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Abstract: The controllability of a class of hybrid systems, called linear switched

systems, is analyzed using an algebraic approach. A necessary and suÆcient condition

is proposed based on the manipulation of system matrices. By applying the obtained

results to the analysis of fault-tolerant control, the recon�gurability of the considered

systems is also discussed and illustrated by one example.
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1. INTRODUCTION

Hybrid systems (HS) are a kind of complex

systems consisting of two distinct components,

namely discrete-event driven subsystems and con-

tinuous -time evolving subsystems, which interact

with each other and operate in real time. HS have

been an intensive studied topic in the areas of

control engineering and computer science, because

of their importance in applications, such as hard-

ware and embedded software veri�cation, mobile

communication networks and large scale, multi-

agent systems analysis and design ((Antsaklis and

Nerode (1998); Alur et al. (1993)).

If we focus on the control problem of hybrid

systems, these systems are usually referred to as

Hybrid Control Systems (HCS) (Branicky et al.

(1998); Caines and Wei (1998); Stiver and Antsak-

lis (1993); Yang and Blanke (2000)). Within the

feedback control framework (Rugh (1996)), a fun-

damental concept - controllability - is used to

study the e�ect of the controller to the dynamical

system operations. It can be observed that the

functionality of the controller in HCS often relates

to the dynamical characteristics of the continuous

evolution and those of discrete transitions as well

(Branicky et al. (1998); Yang et al. (1998); Yang

and Blanke (2000)). Then, a challenging topic

arises as how to evaluate and analyze this kind

of functionality, and it is usually referred to as

the controllability problem of hybrid control sys-

tems (Bemporad et al. (2000); Ezzine and Haddad

(1989); van Schuppen (1998); Tittus and Egardt

(1998); Yang et al. (1998); Yang and Blanke

(2000)).

An amount of research work can be found for

the controllability problem of HCS. Such as the

controllable language method based on an ab-

stracted Discrete-Event-System (DES) model of

a continuous plant (Stiver and Antsaklis (1993));

the hybrid controllability de�nition and analysis

for integral hybrid systems in Tittus and Egardt

(1998); Some suÆcient and/or necessary condi-

tions in van Schuppen (1998); Yang and Blanke

(2000). But, from the complexity point of view,

the controllability problem of HCS is NP hard

as stated in Bemporad et al. (2000); Blondel and

Tsitsiklis (1999), even for simple classes of hybrid

systems. However, if we focus on some speci�c

systems, the controllability analysis can still be

dealt with in an eÆcient way. Such as in Ezzine

and Haddad (1989) the controllability of a class



of linear switched systems was analyzed under as-

sumption that the switching sequences and points

were �xed in advance. One suÆcient condition and

one necessary condition were proposed in Yang

et al. (1998) for a class of linear switched systems.

Therefore, in the following, we focus on a class

of piecewise linear hybrid systems called linear

switched systems.

A linear switch system is a typical hybrid sys-

tem with simple formulation about the system

structures relating to discrete and continuous

dynamics. Many complicated nonlinear systems

can be approximated by these kind of systems

with switching mechanism (Liberzon and Morse

(1999)). In this paper, some suÆcient and neces-

sary conditions for the controllability analysis of

the linear switched systems are obtained using an

algebraic manipulation of system matrices. It can

be noted that the existing result for LTI systems

and results in Ezzine and Haddad (1989); Yang

et al. (1998) become special cases of the results

of this paper. Furthermore, By employing the

obtained results, the recon�gurability, one funda-

mental property of fault-tolerant control (Blanke

et al. (2001)), can be analyzed directly for the

considered systems.

The paper is organized as follows: Section 2 formu-

lates the controllability analysis problem. Section

3 de�nes some matrix manipulations; Section 4

states the main results; Section 5 discusses the re-

con�gurability for fault-tolerant control. Finally,

we conclude the paper in Section 6.

2. PROBLEM FORMULATION

Consider a class of linear switched systems, de-

noted as�
_x(t) = A(�(t))x(t) +B(�(t))u(t);

y(t) = C(�(t))x(t)
(1)

where the state variable x(t) 2 Rn, (controllable)

input variable u(t) 2 Rm and output variable

y(t) 2 Rp. �(t) : R+ 7! N is a piecewise constant

switching function mapping from the real time

line R+ to an integer set N . Matrices A(�); B(�)

and C(�) are piecewise constant matrices depend-

ing on values of �. Obviously, the considered

switched system (1) is a speci�c hybrid system

with the hybrid space as a cross product of set N

and Euclidean space Rn. Denote a hybrid state as

(n; x) with n 2 N and x 2 Rn, where n andx

are usually referred to as the discrete state and

continuous state, respectively.

Based on these notations, we make the following

assumptions:

� (i) The integer set N is �nite;

� (ii) �(t) is left-continuous, and any time

interval within which �(t) is constant is no

less than a proper dwelling time (Liberzon

and Morse (1999));

� (iii) The switching time set ftig
k
i=1 and cor-

responding switching mode set fnig
k
i=0 both

can be determined by the control design,

as well as the continuous-time control signal

u(t) within each selected mode;

� (iv) There is no discontinuous state jumps

during mode switches.

The practical situation of the considered systems

can be found in the design of an autonomous

vehicle integrated with an autopilot system, where

the autopilot system need select a proper oper-

ating mode regarding to di�erent gears at any

time, and meanwhile control the engine throttle

continuously within each operating mode.

By employing the hybrid controllability concept

given in Tittus and Egardt (1998); van Schuppen

(1998); Yang and Blanke (2000), we have:

De�nition 1: Given any pair of hybrid states, de-

noted as (n0; x0) and (nk; xk) respectively, if there

exists a timedmode-switching set f(ni�1; ti; ni)g
k
i=1

and a corresponding piecewise continuous �nite

input signal u(t), such that system (1) evolving

under these two distinct inputs is reachable from

(n0; x0) to (nk; xk) within a �nite time interval,

then the considered system (1) is controllable,

otherwise, system (1) is uncontrollable.

It is obvious that the controllability analysis can

be performed by checking the reachability for

any pair of hybrid states. In the following, we

show that the controllability analysis of (1) can

be eÆciently coped with through manipulation of

related system matrices.

3. PRELIMINARY KNOWLEDGE

An LTI system can be described by (1) when

size(N) = 1. The matrix de�ned asWc=̂[B AB � � �
An�1B] is usually used for the controllability anal-

ysis of LTI systems (Rugh (1996)). Similarly,when

size(N)=̂q � 1,

De�nition 2: The matrix de�ned as

WC=̂[W
1
c � � � W q

c ]=̂[B1 A1B1 � � � A
n�1
1 B1

� � � Bq AqBq � � � A
n�1
q Bq ]: (2)

is called the controllability matrix of (1).

In order to explore the interaction among multiple

modes, some adjoint system matrix manipulation

need to be further de�ned.

If the mode-switching order of one switched

mode set is �xed as from mode ni1 to mode



ni2 , then ni3 , until reaching nim . For any given

j1; j2; � � � ; jk, matrix A
jk
ik
� � �Aj2

i2
A
j1
i1
Bi1 has m

columns. When j1; j2; � � � ; jk take all the pos-

sible values - 1; 2; � � � ; n � 1 - respectively, we

construct a new matrix by all possible columns

of A
jk
ik
� � �Aj2

i2
A
j1
i1
Bi1 as columns of new matrix,

which is an n� (mnk) order matrix as de�ned in

the following:

De�nition 3: The matrix de�ned as

�k(i1; � � � ; ik)=̂[A
jk
ik
� � �Aj1

i1
Bi1 ]jk;���;j1=0;1;���;n�1;

is called the joint controllability matrix of modes

ni1 ; ni2 ,� � � ; nik .

Specially, for any single mode i 2 N , �1(i) is

actually the controllabilitymatrixW i
c . If the space

spanned by columns of matrix M is denoted as

span(M), then

Proposition 1: �m(i1; i2; � � � ; im) has the prop-
erties

� span(�k�1(i1; i2; � � � ; ik�1)) �
span(�k(i1; i2; � � � ; ik�1; ik)):

� When the mode indices il = is with l 6= s.

Assume l � s � 1, then if the multiplication

of Ais and Aij for j = s+1; � � � ; l satisfy the
immutable property, i.e., AisAij = AijAis ,

there is

span(�k(i1; � � � ; is; � � � ; il�1; il; il+1; � � � ; ik))

= span(�k�1(i1; � � � ; is; � � � ; il�1; il+1; � � � ; ik)):

Assume only the initial mode of a mode switching

sequence which contains k + 1 elements is �xed

and denoted as i 2 N , we can construct a new

matrix, denoted as �k(i), based on the de�nition

of �k(i1; � � � ; ik), and its columns consist of all

possible columns of matrix A
jk
ik
A
jk�1
ik�1

� � �Aj1
i1
A
j
iBi,

where mode indices ik; ik�1; � � � ; i1 take all pos-

sible values from f1; 2; � � � ; qg respectively, un-

der condition that the successive mode is dif-

ferent from the former, and the power indices

jk; jk�1; � � � ; j1; ji take all possible values from

f0; 1; � � � ; n�1g respectively. When parameter k is

assigned as 0; 1; � � � ; k; � � � respectively, an iterative
de�nition of �k(i) is given in the following:

De�nition 4: The matrix de�ned iteratively as

�0(i)=̂�1(i) = W
i
c ;

�1(i)=̂[�2(i; j)]
j = 1; � � � ; q

with j 6= i

.

.

.

�k(i)=̂[�k+1(i; i1; � � � ; ik)] i1; � � � ; ik = 1; � � � ; q

with i1 6= i; � � � ; ik 6= ik�1

is called the kth order joint controllability matrix

of mode ni.

Proposition 2: �k(i) has the properties

� It is an n � (mnk+1(q � 1)k) order matrix;

and

� span(�k(i))

= span

 
[Al

j�
k�1(i)]

j = 1; 2; � � � ; q
l = 0; 1; � � � ; n� 1

!
:

If there is no any speci�c mode or mode-switching

order which has been �xed within a timed switch-

ing set, we should consider any possible mode-

switching sequences. As the construction in the

above analysis, a system joint controllability ma-

trix is de�ned as:

De�nition 5: The matrix de�ned iteratively as

W
0
= [�0(1) �0(2) � � � �0(q)]

...

W
k
= [�k(1) �k(2) � � � �k(q)]

is called the kth order joint controllability matrix

of (1).

Proposition 3: W
k
has the properties:

� It is an n� (qmnk+1(q � 1)k) order matrix;

� span(W
k
) � span(W

k+1
); and

� When the power index l satis�es rank(W
l
) =

rank(W
l+1

), then 8k � l, there is rank(W
k
) =

rank(W
l
).

From the third property of W
k
, we can de�ne a

system parameter as:

De�nition 6: The parameter kr de�ned as

kr=̂minfljrank(W
l
) = rank(W

l+1
)g (3)

is called the joint controllability coeÆcient of

system (1).

Proposition 4: kr has the property 0 � kr � n�
n0, where n0 is the rank of controllability matrix

WC de�ned in (2).

4. MAIN RESULTS

Lemma 1: Consider a matrix de�ned as

F =̂

2
6666666664

t2Z
t1

b0(tn+1 � �)d� � � �

tn+1Z
tn

b0(tn+1 � �)d�

.

.

.
.
.
.

.

.

.
t2Z

t1

bn�1(tn+1 � �)d� � � �

tn+1Z
tn

bn�1(tn+1 � �)d�

3
7777777775
(4)

where functions bi(t) are obtained from

eAt=̂b0(t)I + b1(t)A+ � � �+ bn�1A
n�1; (5)

there exists a real sequence ft1; t2; � � � ; tn+1g,
which satis�es 0 < t1 < t2 < � � � < tn+1 and

makes F de�ned in (4) non-singular.



Theorem 1: A binary-mode (1) is controllable if

matrix WC de�ned in (2) is of full row rank.

Proof: For any given initial and �nal hybrid

states, denoted as (n0; x0) and (nf ; xf ) respec-

tively, where n0; nf 2 N and x0; xf 2 Rn, and ini-

tial and �nal time instants t0 and tf with tf > t0,

without lose of generality, we assume that there

are n0 = n1 and nf = n2 �rstly.

Select a timed switching set as f(n1; t1; n2)g with
property t0 < t1 < tf , then the state trajectory of

the binary system (1) at time tf has the form:

x(tf ) = eA2(tf�t1)eA1(t1�t0)x(t0)

+

t1Z
t0

eA2(tf�t1)eA1(t1��)B1u(�)d�

+

tfZ
t1

eA2(tf��)B2u(�)d�: (6)

Denote xf =̂e
�A2(tf�t1)xf�eA1(t1�t0)x0. With re-

spect to expression (5), equation (6) can be fur-

ther expressed as

xf =

n�1X
i=0

Ai
1B1�i +

n�1X
j=0

A
j
2B2�j ;

where for any i; j = 0; 1; � � � ; n� 1, there are

�i=̂

t1Z
t0

bi(t1 � �)u(�)d�; (7)

�j=̂

tfZ
t1

cj(t1 � �)u(�)d�: (8)

Here bi(t) and cj(t) are the expansion coeÆcients

of eA1t and eA2t respectively. Equation (6) can be

further expressed as a matrix multiplication form:

xf = [B1 � � � A
n�1
1 B1 B2 � � � A

n�1
2 B2]

2
666666664

�0
...

�n�1
�1
...

�n�1

3
777777775

Due to the assumption that rank(WC) = n,

we know that there always exists a solution

([�0 � � � �n�1]
T ) of above equation for any

given xf 2 Rn. Assume one solution determined

by the given continuous states xf and x0 is

[�?0 � � � �
?
n�1 �

?
0 � � � �?n�1]

T , then with respect to

de�nitions (7), there exist 2n integral equations

need to be considered:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

�?0 =

t1Z
t0

b0(t1 � �)u(�)d�

...

�?n�1 =

t1Z
t0

bn�1(t1 � �)u(�)d�

�?0 =

tfZ
t1

c0(t1 � �)u(�)d�

...

�?n�1 =

tfZ
t1

cn�1(t1 � �)u(�)d�

(9)

Now we need to prove that there exists a piecewise

continuous function u(t) de�ned within period

[t0; tf ], which makes these 2n integral equations

valid.

Divide the time interval [t0; t1] into n subintervals

with property t0=̂t0;1 < t0;2 < � � � < t0;n+1=̂t1,

and de�ne the input u(t) within [t0; t1), denoted

as u(t=[t0; t1)), as a piecewise constant vector

function, i.e.,

u(t=[t0; t1))=̂U0i; t0;i � t < t0;i+1;

U0i 2 Rm; i = 1; � � � ; n: (10)

Similarly, we also divide the time interval [t1; tf ]

into n subintervals with property t1=̂t1;1 < t1;2 <

� � � < t1;n+1=̂tf , and de�ne u(t=[t1; tf ]) as a

piecewise constant function:

u(t=[t1; tf ])=̂U1i; t1;i � t � t1;i+1;

U1i 2 Rm; i = 1; � � � ; n: (11)

Here U0i and U1i for i = 1; � � � ; n need to be

determined in the following.

Substitute the assigned control (10) and (11) into

equation (9), then we have2
64

�?0
...

�?n�1

3
75 = F (t0;1; t0;2; � � � ; t0;n+1)

2
64
U01

...

U0n

3
75 (12)

2
64

�?0
...

�?n�1

3
75 = F (t1;1; t1;2; � � � ; t1;n+1)

2
64
U11

...

U1n

3
75 (13)

where F (ti;1; ti;2; � � � ; ti;n+1) for i = 1; 2 are matri-
ces de�ned as (4). With respect to Lemma 1, we
know that there exists a proper set of switching
time instants t0;1; � � � ; t0;n+1 and t1;1; � � � ; t1;n+1,
such that equations (12) and (13) will always
have unique solution, respectively. Denote the
solutions of (12) and (13) as [U?

01 � � � U?
0n]

T



and [U?
11 � � � U

?
1n]

T , respectively. Then the timed
switching set f(n1; t1; n2)g and the piecewise con-
stant control input

U
?(t=[t0; tf ])=̂

�
U
?
0i; t0;i � t < t0;i+1; i = 1; � � � ; n

U
?
1i; t1;i � t < t1;i+1; i = 1; � � � ; n

make the �nal state (n2; xf ) reachable from

(n1; x0) within period [t0; tf ], where t0;n+1 =

t1;1 = t1 and t1;n+1 = tf .

Once the given initial and �nal discrete states

have the property n0 = nf , without lose of

generality, we assume there is n0 = nf = n1.

Select a timed switching set as

f(n1; t1; n2); (n2; t2; n1)g

with property t0 < t1 < t2 < tf , and de�ne the

piecewise continuous input u(t=[t2; tf ]) � 0. Then

when denoting

xf =̂e
�A1(tf�t2)e�A2(t2�t1)xf � eA1(t1�t0)x0;

we can get the same expression of the system state
trajectory as (6). Therefore, we can further assign
properly a piecewise constant input function as

U
?(t=[t0; tf ])=̂

(
U
?
0i; t0;i � t < t0;i+1; i = 1; � � � ; n

U
?
1i; t1;i � t < t1;i+1; i = 1; � � � ; n

0 t2 � t � tf ;

which makes (n1; xf ) reachable from (n1; x0)

within period [t0; tf ], where t0;n+1 = t1;1 = t1
and t1;n+1 = t2. 2

Actually, Theorem 1 can be extended for any

q � 2 case as stated in Yang et al. (1998), i.e.,

Theorem 2: System (1) with q-mode is control-

lable, if WC de�ned in (2) is of full row rank.

In addition to that, through detailed analysis, it

can be proved that the necessary condition stated

in Yang et al. (1998) is also a suÆcient condition

for controllability, i.e.,

Theorem 3: System (1) is controllable, if and

only if the krth order system joint controllability

matrixW
kr

is of full row rank, i.e., rank(W
kr
) =

n, where kr is the joint controllability coeÆcient

of (1) according to (3).

Proof: (omitted)

Remark 1: It can be observed that when the

considered system (1) has only one mode, i.e.,

it's an ordinary LTI system, with respect to the

de�nitions of WC , kr and W
kr
, the considered

system is completely controllable if and only if

WC = W
kr

is full rank in row with kr = 0.

It's obvious that this conclusion is actually the

controllability matrix test for the LTI systems.

5. RECONFIGURABILITY ANALYSIS

Fault-tolerance in control is the ability of a con-

trolled system to maintain or gracefully degrade

control objectives despite the occurrence of a

fault. Recon�guration means to change the input-

output between the controller and plant through

change of the controller structure and parameters,

so as to maintain the original control objective

(Blanke et al. (2001)). The recon�gurability can

be evaluated according to di�erent control objec-

tives, such as satisfying some performance require-

ments or preserving some system properties (Yang

et al. (2000)).

Motivated by the work in Frei et al. (1999); Blanke

et al. (2001) which regard the recoverability as

a kind of system properties, we discuss the con-

�gurability for the considered system (1) with

respect to the controllability concept.

A faultmeans an unpermitted deviation of at least

one characteristic property or parameter of the

considered system from a usual condition (Blanke

et al. (2001)). Without any fault, the system (1) is

referred to as the nominal system and denoted as

Mn=̂f(Ai; Bi)g
q
i=1. When some fault happened in

the considered system, the system (1) is usually

referred to as the faulty system and denoted as

Mf =̂f(Af
i ; B

f
i )g

q
i=1.

De�nition 7: The nominal system Mf is called

recon�gurable with respect to the considered

faults if Mf preserves the controllable subspace

of Mn.

By employing Theorem 2 obtained in last section,

we have

Theorem 4: The faulty systemMf can be recon-

�gured with respect to the considered faults if the

matrix

W
f
C=̂[W

f
1 � � � W f

q ]=̂[B
f
1 � � � (Af

1 )
n�1B

f
1

� � � Bf
q � � � (Af

q )
n�1Bf

q ]: (14)

is of full row rank.

When some speci�c fault happened such that

some mode disappears from the nominal system,

such as the situation that the gear stick can not

switch into some gear position in an automobile

power system due to some possible mechanical

problem, this kind of faults corresponds to the dis-

appearance of some speci�c discrete state. With-

out loss of generality, we assume that the subsys-

tem (Aq ; Bq) can not appear in the faulty system

Mf which is denoted asMf =̂f(Ai; Bi)g
q�1
i=1 . Then

there is

Theorem 5: The faulty systemMf can be recon-

�gured with respect to the considered faults if the

matrix

W
f
C=̂[W1 � � � Wq�1]=̂[B1 � � � A

n�1
1 B1

� � � Bq � � � A
n�1
q�1Bq�1]: (15)



is of full row rank.

In a quite general way, using Theorem 3 there is

Theorem 6: The faulty system Mf can be re-

con�gured with respect to the considered faults

if

span(Wf
kfr ) = span(Wn

knr ) (16)

where Wf
kfr (Wn

knr ) is the kfr th (knr th) order

system joint controllability matrix of Mf (Mn),

and kfr (knr ) is the joint controllability coeÆcient

of Mf (Mn) according to (3).

Proof: (Omitted)

Example: Consider a binary-mode system, which

parameters under nominal case are:

A1 =

2
4 0 1 0

0 0 1

0 0 0

3
5 ; B1 =

2
4 11
0

3
5 :

A2 =

2
4 0 0 0

1 0 0

0 1 0

3
5 ; B2 =

2
4 00
1

3
5 :

It can be checked through Theorem 1 that the

nominal system is hybrid controllable.When some

fault happens such that in mode-1 the matrix

B1 changes to be B1=̂[1 0 0]T , i.e., the second

actuator of the considered system is out of order.

Through theorem 6, it can be observed that this

faulty system is still recon�gurable with respect

to this fault.

6. CONCLUSIONS

The controllability of a class of linear hybrid sys-

tems was analyzed using an algebraic approach.

Some suÆcient and necessary conditions were

obtained based on the manipulation of related

system matrices. Using the obtained results for

controllability, the recon�gurability as one funda-

mental property of fault-tolerant control can also

be eÆciently examined for the considered systems.
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