
How Bad a Pairing Heap might be

Amr Elmasry
Computer Science Department

Rutgers University
New Brunswick, NJ 08903

USA

Abstract: An n-node forest of trees is called a square-root forest, if it has the following structure.
For a given positive integer k the forest has 2k trees. The first k+1 are single nodes. For the other
k− 1 trees, the root of tree l has l single-node children, for all l from 1 to k− 1. If n 6= k+ k (k+1)

2
the definition is slightly different.

Given a forest of τ trees, the rank of a tree is defined to be the number of children of the root
of this tree. A phase of operations is defined as first linking the trees in pairs, then replacing the
tree with the largest rank with its sub-trees together with a new single-node tree. The pairing is
done by first sorting the trees by rank and numbering them from 1 to τ , then linking the root of
tree l to the root of tree l + dτ/2e, for all l from 1 to bτ/2c. We give a combinatorial proof that
after applying an O(n1.5) phases, the forest will converge to the square-root forest.

It is proven in [1] that using any pairing strategy, the amortized cost of deleting the item with
the minimum value from a heap is O(

√
n). Our pairing strategy gives Θ(

√
n) amortized cost for

this operation.

Key-Words: Algorithms - Data structures - Self-adjusting structures - Trees - Heaps.

1

1 Introduction

Given an n-node heap represented as a collection
of trees, consider the following operations:

• insert: inserting a new item in the heap by
adding a single-node tree to the collection
of trees.

• deletemin: Removing the root node that
has the smallest value and making each of
its sub-trees a new tree in the heap.

• pair: Combining the trees of the heap in
pairs by linking the root of one tree to
another. To maintain the heap property,
the root that has the larger value must
be linked to the root that has the smaller
value. The way to select pairs to be com-
bined together matters, however.

We will combine the insert operation and the
deletemin operation in one operation, and call it
changemin. The cost of deletemin and pair oper-
ations is exactly the number of trees in the heap
at the moment the operation is performed. A
lower bound of Ω(logn) for deletemin is inher-
ited from sorting.

The pairing heap [1], a data structure that
achieves O(logn) cost per operation in the amor-
tized sense, is a self adjusting heap that uses
pairing in its implementation. It is proven [1]
that by altering the order of the trees before pair-
ing, the amortized time of deletemin operation is
O(
√
n).

In this paper, this upper bound is achieved
for any initial heap configuration (the number
of trees in the heap will be Θ(

√
n) in the steady

state), by applying a sequence of interleaved pair
and changemin operations with some restrictions
on the linking and pairing strategies. A pairing
phase followed by a changemin operation will be
called a step. More interesting is that after an
O(n1.5) steps any heap will converge to the same
structure. We call this structure the square-root
forest.

In section 2, the motivation behind our pair-
ing strategy is discussed. In section 3, the rules

for pairing, linking, and choosing the node with
the minimum value are stated. The main theo-
rem is proved in section 4. Section 5 deals with
the case when n 6= k + k (k+1)

2 . And in sec-
tion 6, we construct an initial forest that requires
Θ(n1.5) steps to converge to the square-root for-
est.

2 Pairing

Define the rank of a node to be the number of
children of this node. Define the rank of a tree to
be the rank of the root of this tree. Let ru be the
rank of tree u. For a given choice of which trees
are to be paired together, taking the summation
over all combined pairs of trees u and v. Let

J =
∑ min(ru, rv)

(ru + rv)

Intuitively, combining trees close in rank helps
in minimizing the number of trees of the heap in
the long run. A good strategy to maximize the
number of trees in the long run is to select the
pairs of trees that will be combined together in
a way to minimize J.

Theorem 1 Let τ be the number of trees of the
heap. Having the sequence of trees sorted by rank
and numbered from 1 to τ , to minimize J, tree
l is to be combined with tree l + dτ/2e, for all l
from 1 to bτ/2c.

Proof: Consider the case of having 4 trees T1, T2, T3, T4

with ranks r1, r2, r3, r4 respectively, where r1 ≤
r2 ≤ r3 ≤ r4. There are 3 ways to pair them:

Pairing 1 : Combining T1 with T2 and T3 with
T4.

Pairing 2 : Combining T1 with T3 and T2 with
T4.

Pairing 3 : Combining T1 with T4 and T2 with
T3.

2

It can be shown that

r1
r1+r3

+ r2
r2+r4

≤

min(r1
r1+r2

+ r3
r3+r4

, r1
r1+r4

+ r2
r2+r3

)

Therefore, pairing 2 is the one that minimizes J.

For the general case of τ trees, assume that
after sorting the trees by rank a tree u was com-
bined with a tree v, where ru < rv and v 6=
u + dτ/2e. There must exist another two com-
bined trees x and y, where rx < ry, such that
one of the following holds:

rx > ru and ry < rv (pairing 3).

rx < ru and ry > rv (pairing 3).

rx < ru and ry < rv (pairing 1).

rx > ru and ry > rv (pairing 1).

In all cases, the pairing of these four trees can
be changed to get a smaller or equal value for J
(pairing 2), a contradiction. 2

3 Reaching the bound

Define the rank of the heap to be the largest
rank of a tree in the heap. Let τ be the number
of trees of the heap. To maximize the amortized
cost of deletemin operation, the following three
rules are imposed:

• The trees are sorted by rank and numbered
from 1 to τ . The pairing is done by com-
bining tree l with tree l + dτ/2e, for all l
from 1 to bτ/2c.

• When two trees are combined, the tree with
the smaller rank is linked to the tree with
the larger rank.

• For a deletemin operation, the minimum
value is assumed to be at the root of the
tree with the largest rank.

K+1

K-1

Figure 1: The square-root forest

4 The square-root forest

Assume that the number of nodes in the forest
is n = k + k (k+1)

2 for a given positive integer k.
We call the forest a square-root forest when it
has 2k trees, k + 1 of them are single nodes and
for the other k − 1 trees the root of tree l has l
single-node children, for all l from 1 to k−1. See
Figure 1. If n does not satisfy the above equa-
tion the definition is slightly different and will be
considered in section 5.

Theorem 2 For any initial n-node forest of pri-
ority queues, applying a sequence of interleaved
pairing & changemin phases and following the
above three rules, the heap will converge to a
square-root forest after an O(n1.5) steps.

Let τi be the number of trees in the heap after
step i, and let ci be the rank of the heap after
step i. After the pairing phase of step i+ 1, the
number of trees will be dτi/2e. The deletemin
operation replaces the tree with the largest rank
with its ci+1 subtrees. Finally a new single-node
tree is inserted. After step i+ 1, the number of
trees of the heap will be

τi+1 = dτi/2e+ ci + 1 (1)

Define ηi and βi such that

ci = bτi/2c+ ηi (2)

ci+1 = ci + 1 + βi+1 (3)

3

Using (1) and (2)

τi+1 = τi + ηi + 1 (4)

Using (1) and (3)

ci+1 = τi+1 − dτi/2e+ βi+1 (5)

Using (4) and (5)

ci+1 =

{
bτi+1/2c+ dηi2 e+ βi+1 if τi is odd
bτi+1/2c+ dηi+1

2 e + βi+1 if τi is even

ηi+1 =

{
dηi2 e+ βi+1 if τi is odd
dηi+1

2 e+ βi+1 if τi is even
(6)

The state of the heap after step i is defined
in terms of the value of ηi. Performing step i
corresponds to a transition from one heap state
to another, that depends solely on the value of
βi.

Lemma 1 The total number of transitions with
a positive value of βi is O(n), and

∑
i:βi>0 βi is

O(n).

Proof: Omitted. 2

Define the following heap states. See Figure
2 for the state transitions. (Note that the transi-
tions with positive βis are not considered. From
this point on we will ignore these transitions as
they will not affect the bounds driven)

1. ηi ≤ −3, or ηi = −2 and τi is odd:
Using (4) then τi+1 ≤ τi − 1.
Using (6) then ηi+1 ≤ −1.

2. ηi = −2 and τi is even:
Using (4) then τi+1 = τi − 1.
Using (6) then ηi+1 ≤ 0.

3. ηi = −1:
Using (4) then τi+1 = τi.
Using (6) then ηi+1 ≤ 0.

4. ηi = 0 and τi is odd:
Using (4) then τi+1 = τi + 1.
Using (6) then ηi+1 ≤ 0.

1 2 3 4 5 6

7

Figure 2: The state transitions

5. ηi = 0 and τi is even:
Using (4) then τi+1 = τi + 1.
Using (6) then ηi+1 ≤ 1.

6. ηi = 1:
Using (4) then τi+1 = τi + 2.
Using (6) then ηi+1 ≤ 1.

7. ηi ≥ 2:

We call states 1, 5, 6 and 7 t-states and states 2,
3 and 4 s-states.

Let N j be the total number of visits to state j,
and si be the state entered after step i.

Lemma 2 The total number of visits to state 7
is O(n), and

∑
i:si=N7 ηi is O(n).

Proof: Using (6)

ηi+1 ≤
{

ηi
2 + 1 + βi+1 if τi and ηi are even
ηi
2 + 1

2 + βi+1 otherwise

Using (4), the parity of the number of trees in the
heap changes if ηi is even, the following relation
follows

ηi ≤
ηi−2

4
+

5
4

+ βi +
βi−1

2

4

Applying the above relation recursively, the value
of ηi can be defined in terms of the initial η0

ηi <
η0

2i
+

5
3

+
i∑
l=1

βl
2i−l

Taking the summation over all the visits to state
7 and only considering positive βis∑

i:si=7

ηi < |2η0|+
5
3
N 7 +

∑
i:βi>0

2βi

Using Lemma 1∑
i:si=7

ηi <
5
3
N 7 +O(n) (7)

When the heap enters state 7 at any step i, the
relation ηi ≥ 2 holds, and hence∑

i:si=7

ηi ≥ 2N 7 (8)

Using (7) and (8), the lemma follows. 2

Define a bad node to be any node that has a
positive rank and is not a root of a tree. A bad
sub-tree is a sub-tree whose root is a bad node
(if a sub-tree is not a single node then it is a bad
sub-tree).

Lemma 3 The total number of visits to state 5
and to state 6 is O(n).

Proof: Omitted. 2

Lemma 4 The total number of visits to state 1
is O(n), and

∑
i:si=1−ηi is O(n).

Proof: Omitted. 2

Let bi be the number of bad nodes of the heap
after the pairing phase at step i + 1. The total
decreases in the number of bad nodes is therefore∑
i:bi+1−bi<0(bi − bi+1).

Lemma 5 The total decreases in the number of
bad nodes is O(n).

Proof: Omitted. 2

Lemma 6 After spending O(
√
n) steps in the s-

states, either

• The number of the bad nodes decreases, or

• The heap visits a t-state, or

• The heap reaches the steady state and never
leaves the s-states.

Proof: Consider the case when the heap was
at state 3 or state 4 after step i, and at least one
of the sub-trees of the tree with the largest rank
was a bad sub-tree after the pairing phase of step
i+ 1. One of these bad sub-trees will become a
tree after the pairing phase of step i + 2, and
the number of the bad nodes decreases. If the
heap was at state 2 after step i, then this bad
sub-tree will still be a sub-tree at the next step,
and it will again be a sub-tree of the tree with
the largest rank and the heap will be at either
state 3 or state 4.

Assume that the heap stays at the s-states
for a sequence of w consecutive steps and that
all the children of the root of the tree with the
largest rank are single nodes for each of these
steps. Consider the node that was inserted when
the heap first enters the s-states. This node will
always be the root of a tree and its rank increases
with every step. If the heap enters the s-states
at state 2, start counting from the step after.

Assume that the rank of the heap was q when
it entered the s-states. When entering state 4
the rank of the heap increases by 1. When en-
tering state 2 the rank of the heap decreases by
1. When entering state 3 the rank of the heap
does not change. Every time state 2 is entered
state 4 must be entered before coming back to
state 2 and vice versa. The rank of the heap will
therefore be at least q−1 and at most q+1 after
each of these w consecutive steps. See Figure 3.

If w ≥ q + 2, then the tree which was in-
serted when the heap first entered the s-states
must have been deleted within these w steps and

5

2 3 4

Figure 3: The steady state transitions

the heap must have reached the steady state. If
w < q + 2, then before these w steps, the heap
must have had at least w − 2 nodes, where the
rank of node l is greater or equal to q− l, for all
l from 1 to w − 2. But,

∑w−2
l=1 (q − l) ≤ n and

w < q + 2 implies w = O(
√
n). 2

Corollary 1 For every step i after an O(n1.5)
steps, either

• ci = bτi/2c − 2 and τi is even, or

• ci = bτi/2c − 1, or

• ci = bτi/2c and τi is odd.

Moreover, all the sub-trees will be single nodes.

Proof of Theorem 2: To enter state 4 two
trees with the same positive rank must exist. To
enter state 2 a tree with a positive rank must
have been missing from the definition of the square-
root forest. At the steady state, the heap must
visit state 2 every time it visits state 4, before
returning back to state 4. The total number of
nodes must then be m (m+1)

2 + l, where m+ 1 ≤
l ≤ 2m, for some integers m and l. Given that
n = k + k (k+1)

2 for a given integer k, there are
no integer solutions for l in terms of k. We con-
clude that the heap will never leave state 3. The
theorem follows. 2

5 General configurations

For the case when n = k+k (k+1)
2 +m, wherem ≤

k + 1 for any positive integers m and k, it can

be shown that the steady state cycle will consist
of k + 1 configurations. All the configurations
are similar to the square-root forest with a little
variation. The first k+2−m configurations have
2k + 1 trees. They differ from the square-root
forest by having: an extra single-node tree, and
for all l from 1 to k + 2 − m there is an extra
tree of rank m+ l− 2 and a missing tree of rank
l−1. The other m−1 configurations have 2k+2
trees. They differ from the square-root forest by
having: an extra single-node tree, a new tree of
rank k, and for all l from 1 to m − 1 there is
an extra tree of rank l − 1 and a missing tree of
rank k + l + 1−m. Note that if l = m− 1 then
k + l + 2−m equals k + 1.

6 Constructing an initial con-
figuration

There are some initial forests that need Θ(n1.5)
to converge to the square-root forest. An ini-
tial configuration that needs Θ(n1.5) to converge
to the square-root forest is constructed as fol-
lows: Begin by using a positive proportion of the
nodes, say around half the nodes, and construct
a typical square-root forest. Construct a linear
chain of nodes (every node has one child except
for the only leaf). Add this chain as a child of
any other tree in the forest. The idea behind this
construction is having Θ(n) bad nodes. There is
only one tree that has all the bad nodes. Every
time it takes Θ(

√
n) steps for the linear chain to

gain Θ(
√
n) children and become the tree with

the largest rank, and the number of bad nodes
decreases by one.

References:
[1] M. L. Fredman, R. Sedgewick, D. D. Sleator,
and R. E. Tarjan. The pairing heap: a new form
of self adjusting heap. Algorithmica 1,1 (1986),
pp.111-129.

6

