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Abstract: - Hardware implementation of artificial neuron networks (ANN) based on MOS-transistors 
with floating gates (Neuron MOS or νMOS) is discussed. Comparison of two type on-chip learning 
neurons with digital and analog input weight storing is provided. The main problem in design the 
neuron with analog input weight memory is tolerance to deviations of circuit elements parameters and 
supplied voltage deviation. New neuron circuit that can compensate all kind of deviations is proposed 
and investigated. Design methodology of such a circuit and result of simulation are shown. 
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 1 Introduction 
Software implementation of Artificial Neural 
Networks (ANN) is flexible, but advantage of 
hardware implemented ANN over software 
realization is very fast performance. The demand 
to modern ANN is hundreds of neurons and tens of 
thousands of synapses. The known hardware 
implemented ANN have sufficiently rigid 
limitations of the networks parameters. To 
overcome these limitations is the goal of many 
researchers. It looks possible because today’s 
microchip design rules is less than 0.2µm and 
transistors dimensions minimization after five-six 
years up to 0,06µm is obvious [1]. As a result the 
integration and density of transistors on the chip 
will increase in many times. Together with new so 
called Neural-MOS structures concept it opens 
very effective way for Bio-inspired systems [2] 
based on Intelligence Implementation to Silicon 
Chip [3] such as ANN and Fuzzy Logic. If the 
single MOS-transistor is only a switch, the Neural-
MOS structure represents multi-input threshold 
gate and such a gate can be used as neuron with a 
large number of synapses.  
    It is known two ways of designing Neural-MOS 
structures: transistors with floating gate – (νMOS) 
[3], what is voltage-mode Neural-MOS, and β-
driven threshold element [4,5], what is current-
mode Neural-MOS. 
Transistors with floating gate looks better for 
design ANN because of very small static power 
dissipation, and higher elements parameters and 
supplied voltage deviation tolerance.  

   In our previous publication [6] we developed the 
design methodology of two types threshold gates, 
based on the floating gate νMOS – static (Fig.1) 
and clocked (Fig.2).  

Fig.1 Static νMOS threshold gate 
 

The main advantage of such a methodology is 
taking into account the elements - transistors and 
capacitors – parameters deviation peculiar to real 
chip manufacturing process and in addition the 
supplied voltage deviation. It was shown that these 
deviations restricted the number of inputs in static 
threshold gates described in [7] by the value not 
more than 10. 
   The same reasons lead to increasing input 
capacitors values and as a result chip area 
occupied by the gate if number of input increases. 
The last one is because of capacitance relational 
deviation became less for bigger capacitors. 



  

Increasing input capacities in addition led to 
increasing dynamic part of consumed power. 
 

Fig.2 Clocked νMOS threshold gate 
 

   The clocked approach proposed in [8] eliminate 
the influence of transistors parameter deviation, 
but not the deviation of capacitance’s and supplied 
voltage. As shown in [6] in clocked νMOS 
threshold gates number of inputs could be 
increased up to many tens. But the chip area 
increased, because of additional switches in the 
each of the gate input.  
  The parameter deviation influence can be 
substantially overcame in case of on-chip learning 
ANN (LANN) by choosing in learning process 
appropriate input weights value to compensate 
such a deviation. As a result we can minimize 
input capacitance value and dramatically (tenths of 
times) decrease chip area, increase performance 
and improve the main LANN parameters, such as 
sum of weights, number of inputs and weight 
setting accuracy. It was shown in [6], where we 
discussed neuron with digital way of input weight 
storing. The disadvantage of digital weight 
representation is large capacity RAM as an inputs 
weight memory.  
   Analog input weight storing in non-volatile 
EEPROM memory proposed in [9]. Another way 
of using in the future non-volatile ferroelectric 
memory proposed in [10]. Disadvantage of  weight 
changing and very long learning time. Input 
weights change takes up to several microseconds. 
   We estimated the possibility of design LANN 
with analog input weight storing, where inputs 
weight represents by voltage level in the capacitor 
based analog voltage dynamic memory [11]. 
  Disadvantage of using dynamic memory is 
necessity of periodically refreshing because of 

discharging the dynamic memory cell capacitor by 
parasitic leakage current. This problem can be 
solved by periodically repeating the learning 
process, if the holding time is enough. Holding 
time is the time before weight represented voltage 
will change on the maximal permissible value. 
This time depends from memory capacitor and 
leakage current values. We estimated such a time 
as hundreds of milliseconds. Because delay time of 
clocked νMOS structure is tenths of nanoseconds, 
it is enough time to get weight refreshing. 
   As another way of weights refreshing, we 
propose νMOS based multistage voltage 
comparator (MSVC). The idea of such an 
approach is periodically comparison the value of 
analog voltage in dynamic memory with voltage 
levels corresponding to the different input weight 
stages. Number of stages defines the weight setting 
accuracy. If the difference between weight voltage 
in the memory and voltage stage is small enough, 
the signal of weight increment is generated. One of 
the main problem in LANN design is how to avoid 
the influence of supplied voltage deviation and 
voltage noises on the circuit behavior, because of 
the possible voltage difference in learning and 
working times. Such a difference can lead to 
incorrect neuron behavior. In case of non-stable 
supplied voltage we have to restrict sum of 
weights, number of inputs or weight setting 
accuracy. As it will be shown, the 1% supplied 
voltage deviations decrease maximal sum of 
weights in 4 times and 5% deviations in 16 times. 
Such a deviations is possible, for example, as the 
result of noises.  
   Using SPICE simulation, the maximal sum of 
weights and number of inputs for proposed LANN 
was estimated together with time parameters, such 
as weight holding time and output calculation 
time. 
   Design methodology and circuit decision which 
used to get tolerance to element parameters, 
dimensions and supplied voltage deviations will be 
especially important to design LANN based on the 
future CMOS processes with lesser element sizes 
and supplied voltages and distinct deviations. 
Supplied voltage tolerant LANN could be useful 
with other types of weight memory, for example 
with EEPROM or ferroelectric memory. 
 
 
2 General LANN structure 
The neuron with k synapses calculates the 
threshold function: 
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Here xi and ωi  - input variables and input weights 
correspondingly, T – function threshold. 
Floating gate νMOS structure with k inputs 
represents the threshold function as: 

 
Here Vω,i – input voltage represents input weight, 
VT – threshold voltage, Vf – the floating gate 
structure output voltage, Vout – the comparator 
output voltage.  
 

 
Fig.3 Block diagram for the neuron structure 

 
  The neuron in general consist (Fig.3) from a set 
of main parts: 

• synapse circuit (Syn) to calculate ωi xi, 

where ωi is represented by Vω,ι - the 
synapse output voltage, 

• νMOS threshold gate for Vf calculations 
(TG),  

• threshold voltage source (TVS),  
• amplifier (Amp),   
• learning control unit to form out the 

increment/decrement signal in the learning 
process,  

• weight refreshing circuit (WVRC) with 
multistage voltage comparator and 
commutator  for periodically and 
consequent connection synapses dynamic 
memory sells to WVRC. 

 
 

3 Deviation-tolerant LANN structure 
As it pointed in the introduction one of the main 
problem in LANN design is to get the tolerance to 
supplied voltage deviations. Such a deviation 
sharply reduces maximal sum of weights.  
   We have to distinguish three types of deviations: 
very slow, slow and fast.   

 
Fig.4 Synapse circuit 

 
The first means we have different voltage in time 
of calculating different function, the second – in 
time of calculating one function and the third case 
- different voltage in time of different clock pulses. 
  Fig.4 represents the synapse circuit with dynamic 
analog voltage memory sell (Fig.5).  
 

 
Fig.5 Memory cell circuit 

 
The circuit based on nMOS type source follower. 
Since the bulk of νMOS is connected to the 
ground, transistor threshold voltage is stable 
against Vdd deviation. As a result it gives stable 
synapse output weight voltage. To overcome the 
influence of the deviation on the TG we proposed 
[11] the circuit decision shown in Fig.6. Floating 
gate voltage of the TG can be calculated as: 
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Fig.6 Neuron circuit 

 
 
Fig.6 shows the new neuron circuit, which is 
tolerant to supplied voltage deviations.  
Since TG threshold voltage Vth and weights 
voltages Vw both stable against Vdd deviations 
because of using n-type source followers, the 
equation for getting tolerance to Vdd deviations 
is: 

 
The floating gate voltage deviation in the 
evaluation phase depends only on the value of the 
reference voltage in this phase. If Vref variations 
the same as inverter threshold voltage variations, 
floating gate voltage vary in the same as inverter 
threshold voltage. It will be in the case of using as 
the reference voltage source the inverter with 
shorted out input and output. It is the way to 
compensate all kinds of Vdd deviations. 
  Using HSPICE simulation we found the maximal 
sum of weights for the proposed neuron circuit and 
ordinary clocked νMOS neuron circuit for slow and 
fast deviations of supplied voltage. Value of 
deviations changed up to 10%. Maximal sum of 

weights for the proposed circuit in comparison with 
circuit without compensation mechanism is shown 
in Fig.7. There is no advantage of this structure in 
the case of less then 1% deviation since additional 
circuit components reduce sensitivity of neuron. 
Nevertheless if the deviation is more than 1%, 
efficiency of this circuit is obvious. The maximum  
 

 
Fig.7 Comparison between proposed circuit and circuit 
without compensation 
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sum of weights for 5% deviation is near 800. In 
contrast for the circuit without compensation the 
sum of weights only 20. 
 
 

4  Conclusion 
In our research we developed the design 
methodology for static and clocked threshold gates, 
which could be used as on-chip learning neurons, 
taking into account possible deviations of elements 
(transistors and capacitors) parameters and supplied 
voltage [6], [11]. Using such a methodology it was 
shown that simple static approach has very strong 
restriction in number of inputs and sum of weights. 
The more complicated clocked approach is stable 
against transistors parameter deviation, but not 
stable against deviations of supplied voltage. 
Proposed new floating gate  circuit opens the way 
of design the neuron with sum of weights up to 800 
in the case of very high supplied voltage deviation 
up to 5%. 
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