
 A Fast Scheduling Algorithm in AND-OR Graphs

GEORGE M. ADELSON-VELSKY
Department of Mathematics and Computer Science,

Bar-Ilan University, Ramat Gan, ISRAEL

ALEXANDER GELBUKH
Center for Computing Research,

National Polytechnic Institute, Mexico City, MEXICO

EUGENE LEVNER

Department of Computer Science,
Holon Institute of Technology, Holon, ISRAEL

Abstract. We present a polynomial-time algorithm for scheduling tasks in AND-OR graphs.
Given the number p of arcs and n of nodes, the complexity of the algorithm is O(np), which is
superior to the complexity of previously known algorithms.

 Key-Words: AND-OR graphs, scheduling, routing, polynomial-time algorithms.

1 Introduction

We consider a task scheduling problem in weighted
directed AND-OR graphs in which arcs are identified
with tasks while nodes represent their starting and
finishing endpoints. A starting point of a task is rep-
resented by an AND-node if its execution can be
started after all its preceding tasks have been solved,
and by an OR-node if it can be started as soon as any
one of its preceding tasks is solved. The time needed
to execute a task is represented by an arc length. The
problem that emerges is to implement all the tasks in
the graph in minimum time.
 Scheduling problems in AND-OR graphs have
many real-world applications. For example, De
Mello and Sanderson [5] have applied the scheduling
problems for the planning of robotic assembling sys-
tems; Gillies and Liu [8] and Adelson-Velsky and
Levner [1] employed AND-OR graphs for real-time
scheduling of tasks in computer communication sys-
tems. Along with various technological applications,
the scheduling problems in AND-OR graphs arise in
mathematical analysis of extremal problems in con-
text-free grammars [9], hypergraphs [4], and
games [11].
 The problem considered generalizes the classical
shortest-path and critical-path problems in graphs.

While vast literature is devoted to the shortest-path
problem and the critical-path problem in standard
graphs (see, e.g., [3] and the numerous references
therein), not much have been done for efficiently
solving the path-finding problems in AND-OR
graphs. A special case in which arc lengths are
strictly positive has been elegantly solved by Dinic
[6]. Another special case—in which AND-OR graphs
are bipartite, arc lengths are non-negative, and the
arcs leading to the OR-nodes have zero lengths—has
been investigated by Adelson-Velsky and Levner [1,
2]. Independently, Mohring et al. [10], studied a sub-
case in which only one arc led from each OR-node.
The latter two algorithms are of the same complexity
O(pp'), where p is the total number of arcs and p' the
number of arcs entering AND-nodes.

In this paper, we extend the polynomial-time al-
gorithms of [1, 2, 10] to the general (i.e., non-
bipartite) AND-OR graphs with non-negative arc
lengths and at the same time improve their complex-
ity. Given the total number n of nodes, the complex-
ity of the new algorithm is O(np), which is superior
to the complexity of the previous algorithms.

The paper is organized as follows: In Section 2
we define the problem. Section 3 presents a new
polynomial-time algorithm. Section 4 analyzes its
properties. Section 5 concludes the paper.

2 Problem Formulation

The input to the scheduling problem under considera-
tion is <G, s,τ>, where G = (V, E) is a directed graph,
V is the node-set, V = n, E is the arc-set, E = p; τ
= τ(vi, vj) is an arc length function, and s is a node
called the start whose occurrence time is given by
t(s) = t0.
 We assume that V=A∪O∪{s}, A being the set of
AND-nodes and O the set of OR-nodes. The problem
is to find the earliest starting times t(vj), for all vj∈V,
satisfying the following conditions:

 t(s) = t0, (1)

 t(vj) ≥)(max
ji vPv ∈ (t(vi) + τ(vi,vj)) if vj∈A, (2)

 t(vj) ≥)(min
ji vPv ∈ (t(vi) + τ(vi,vj)) if vj∈O, (3)

 t(vj) ≥ t0, for all vj. (4)

 Here P(v) denotes the set of nodes that are imme-
diate predecessors to v. Without the loss of general-
ity, we assume that P(v) is non-empty for any node v,
v ≠ s (otherwise, we would have several start nodes
which could be glued together into a single start
node). We will denote this problem by P. The prob-
lem turns into the critical path problem if O is empty,
and into the shortest path problem if A is empty.
 Conditions (2) and (3) are represented in the
graph G by the arcs from vi to vj of length τ(vi,vj). We
start the solution process with the following graph
transformations that permit us to present the con-
straints (4) in graph form (this does not violate the
problem size order):
(a) if the graph has an OR-node u having immediate

successors vj of OR type, then we add a new
AND-node u with τ(u, u) = 0, and the arcs (u,
vj) are replaced by the arcs (u , vj) with τ(u , vj)
= τ(u, vj) (see the figure below, where the
squares denote OR-nodes and the circles AND-
nodes);

u u
u

(b) we add arcs (s, vj) of zero length leading from
the start s to all AND-nodes vj in G (including
those added in the previous transformation).
Due to these preliminary transformations, we

may assume that any OR-node in G has a preceding
AND-node or s; in particular, G does not contain
zero-length cycles consisting only of OR-nodes.
Note that in contrast to the graph model considered
in [1, 2], in this paper the arcs entering OR-nodes are
allowed to be of non-zero length.
 DEFINITIONS. A set of values {t(vj)}, j = 1,…,
n, satisfying inequalities (1) to (4) is called a feasible
solution to the problem P. The feasible solution pro-
viding the minimum values t(vj) for all vj among all
feasible solutions, is called optimal, or earliest, start-
ing times, and is denoted by {t*(vj)}.
 Denote the graph obtained after the transforma-
tions by Ã, and the problem of finding the optimal
occurrence times {t*(vj)} in the new graph Ã subject
to (1) to (4) by Ð. Obviously, the problems P and Ð
are equivalent.

3 Algorithm
The new algorithm is based on the previous algo-
rithm suggested by the first and third authors of this
paper in [1,2], differing from the latter in the follow-
ing two aspects: (i) it uses another labeling proce-
dure which permits us to improve the algorithm
complexity; (ii) it uses a refined graph reduction
procedure which permits to treat general AND-OR
graphs rather than only bipartite graphs.
 Our algorithm works iteratively. At each iteration,
the algorithm finds a node with the smallest starting
time (at this point, the algorithm is similar to the
classic Dijkstra algorithm). However, in contrast to
Dijkstra's [7], Knuth's [9] or Dinic's [6] algorithms,
our algorithm is not greedy: it first discovers and
labels all nodes with not-minimal current starting
times, and only after that it reveals that the remain-
ing (i.e., not-yet-labeled) nodes gain minimum-time
labels. At termination, the algorithm either provides
the minimal starting time t*(vj) for all nodes, or an-
nounces that the problem Ð has no feasible solution.
 For every node v∈V, the algorithm assigns a time
label t(v) and maintains a status St(v)∈{uncolored,
red, black}. All nodes start out uncolored and later
become red or black. Initially, t(s) = t0.

 At each iteration, the graph is reduced to a smaller
one. Let Ãh denote the graph derived at the end of the
h-th iteration (h = 1, 2, …).
 Each iteration consists of four procedures:
Node_Painting, Sorting, and Graph_Reduction.
 The main idea behind the painting procedure is to
guarantee that in the Ãh all nodes painted red will
have the time labels (i.e., the occurrence times)
greater than the earliest occurrence time in Ãh; the
nodes labeled black will have the time labels t(v)
equal to the earliest occurrence time among the
nodes of Ãh.
 Consider an iteration h. Let F(s) denote the set of
all nodes v which are the heads of the arcs leaving s.
 First (before the first iteration starts) we sort all
nodes vi in F(s) in non-decreasing order of their
weights τ(s,vi). In addition, for each OR-node, vj, we
compute its in-degree and assign it to a variable rj.
 Next, we use Node_Painting consisting of two
steps, S1 and S2. During these operations, yet uncol-
ored nodes are painted red, until at some instant no
uncolored node can be labeled red.
 Step S1. For each positive-length arc (vi,vj), vi ≠ s,
consider its head vj. If it is an AND-node then paint it
red. If it is an OR-node then decrement rj by 1; when
rj becomes 0, paint vj red.
 Step S2. For each zero-length arc (vi,vj) such that
its tail vi is red, consider its head vj. If it is an AND-
node then paint it red. If it is an OR-node then dec-
rement rj by 1; when rj becomes 0, paint vj red. Note
that when a node is painted red, all its leaving arcs of
zero length are added to a queue to be processed in
the same manner later at this step.
 Two cases are possible at this point:
 Case C1. All nodes are painted red. This means
that the initial graph has a cycle of positive length,
and moreover, the time labels of some nodes in the
cycle will be infinitely large. In this case, the prob-
lem has no feasible solution, so the algorithm stops.
 Case C2. Some nodes (or, possibly, all of them)
are not painted red. Consider this case in detail.
 Note that all nodes must be reachable from the
start s through directed paths in G. Indeed, for the
AND-nodes this trivially follows from the prelimi-
nary transformation (b) described above; for the OR-
nodes it follows from the fact that any such node is
preceded by an AND-node or s (this follows from the
transformation (a)). Therefore, F(s) contains un-
painted nodes.

 Among the unpainted nodes in F(s), we choose
the node v** with the maximal length τ(s,vi): τ** =
τ(s,v**) = maxi∈F(s)τ(s,vi). If v** is of AND type then
we paint it red. If v** is of OR type then we decre-
ment its rv** by 1. If the rv** becomes 0 then we paint
v** red. Otherwise, i.e., if rv** > 0 then the arc (s,
v**) is removed (i.e., v** is removed from F(s))
since this arc is not critical.
 If the node v** was painted red, then we paint
not-yet-painted nodes, as described in Step S2, start-
ing from the node v**.
 If in F(s) there are still not painted nodes, then the
operation described in the previous two paragraphs is
executed with the next maximal node in F(s), i.e.,
choose the (next) maximal not-yet-painted node in
F(s), paint it or decrease its rv**, and apply Step S2.
This descend is repeated until all nodes in F(s) be-
come painted red.
 When all nodes in F(s) become red, we select the
last node considered as v** and denote it as v*. It has
the minimum time t(v*) in Ãh. This node is painted
black (in order to simplify the further proofs). This
finishes the procedure Node_Painting.
 Then Graph_Reconstruction is applied: The node
v* and the arcs incident to it are removed from Ãh.
Each immediate successor v of v* is made connected
with s by an arc (s,v) whose length is defined as fol-
lows. If there is no arc (s, v), then such an arc is in-
serted in the graph (instead of the removed arc (v*,
v)), with

τ(s, v) := τ(s, v*)+τ(v*, v).

Otherwise, the length of the arc (s, v) is recalculated:

τ(s, v) := max(τ(s, v), τ(s, v*)+τ(v*, v))
if v is an AND-node;

τ(s, v) := min(τ(s, v), τ(s, v*)+τ(v*, v))
if v is an OR-node.

As a result, some new nodes may enter F(s) and oth-
ers may change their position in the ordering of F(s).
This finishes Graph_Reconstruction.
 If after the reconstruction the resulting graph is
empty, the algorithm finishes. All nodes have been
removed from the graph, with their time labels hav-
ing been defined. Otherwise, a new iteration (starting
from Step S1) is executed with the reduced graph,
with all its nodes made again unpainted.

4 Algorithm Analysis
At each iteration, a node is deleted from the graph, so
that the number of nodes (and arcs) in the graph Ãh
decreases by one. Though the number of nodes in
F(s) changes dynamically from iteration to iteration,
it never exceeds the total number n of nodes.
 To summarize, after each iteration, the following
states are possible:
(1) either all of the nodes are painted red after the

steps S1 and S2 of Node_Painting; then the prob-
lem has no solution, or

(2) all nodes of the initial graph G have been re-
moved (so that their minimum times have been
defined); it means that the problem has been
solved, or

(3) after Graph_Reconstruction terminates, the graph
is not yet empty; then the algorithm goes to the
next iteration.

 Observe that this construction does not mimic the
structure of Dijkstra’s shortest-path algorithm.
 Consider the properties of the algorithm in more
detail.
 DEFINITIONS. Let t(vj) be the optimal solution to
the problem Ð. Any arc (vi, vj) such that t(vj) = t(vi) +
τ(vi,vj) where vi∈P(vj), is called critical, or binding.
A path is called critical if it either consists of a single
node or consists of critical arcs. Given the optimal
solution to the problem Ð and a node vj, a critical
sub-network Ncr(vj) originating at vj is defined recur-
sively as follows: (1) vj ∈ Ncr(vj), and (2) if vk ∈
Ncr(vj) and t(vj) = t(vi) + τ(vi,vj), then vi ∈ Ncr(vj) and
(vi, vk)∈ Ncr(vj).
 We will see that the critical path in the problem Ð
may be neither the shortest nor the longest path in Ã.
 The following theorem establishes the rela-
tionships between the critical paths and the op-
timal values of the decision variables, t*(vj).
THEOREM 1 [2]. 1. If vi ∈ Ncr(vj), then there exists a
simple (i.e., acyclic) critical path L=(vi,…,vj), start-
ing at vi and terminating at vj, in which all nodes and
arcs belong to Ncr(vj).
 2. The length ë(vi,…,vj) of the critical path L, de-

fined as ∑ −

=

1j

is
τ (vs, vs+1), equals t*(vj) – t*(vi).

 3. If the problem Ð has a feasible solution, then
the starting node s belongs to all critical sub-
networks Ncr(vj), j = 1,…, n.

 The proof, which follows directly from the defini-
tions of the critical sub-network and the critical path,
is skipped here. (The detailed proof can be found in
[2]).
 Consider now an iteration h. Assign the labels
{red, black} to the nodes of Ãh as described in the
previous section, and define the ranks of the red-
labeled nodes as follows:
 The nodes that are labeled red during the initial
labeling receive the rank k =1. When a node v is
painted red at Step S2 using an arc (u,v), then the
rank of v is set to the rank of u plus 1. The following
two lemmas establish useful properties of the black-
and red-labeled nodes.
 LEMMA 1 (“The time of any red-labeled node is
not minimal”). If the optimal solution to Problem Ð
exists, then the earliest occurrence time of any red-
labeled node is greater than t0 +τ* = t0 + mini∈F(s)τ(s,
vi), where F(s) is the set of all heads of the arcs leav-
ing the start node s in Ãh..
 Proof is by induction on the rank k. Consider any
iteration, say h. Let Ëk denote the set of all red-
labeled nodes of the rank k at that iteration.
 Let us first verify the result for k = 1. For the
nodes vi ∈ Ë1, we have:
 If s ∈ P(vj), and τ(s, vj) > τ* = τ(s,v1) = mini∈F(s)
τ(s, vi), then t(vj) ≥ t(s) + τ(s,vj) > t0 + τ(s,v1).
 If vi ∈ P(vj), and τ(vi, vj) > 0, then t(vj) ≥ t(s)+
τ(s,v1) + τ(vi, vj) > t0 + τ(s,v1).
 Suppose that the required result is true for all the
ranks not greater than k, that is, for the earliest occur-
rence times of the nodes vi from ∪s≤kËs, t(vi) > t0 +
τ(s,v1).
 Let vj ∈Ëk+1. Then we have:
 If vj ∈ A and vi ∈ P(vj) ∩ Ëk then t(vj) ≥ t(vi) +
τ(vi, vj) ≥ t(vi) > t0 + τ(s,v1);
 If vj ∈ O and vi ∈ P(vj) ∩ (∪s≤kËs), then t(vj) =

)(min
ji vPv ∈ t(vi) > t0 + τ(s,v1). ð

 Remark (the structure of the sets of predecessors
for the black-labeled nodes). Let U be the set of the
black-labeled nodes, and vj is a node from U. Then:
(1) If vj ∈ A then P(vj) ⊂ U∪{s} (i.e., all immediate

predecessors to any black-labeled AND-node are
black-labeled, or coincide with the starting node
s).

(2) If s ∈ P(vj) then τ(s, vj) =τ* = τ(s,v1) = mini∈F(s)
τ(s, vi) (i.e., if the starting node s enters P(vj) then

the arcs leading from it to the black-labeled
AND-nodes are of minimally possible length).

(3) If vi ∈ P(vj) ∩ O, and vj ∈ A, then τ(vi, vj) = 0
(i.e., if an immediate predecessor to the black-
labeled AND-node is black-labeled then the arc
linking these two nodes is of zero length).

(4) If vj ∈ O then P(vj) ∩ U ≠ ∅ (i.e., among the
immediate predecessors to any black-labeled
OR-node, there is a black-labeled node).
Indeed, if any one of the conditions above does
not hold, then the node vj will be labeled red.

 LEMMA 2 (“The time of any black-labeled node is
minimal”). Let Ãh be a graph obtained at the h-th
iteration of the algorithm. If a feasible solution to Ð
in graph Ãh exists, then the earliest occurrence time
of any black-labeled node is equal to t0 + τ* = t0
+τ(s,v1) = t0 +mini∈F(s)τ(s, vi).
 Proof. Let t ={t(vj)} be a feasible solution to Prob-
lem Ð in graph Ãh, and consider a new solution,
t'={t'(vj)}, defined by t as follows:

 t'(vj) =




∈
∪∈

.),,(

,Ë),(

1 Uvifvs

vif vt

j

kjj

τ

 Consider any node vj labeled red. Due to Lemma
1, t(vj) > t0 +τ(s,v1), the times t'(vi) for vi∈P(vj) are
not greater than t(vi), and, hence, the occurrence
times t'(vi) of the red-labeled nodes satisfy conditions
(1)-(4).
 Consider now the nodes labeled black. In view of
Remark about the structure of the predecessors for
the black-labeled nodes, we have, for nodes vj ∈ A:

t'(vj) = }{)(max sOvPv ji ∪⊂∈ (t'(vi) + τ(vi, vj)) =































∈∅≠∩

++
=

+++
⊂∈

++

))(and ,)((

)),()(,0),(max(

}),{)((

),()(),()(

),)((

 0),()(

1

1

1

jj

j

j

j

ji

vPsOvPif

vsstvs

svPif

vsstvsst

OvPvif

vsst

ττ

ττ

τ

=

 t0 + τ(s,v1).

 Next, for the nodes vj ∈ O, we have P(vj) ∩ U ≠
∅, and, in view of the condition t(vi) > τ(s,v1), which
is proved for the red-labeled nodes vi, we obtain:

t'(vj) =)(min
ji vPv ∈ t'(vi) =

min ({t'(vi) = t0 +τ(s,v1)} UvPv ji ∩∈)(, {t'(vi) = t(vi) >

t0+ τ(s,v1)}))((\)(UvPvPv jji ∩∈) = t0 + τ(s,v1).

 Therefore, if, in a feasible solution, some of the
values t(vi) are greater than τ(s,v1), then this solution
is not optimal due to the uniqueness of the optimal
solution to Problem Ð. The claim is proved.
 The suggested algorithm is a modification of the
algorithm in [1, 2] that solved the above problem (1)-
(4) in a special case of bipartite graph with some
specific requirements to the arc lengths. Our aim is to
extend that algorithm for the general AND-OR
graphs with cycles. Similar to the algorithm in [1, 2],
the new algorithm operates with two main proce-
dures, Node_ Labeling and Graph_Reduction. The
Node_Labeling - just as in [1,2] - has the complexity
O(p). However, after each run of Node_Labeling at
least one node of G may be removed, so the total
number of runs of the internal cycle can reach n,
where n is the number of nodes in G; this is a point
of departure from the algorithm in [1, 2], where O(p)
iterations is required in the internal cycle in the worst
case. By this way, we are able to improve the algo-
rithm complexity.
 THEOREM 3. The complexity of the algorithm is
O(np).

Proof. We first estimate how many operations
each iteration h requires. For each node vi in Ãh, the
input contains the list of arcs (vi, vj) leaving the node.
In addition, for each OR-node, vj, we compute its in-
degree rj.
 At step S1, the labeling procedure includes exam-
ining all arcs leaving the start node and all arcs of
positive length in Ãh. The required time is O(p) (p =
the number of all arcs).
 For Step S2 of Node_Painting (in total, during all
its invocations at the given iteration h), the labeling
procedure can be implemented by examining each
arc in Ãh not more than once. Indeed, at each run of
Step S2, the algorithm will examine in turn each arc,
say (vi, vj), that leaves a red-labeled node vi (and that
has not yet been examined). During each examina-
tion, for an OR-node the algorithm will update the
value rj for the head-node vj decrementing it by 1,
when the new rj = 0, the node vj is painted red; for an
AND-node, the node will be painted. Having been
once examined at some run of Step S2, the arc (vi, vj)

is not examined anymore at further runs of this step
at the considered iteration. Thus, at any given itera-
tion, during all repetitions of Step S2, the labeling
procedure takes O(p) operations.
 At each iteration, graph Ãh is reduced by one
(black) node so that the total number of iterations is
O(n), where n is the number of nodes in the initial
graph G. Thus, the overall time of the labeling pro-
cedure during all iterations is O(np).
 Now we estimate how many operations the recon-
struction of the graph requires. It is sufficient to scan
only the arcs leading to the immediate successors of
the nodes from the set F(s), and each arc is exam-
ined only once; their number is at most O(p). Since
the total number of iterations is n, the graph trans-
formations by Graph_Reduction add at most O(np)
operations.
 When a new node appears in F(s) or a node
changes its position in the ordered F(s), the order can
be maintained in O(n) operations (and even in O(log
n) if to use the balanced-tree data structure). This
may happen only when an arc is removed from the
graph in Graph_Reduction, i.e., it happens at most p
times. Thus, the total cost of maintaining F(s) or-
dered is not greater than O(np). Therefore, the total
complexity of the suggested algorithm is O(np). The
claim is proved.
 The algorithm can be made faster if at some stage
the reduced graph becomes acyclic, or if all arc
lengths in the reduced graph become positive.

5 Concluding Remarks
When arc lengths in the AND-OR graph in the con-
sidered scheduling problem are of arbitrary sign, the
proposed algorithm is inapplicable. Although it is
easy to construct a dynamic programming algorithm
that yields the optimal solution for this problem in
pseudo-polynomial time, the question whether the
problem is polynomial solvable, is still open. A chal-
lenging problem would be to find a polynomial-time
algorithm for this scheduling problem, or, otherwise,
to prove its polynomial unsolvability.

Acknowledgement. The work was done under par-
tial support of INTAS (Brussels, Belgium) for the
first and third authors, and SNI and CONACyT
(Mexico) for the second author.

References
1. Adelson-Velsky, G.M., and E. Levner (1999).

Routing information flows in networks: A gener-
alization of Dijkstra’s algorithm, Proceedings of
the International Conference “Distributed Com-
puter Communication Networks”, November 9-
13, 1999, Tel-Aviv University, Israel, Tel-Aviv -
Moscow, IPPI RAN Press, pp.1-4.

2. Adelson-Velsky, G.M., and E. Levner (1999).
Finding extremal paths in AND-OR graphs. A
generalization of Dijkstra's algorithm. Technical
report, Holon Academic Institute of Technology,
Holon, Israel, 35 pp.

3. Ahuja, R.K., T.L. Magnanti, J.B. Orlin (1993).
Network Flows. Theory, Algorithms and Applica-
tions, Prentice Hall, Englewood Cliffs.

4. Ausiello, G., A. D’Atri, D. Sacca (1983), Graph
algorithms for functional dependency manipula-
tion, Journal of ACM, 30, 752-766.

5. De Mello, L.S.H., and A.C. Sanderson (1990).
AND/OR graph representation of assembly
plans, IEEE Transactions on Robotics and
Automation, vol. 6, no.2, 188-199.

6. Dinic, E.A. (1990). The fastest algorithm for the
PERT problems with AND- and OR-nodes. Pro-
ceedings of the Workshop on Combinatorial Op-
timization, Waterloo, University of Waterloo
Press, Waterloo, 185-187.

7. Dijkstra, E.W. (1959). A note on two problems
in connexion with graphs, Numerische Mathe-
matik, 1, 269-271.

8. Gillies, D. and J. Liu (1995), Scheduling tasks
with AND/OR precedence constraints, SIAM
Journal on Computing 24(4), 787-810.

9. Knuth, D. (1977), A generalization of Dijkstra’s
algorithm, Information Processing Letters, 6,1-5.

10. Mohring, R.H, M. Skutella and F. Stork (2000),
Scheduling with AND/OR Precedence Con-
straints, Technical Report No. 689/2000, Tech-
nische Universitat Berlin, August 2000, 26 pp.

11. Zwick, U., and M. Patterson (1996), The com-
plexity of mean payoff games on graphs, Theo-
retical Computer Science, 158, 343-359.

