmy_d tgrms, or pipe, we find that the holistic discretisation auto-
this boundary conditions affects the discretisation Oftpﬁatically generates a model containing shear disper-
first tyvo elt_ame_nts_. For t_axample, itintroduces terms dibn [26]. This is despite the analysis being for finite
the discretisation '”YO'V'QQ thf not only the flaxbut oo yent'size. We do not invoke large scale variations
also its time derivativesy*a, 4”4, etc. The reason forin the spread of material along the channel or pipe that

thgse tlme.derlvatlves is that the flux feeds into the Smeherto has been necessary to derive shear dispersion.
grid scale fields of the boundary elements and so affects

the interaction between the various physical processes.
The scope for such interaction increases with incre&- Initial conditions are subtle
ing element sizé and so accounts for the appearance
of the h2 factor in front of the time derivative. We Now consider using a numerical model such as (4) to
need to know such effects on coarse grids. make a forecast. You have a giveritial field ug(z),

As discussed in [2053] the best way to incorporateas shown schematically in Fig. 6, and are asked to use
a Dirichlet boundary condition, = a(t), appears to bethe numerical model to predict the field in the future.
to apply it at a grid point: = zo = 21 — h. With the You might simply use the grid values of the given field,

discreteiBcs (11) we used u;(0) = wuop(z;), as the error would be at moét(#).
B 14 However, in this approach the grid spacings treated
vi(w, 70, 7) = vilw, 21, 7) = y(a —w), - (14) as finite so such an error is significant. Instead, recall

which is effectively insulating whefm = 0 and requires the Relevance theorem mentioned# all small solu-
the Dirichlet condition is satisfied when = 1. The tions of therPDE exponentially quickly evolve to solu-
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Figure 6: you are given an initial field (solid) in a dofigure 7: contours of solutions which have the same

main divided into five elements, = 0.2. The appro- long term dynamics after exponential transients. The
priate initial condition for the numerical model it projection of. initial co.ndition.s onto the centre mani-
uo(x;) (circles) as implied by the definition af; , in- fold, symbolised by circles, is done along these con-

steaduse element averages (crosses) Wil ) pertur- OUrs.

bations.
sis invoking an adjoint differential equation [15, 3, 19].

_ _ See that the projection involves a dependence upon the
tions of the model—see Fig. 4 for example. Remarlitia| subgrid fields so that the initial values for the
ably, there is no mention of an error involving the grifl,merical model are not simply the initial field eval-
spacing: ! (Although recall the caveat that we have tgateq at the grid points (sometimes called “initial slip”
use the model af = 1 which is not necessarily small.yo7)  The projection for Burgers’ equation (2) is given
Thus the issue is: given an initial field(z), what is i [23): it is a little involved but is the element aver-
the correct initial numerical grid values (0) to use to 540 with©O(y) corrections. For example, for a point
ensure the exponentially quick agreement assured Bjsase in théth elementug(z) = §(z — x4 — hp),
theory? the dynamics of the linear diffusion equation [323,1]

Consider the abstract view of the evolution showgquires the following slightly distributed initial condi-
in Fig. 4. The solutions from a wide variety of initiatjon for the numerical model:

conditions exponentially quickly settled onto the cen-

tre manifold. All those that arrive at the same place hu;(0) = (% - 2) O, j

at the same time on the centre manifold of the numer- i (_L Ly lnz) oy

ical model should be given the same initial condition. 220 02 !

Thus we plotin Fig. 7 a contour plot of location on the + (—% +in+ %772) k41 - (16)

centre manifold as a function of initial position: all so- o o
lutions from any one contour have the same evolutiRiS Projection places most of the material in ik el-

apart from exponentially quickly decaying transientgmMent, but reasonably distributes some to the neigh-
Thus the initial condition problem is solved by projecOUring elements depending upon where the material
ing along the relevant contour onto the centre manifdgireleased in théth element.
and using the corresponding as the initial condition
for the modgl. Only then will thg modgl solution and) Jse the same paradigm
the PDE solution agree exponentially quickly.

The above geometric view of the projection of iniRecall the two layer model of the ocean, see Fig. 1.
tial conditions was developed into an algebraic anale now recognise it as the case of two finite elements
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