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Abstract:- A necessary and suÆcient condition is obtained for a �lter space to have a regular com-
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1 Introduction
Filter spaces are generalizations of Cauchy

spaces, which were studied by Kent, Richardson

and several others [2,7,8] in the past few decades.

Categorists [1,5] have shown that the category FIL

of �lter spaces forms a strong topological universe,

since it is isomorphic to the �lter-merotopic spaces.

It is also cartesian closed and preserves the quo-

tient structure. The category CHY of Cauchy

spaces is a bire
ective subcategory of FIL. A

completion theory was developed and a comple-

tion functor was de�ned for FIL by the author

and one of her co-authors [3]. As we have seen

in [3], the Wyler completion of �lter spaces has

nice functorial properties, but it does not pre-

serve regularity and uniformizability. In this pa-

per, di�erent completions on certain subcategories

of FIL are constructed which preserve reularity

and other important characteristics. The com-

pletion theory for regular �lter spaces, developed

here generalizes several of Kent and Richardson's

techniques [2,4] for completions of regular Cauchy

spaces, the study of which was initiated by Ra-

maley and Wyler [7]. In Section 2, some of the

frequently used notations and de�nitions are pre-

sented together with the two basic problems dis-

cussed in later sections. In Section 3, a regularity

series for �lter spaces is de�ned for obtaining a

regular modi�cation, which later leads to the reg-

ular completion of these spaces. This section also

generalizes the concept of regular completion of

Cauchy spaces without the T2 restriction, which

was investigated by the author in [8]. Finally, in

Section 4, strict regular completion of �lter spaces

are discussed. Some of the completions discussed

in this paper also have the universal extension

property, which leads to the de�nition of corre-

sponding completion functors on subcategories of

FIL. The author intends to carry on a more in-

tensive investigation of completion functors and

modi�cation functors for FIL in a later paper.

2 Preliminaries
The following are some of the basic de�nitions

and notations which will be frequently used through-

out the paper. Let X be a nonempty set and

F(X) be the set of all �lters on X, partially or-

dered by inclusion. If B is a base [9] of the �l-

ter F , then we write F = [B] and F is said to

be generated by B. In particular, _x = [fxg] and

F \ G = [fF [G j F 2 F ; G 2 Gg]. If F \G 6= �

for all F 2 F and G 2 G, then F _ G =[f

F\G j F 2 F ; G 2 Gg]. If there exists F 2 F ,

G 2 G such that F \ G = �, then we say that

F _ G fails to exist. If A � X, F 2 F(X), then

FA = [fF \A j F 2 Fg] is the trace of F on A.

De�nition 2.1 Let X be a set and C �F(X).

The pair (X;C) is called a �lter space, if the fol-

lowing conditions hold :

(c1) _x 2 C; 8x 2 X;

(c2) F 2 C and G � F imply that G 2 C.

If (X;C) and (X;D) are two �lter spaces and

C � D, then C is said to be �ner than D, written

C � D.

For a set A �F(X), two �lters F ; G 2 A are

said to be A � linked, written F �A G, if there
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exist a �nite number of �lters H1; H2; � � � ;Hn in

A such that F_H1; H1_H2; H2_H3; � � � ;Hn�1_

Hn; Hn _ G exist. In particular, if A = C then

�c de�nes an equivalence relation on C. Let [F ]c
denote the equivalence class containing F 2 C.

Associated with the �lter space (X;C), there is a

preconvergence structure[3] pc de�ned as

F !
pc
x if and only if F �c _x: (1)

A �lter space (X;C) is a c-�lter space, if F �c

_x ) F \ _x 2 C and it is a Cauchy space, if

F �c G ) F \ G 2 C. It is known that the

category CFIL of c-�lter spaces and the category

CHY of Cauchy spaces are bire
ective subcate-

gories of FIL of �lter spaces [1]. The preconver-

gence structure pc associated with the �lter space

(X;C) is a convergence structure [6] i� (X;C) is

a c-�lter space.

For any A � X, we de�ne clpcA = fx 2 X j

9F 2 C such that F !
pc
x and A 2 Fg and clpcA =

[fclpcA j A 2 Ag]. A �lter space is said to be

� T2 or Hausdor� i� x = y, whenever _x �c _y.

� regular i� clpcF 2 C, whenever F 2 C,

� complete i� each F 2 C pc converges.

� locally compact i� F pc converges implies that

9 F 2 F such that each ultra�lter containing F

pc converges to a point in F .

Note that a regular �lter space is a c-�lter space.

Let A � X and CA = fG 2 F(A) j there exists

F 2 C such that G � FAg. Then (A;CA) is a �lter

space, called the subspace of (X;C). A mapping

f : (X;C) ! (Y;D) is continuous if and only if

F 2 C implies that f(F) 2 D. The map f is a

homeomorphism if and only if it is bijective and

both f and f�1 are continuous. Moreover, f is

an embedding of (X;C) into (Y;D) if and only if

f : (X;C)! (f(X);Df(X)) is a homeomorphism.

A completion of a �lter space (X;C) is a pair

((Z;K); �), where (Z;K), is a complete �lter space

and the map � : (X;C) ! (Z;K) is an embed-

ding satisfying the condition clpk�(X) = Z. The

completion ((Z;K); �) is said to be T2 (respec-

tively, regular, T3), if the �lter space ((Z;K) is T2
(respectively, regular, T3). A T2 Wyler comple-

tion was constructed for �lter spaces in [3]. Next,

we generalize the concept of stable completion of

Cauchy spaces [8] to �lter spaces.

De�nition 2.2 A completion ((Z;K); �) of a �lter

space (X;C) is said to be stable , if z 2 Z n �(X)

and �(F)
pk
! z for some F 2 C imply that z is the

unique limit of �(F) in Y .

The category REG of regular uniform con-

vergence spaces is a bire
ective subcategory of

SUCONV of semiuniform convergence spaces [5]

Since RFIL, the category of regular �lter spaces

forms a subcategory of CFIL, which generalises

semiuniform convergence spaces, the study of com-

pletion subcategories for RFIL is important. In

the next two sections attempts have been made to

(1) �nd characterization of �lter spaces which have

regular completion,

(2) construct strict completions under suitable con-

ditions on the �lter space.

3 Regular Completions
Let A �F(X) and A0 = f _x j x 2 Xg [ A. We

de�ne the following sets :

� PCA = fF 2 F(X) j 9G 2 A0 with F � Gg.

� q-CA = fF 2F(X) j 9G 2 A0 and a �nite num-

ber of elements x1; x2; � � � ; xn 2 X with G �A0 xi
for each i = 1; � � � n, such that F � G \ _x1 \ � � � \

_xng.

� CCA = fF 2F(X) j 9 a �nite number of A0-

linked �lters H1; � � � ;Hn such that F � \ni=1Hig.

Proposition 3.1 The following statements are

true for PCA, q-CA and CCA :

(I) PCA is the �nest �lter structure on X contain-

ing A.

(II) q-CA is the �nest c-�lter structure on X con-

taining A.

(III) CCA is the �nest Cauchy structure on X

containing A.

The proof of (I) is clear from the construction

of PCA and the proofs of (II) and (III) follow from

Proposition 1.11 in [3], if we replace C by A.

Next, following the idea in [2], we construct a

regularity series for a �lter space (X;C) which is

used later in the section in costructing a regular

completion.

Let r0C = C, r1C = PCA1
, whereA1 = fclnpr0C

F j

F 2 C; n 2 Ng and r2(C) = PCA2
, where

A2 = fclnpr1C
F j F 2 C; n 2 Ng. In gen-

eral, r�(C) = PCA�
, where A� = fclnpr��1(c)

F j

F 2 C; n 2 Ng, if � is a non-limit ordinal and

r�(C) = [fr�(C) j � � �g, � is a limit ordinal.

From the construction it is clear that C = r0C �

r1C � � � � � r�(C) � r�+1(C), for all ordinal

2



numbers �.

The length lr of a regularity series r for a �lter

space (X;C) is the smallest ordinal number 
 for

which r
(C) = r
+1(C). Let rC, called the reg-

ular modi�cation of C, be the �nest regular �lter

structure on X which is coarser than C.

Proposition 3.2 (I) C � r�(C) � r
(C) � rC,

for any any ordinal numbers 
 � �.

(II) r
(C) = rC i� 
 � lr.

Proof. The proof of (I) follows by trans�nite in-

duction. To prove (II), �rst note that rC � r
(C)

follows from (I). Let 
 � lr. If 
 is a limit ordi-

nal, then F 62 r
(C) ) F 62 r�(C); 8 � < 
.

Since each r�(C) is regular and coarser than C, it

follows that F 62 rC. Next let 
 be a non-limit

ordinal. So F 62 r
(C) ) 9 a regular �lter struc-

ture r
(C) on X which is coarser than C such that

F 62 r
(C). Hence F 62 rC. So rC � r
(C). Con-

versely, let r
(C) = rC. If possible, let 
 < lr. So

r
(C) 6= r
+1(C). Hence 9 F 2 r
+1(C) such that

F 62 r
(C) = rC, which implies that F 62 r
+1(C)

(by (I)). This leads to a contradiction. Therefore,


 � lr. This proves Proposition 3.2 . 3

Proposition 3.3 If (X;C) is a complete �lter

space, then (X; r�(C)) is complete for each ordinal

number �.

Proof. (X; r0C)) = (X;C) is complete. Next, let

G 2 r1C. So G � clnpr0C
F for some n 2 N and

F 2 C. Since (X;C) is complete 9 x 2 X such

that F �c _x. C � r1C and clpr0CF 2 r1C )

G �r1C _x. Therefore, (X; r1C) is complete. The

proof follows by trans�nite induction. 3

Corollary 3.4 (X; rC) is complete, if (X;C) is

complete.

Observe that clnpr1(k)
f(F) � f(clnpr1C

F), which es-

tablishes the continuity of f on (X; r1C). The

proof of the following proposition follows by ap-

plying induction and Proposition 3.2.

Proposition 3.5 If f : (X;C) ! (Y;K) is con-

tinuous, then f : (X; rC) ! (Y; rK) is also con-

tinuous.

The notion of s-map, introduced in [8] can be

extended to �lter spaces in general. A continuous

map f : (X;C) ! (Y;K) is an s-map, if F 2 C

converges to at most one point implies that f(F) 2

K converges to at most one point. The identity

map, any continuous map with a T2 co-domain

and the embedding map in a stable completion of a

�lter space and is an s-map. are all examples of s-

maps. The c� regylarity and c� separatedness of

Cauchy spaces [4] are generalised for �lter spaces

by using s-map.

De�nition 3.6 A �lter space (X;C) is said to be

c-regular if F 62 C implies that 9 a complete regu-

lar �lter space (Y;K) and an s-map f : (X;C)!

(Y;K) such that f(F) 62 K.

Examples of c-regular �lter spaces are not diÆcult

to �nd out. In fact, each complete regular �lter

space is c-regular. This can be veri�ed by taking

(Y;K) = (X;C) and f = IX in De�nition 3.6.

Proposition 3.7 Every c-regular �lter space is a

c-�lter space.

Proof. Let (X;C) be a c-regular �lter space. Let

F 2 C and F �c _x. If possible, let F \ _x 62 C. So

9 a complete regular �lter space (Y;K) and an s-

map f : (X;C)! (Y;K) such that f(F \ _x) 62 K.

Since f is an s-map, f(F) 2 K and f(F) �k
_f(x).

But, since every regular �lter space is a c-�lter

space; (Y;K) is a c-�lter space and this leads to a

contradiction. 3

The proof of the following lemma has been omit-

ted, since it can be proved the same way as the

Lemma 3.15[8].

Lemma 3.8 A �lter space (X;C) has a regular

stable completion i� (( ~X; r ~C); j) is a regular com-

pletion of (X;C).

Proposition 3.9 A �lter space (X;C) has a reg-

ular stable completion i� it is c-regular.

Proof. (() Let (X;C) be c-regular. By Lemma

3.8, we need only show that j�1 : ( ~X; r ~C) !

(X;C) is continuous. If possible, let 9H 2 r ~C such

thatj�1(H) 62 C. By the c-regularity of (X;C),

9 a complete regular space (Y;K) and an s-map

f : (X;C) ! (Y;K) such that f(j�1(H)) 62 K.

Since (Y;K), being regular, is a c-�lter space it

follows that the extension ~f : ( ~X; ~C)! (Y;K) ex-

ists. Since (Y;K) is regular, ~f : ( ~X; r ~C)! (Y;K)

is continuous. Since H 2 r ~C, ~f(H) 2 K. But

f(j�1(H)) � ~f(H) implies that f(j�1(H)) 2 K, a

contradiction. So j�1 is continuous and therefore,

(( ~X; r ~C); j) is a regular, stable completion.

()) By Lemma 3.8, (( ~X; r ~C); j) is a regular sta-

ble completion of (X;C). Since j�1 is continuous,

F 62 C implies that j(F) 62 r ~C. Also, since this

is a stable completion, j is an s-map. Therefore,

(X;C) is c-regular. 3

Let (X;C) and (Y;K) be c-regular �lter spaces.

By Proposition 3.7, (Y;K) is a c-�lter space. Hence,
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if f : (X;C)! (Y;K) is an s-map, then by Propo-

sition 2.2 in [3], there exists a unique s-extension

f� : (X�; rC�) ! (Y �; rK�) such that jY Æ f =

f� Æ jX .

Let CRFIL be the full subcategory of FIL

consisting of c-regular �lter spaces as objects and

s-maps as morphisms. Note that CRFIL is a

full subcategory of CFIL0 whose objects are all

c-�lter spaces and morphisms are the s-maps. De-

�ne for any object (X;C) in CRFIL, R(X;C) =

(X�; rC�) and for any morphism f , R(f) = f�.

Recall that RFIL is the full subcategory of FIL

consisting of all regular objects in FIL. If CRFIL�

is a full subcategory of CRFIL consisting of com-

plete objects in CRFIL and RFIL� is the full

subcategory of RFIL consisting of complete ob-

jects in RFIL, then CRFIL� = RFIL�.

Proposition 3.10 R : CRFIL! RFIL� de�ned

by R(X;C) = (X�; rC�) for each object (X;C) in

CRFIL, and R(f) = f� for each morphism f , is

a completion functor and CRFIL is a completion

subcategory [8] of CFIL0.

The proof of this proposition is simple, since the

functor R : CRFIL! RFIL� is a re
ector.

De�nition 3.11 A �lter space is c-separated, if it

is T2 and the following condition holds

for F ; G 2 C there is no H 2 C such that F _

H; H_G exist implies that 9 a complete T3 �lter

space (Y;K) and a continuous map f : (X;C) !

(Y;K) such that f(F) 6�k f(G).

The proof of the following proposition is rou-

tine. Lemma 3.12 The property c-separated is a

hereditary property.

A C3 �lter space is one which admits a T3 com-

pletion.

Proposition 3.13 Any C3 �lter space is c-regular

and c-separated.

Proof. Let ((Y;K); �) be a T3 completion of a �l-

ter space (X;C). Since ((Y;K); �) is a stable com-

pletion, by Proposition 3.9, (X;C) is c-regular.

So it remains to show that (X;C) is c-separated.

From Lemma 3.12 it follows that (�(X);K(�(X)))

is c-separated. Let F ; G 2 C such that there ex-

ists no H 2 C for which F _H; H_G exist. Then

there is no T 2 K such that �(F) 6�K �(G) ex-

ist, and consequently, there is no S 2 K�(X) such

that �(F) _ S; S _ �(G) exist. Hence, 9 a com-

plete T3 �lter space (Z; S) and a continuous map

g : (�(X);D0) ! (Z; S) such that g(�(F)) 6�s

g(�(G)). Since f = g Æ � is a continuous map,

(X;C) is c-separated. 3

Recall that ((X�; C�):j) [3] is the Wyler comple-

tion of a T2 Cauchy space (X;C), where X
� is the

set of all equivalence classes of �lters in C, the

mapping j is de�ned by j(x) = _[x]; 8x 2 X and

C� = fA 2 F(X�) j either 9 a convergent �lter

F 2 C such that A � j(F) or 9 a non convergent

�lter G 2 C such that A � j(G) \ _[G]g.

Lemma 3.14. If (X;C) is c-separeted, then

(X�; rC�) is T2.

Proof. We argue contrapositively. Let [F ]; [G] 2

X� such that [F ] 6= [G]. We show that _[F ] �rc�

_[G]. Now F 6�c G implies that 9 no H 2 C such

that F _H; H_G exist. So, 9 a T3 Cauchy space

(Y;K) and a continuous map f : (X;C)! (Y;K)

such that f(F) 6� f(G). By Proposition 2.2 [KR],

let f� : (X�; C�) ! (Y;K) be the unique exten-

sion of f such that f� Æ j = f and by Proposition

3.5, f� : (X�; rC�) ! (Y;K) is continuous. We

have f�([F ]) 6= f�([G]), because f(F) 6�k f(G),

and f(F) = f� Æ j(F)
pk
! f�([F ]) and similarly

f(G)
pk
! f�([G]). Since (Y;K) is T2, this implies

that _f�([F ]) 6�k
_f�([G]). Since f� is continuous,

_[F ] 6�rc�
_[G]. This proves that (X�; rC�) is T2. 3

The following proposition gives a characterization

for C3 �lter spaces. The corresponding characteri-

zation for C3 Cauchy spaces was studied in details

by Kent and Richardson [4].

Proposition 3.15. A �lter space is C3 i� it is

c-regular and c-separated.

Proof. ()) Proof of this direction follows from

Proposition 3.13.

(() Let (X;C) be a c-regular and c-separated �l-

ter space and ((X�; C�); j) be its Wyler comple-

tion. We show that ((X�; rC�); j) is a T3 com-

pletion of (X;C). The fact that (X�; rC�) is com-

plete and T2, follows from Proposition 3.4 and 3.14

respectively. Therefore, it remains to show that

((X�; rC�); j) is a completion of (X;C). Since

((X�; C�); j) is a completion of (X;C) and rC� �

C� it follows that ((X�; C�); j) is complete and

j : (X;C) ! (X�; rC�) is continuous such that

X� = clpc� j(X) � clprc�j(X). Then, as in the

later part of Proposition 3.9 we can show that j�1

is continuous. This proves Proposition 3.15. 3.

Corollary 3.16. If a T2 �lter space (X;C) ad-

mits a regular completion, then ((X�; rC�); j) is a

regular completion of (X;C). ((X�; rC�); j) is a
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T3 completion i� (X;C) is c-separated.

The proof of the following proposition is now im-

mediate.

Proposition 3.17 The following statements for a

T3 �lter space (X;C) are equivalent:

(I) (X;C) is C3,

(II) (X;C) has a regular completion and (X;C)

is c-separated,

(III) ((X�; rC�); j) is a T3 completion of (X;C).

The T3 completions also have the extension

properties similar to the regular completions. Let

CRSFIL be the full subcategory of T2FIL con-

sisting of all c-regular and c-separated �lter spaces

as objects and continuous maps as morphisms. It

follows that CRSFIL� = T3FIL
�, whereCRSFIL�

consists of the complete objects in CRSFIL and

T3FIL
� consists of the complete T3 objects in T2FIL.

Proposition 3.18 R0 : CRSFIL ! CRSFIL�

de�ned by R0(X;C) = (X�; rC�), 8 objects (X;C)

in CRSFIL and R0(f) = f�; 8 morphisms f ,

where f� is the unique extension of f , is a com-

pletion functor. CRSFIL is a completion subcat-

egory of T2FIL.

The proof of this proposition follows from the fact

that the functor R0 is a re
ector. The following

lemma is required to characterize the locally com-

pact C3 spaces.

Lemma 3.19 Let (X;C) be a locally compact T3
�lter space which is also c-separated. If A � X�,

then j�1(clprc�A) = clpcj
�1(A).

Proof. Let x 2 clpcj
�1(A). So 9 F 2 C such

that F
pc
! x and j�1(A) 2 F . This implies that

j(F)
prc�
! j(x) and A 2 j(F). Therefore, x 2

j�1clprc�A and so clpcj
�1(A) � j�1(clprc�A). To

prove the inclusion in the other direction, let x 2

j�1(clprc�A). So 9 A 2 rC� such that A
prc�
! j(x)

and A 2 A. 9 F 2 C and some n 2 N such that

A � clnprc�j(F)\
_[F ]. This implies that A

prc�
! [F ].

By Proposition 3.14, F �c _x and since (X;C)

is regular, F \ _x 2 C, which implies that A �

clnprc� j(F\ _x). Since clpc(F\ _x) has a base of com-

pact sets and since (X�; rC�) is T2, these compact

sets are closed. So clnprc� j(F \ _x) = j(clpcF \ _x),

which implies that A � j(clpcF \ _x). Moreover

since F
pc
! x, clpc(F \ _x) also converges to x.

Hence clpc(F \ _x) has a trace G on j�1(A) and

G
pc
! x. This implies that x 2 clpcj

�1(A), which

proves the lemma. 3

Proposition 3.20 A locally compact T3 �lter space

is C3 i� (X;C) is c-separated.

Proof. (() This follows from Proposition 3.13.

()) Let (X;C) be c-separated. We show that

((X�; rC�); j) is a T3 completion of (X;C). By

Lemma 3.14, (X�; rC�) is T2 and by Lemma 3.19,

j�1(clnrc�j(F)) = clnpcF for all n 2 N and F 2 C.

Let rC�
j(X)

be the subspace structure on j(X).

So it follows that j�1 : (j(X); rC�

j(X)
) ! (X;C)

is a continuous map. Therefore, (X�; rC�) is a

T3 completion of (X;C). This proves Proposition

3.20. 3

4 Strict completions
In this section, we assume that (X;C) is a T2

�lter space, unless otherwise mentioned. Kent and

Richardson [4] obtained strict T3 completions for

Cauchy spaces. Similar techniques are used to ob-

tain strict completions for �lter spaces.

De�nition 4.1 A completion ((Y;K);  ) of a �lter

space (X;C) is said to be strict if A 2 K implies

that 9 F 2 C such that A � clpk (F).

It is a known that all topological completions

are strict. Also if (X;C) is a T2 �lter space and

X� n j(X) is �nite, where ((X�; C�); j) is the T2-

Wyler completion of (X;C), then any completion

of (X;C) is strict. Let �A = f[F ] 2 X� j A 2

G forsome G 2 [F ]g for each subset A � X and

�F = [�F j F 2 Fg], for each F 2F(X). Let

C�
1 = fA 2F(X�) j 9F 2 C such that A � �Fg.

Proposition 4.2. ((X�; C�
1 ); j) is a completion of

(X;C) in standard form [KR] i� (X;C) is regular.

Proof. Let (X;C) be regular. C�
1 is a �lter struc-

ture on X�, because _[F ] � �F . The mapping j

as de�ned in the T2-Wyler completion is injective,

and since j(F) � �F , 8F 2 C, j is a continu-

ous map. (X�; C�
1 ) is complete, since �F

pc�
1
! [F ].

Observe that for A � X, clpcA = j�1�A. So

it follows that for any A 2 C�
1 , with A � �F

j�1A � clpcF 2 C. Therefore, j�1 is a contin-

uous map. Also, since C�
1 � C�, (X�; C�

1 ) is a

completion of (X;C). Also it is a completion in

standard form, since j(F) � �F
pc�

1
! [F ].

Conversely, if ((X�; C�
1 ); j) is a completion of

(X;C), then �F 2 C�
1 ; 8F 2 C, which implies

that j�1�F = clpcF 2 C. So (X;C) is regular.

This proves Proposition 4.2. 3

The following proposition shows that ((X�; C�
1 ); j)

is the unique strict completion for a T2 �lter space
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(X;C).

Proposition 4.3.

(I) If ((X�;K); j) is a T2 completion of (X;C)

in standard form, then for any subset A � X

clpkj(A) = �A.

(II) A completion ((X�;K); j) is strict i�K � C�
1 .

Proof. (I) [F ] 2 �A ) 9G 2 C such that

G 2 [F ] and A 2 G. So j(G) �k j(F) and since

((X�;K); j) is in standard form, j(G)
pk
! [F ]. Also,

j(A) 2 j(G), which shows that [F ] 2 clpkj(A).

Next, let [F ] 2 clpkj(A). 9 H 2 K such that

H
pk
! [F ] and j(A) 2 H. Since G = j�1(H) 2 C,

A 2 G, and j(G) �k
_[F ], it follows that G �c F .

Hence [F ] = [G] 2 �A. Therefore, �A = clpkj(A).

(II) Let ((X�;K); j) be a strict completion of (X;C).

A 2 K ) 9F 2 C such that clpkj(F) � A.

By part (I) it follows that A 2 C�
1 . Conversely,

let K � C�
1 . A 2 C�

1 ) 9F 2 C such that

A � clpkj(F). Hence ((X
�; C�

1 ); j) is a strict com-

pletion of (X;C). This proves Proposition 4.3. 3

The proof of the following proposition now be-

comes routine.

Proposition 4.4. If (X;C) is a T3 �lter space,

then ((X�; C�
1 ); j) is its unique strict completion

in standard form.

Next, we de�ne the �2 operator on subsets

A � X,

�2A = f[F ] 2 X� j 9 G 2 [F ] such that �G \

�A 6= � 8G 2 Gg and for F 2F(X), �2F =

[f�2F j F 2 Fg]. Note that for any A � X,

�2A � clpc�
1

�A. The following proposition gives

a characterization for a T3 �lter space to have a

strict T3 completion.

Proposition 4.5. A T3 �lter space has a strict T3
completion i� the following two conditions hold :

(I) If for any two �ltersF and G inC 9 H1; � � � ;Hn 2

C such that �F _�H1; � � � ;�Hn _�G exist, then

F �c G.

(II) F 2 C implies that �2F 2 C�
1 .

Proof. ()) Since (X;C) is T3, by Proposition

4.3, ((X�; C�
1 ); j) is its unique strict T3 comple-

tion. To prove condition (I), let for F ; G 2 C

9 H1; � � � ;Hn 2 C such that F _ H1; � � � ;Hn _ G

exist. Since �Hi 2 C�
1 ; 8 i = 1; � � � ; n, and

_[F ] � �F , it follows that _[F ] �c�1
_[G]. Since C�

1 is

T2, F �c G. Now for any �lter F 2 C, �F 2 C�
1 ,

and since (X�; C�
1 ) is regular, clpc�

1

�F 2 C�
1 . So

�2F � clpc�
1

�F is in C�
1 .

(() By Proposition 4.3, it remains to show that

(X�; C�
1 ) is a T3 space. To show that this space is

T2, let _[F ] �c�1
_[G]. So 9 H1; � � � Hn 2 C such that

�F _ �H1; � � � ;Hn _ �G exist. By condition (I)

this implies that F �c G. Hence (X�; C�
1 ) is T2.

By condition (II), since �2F 2 C�
1 , clpc�

1

�F 2 C�
1

for each �F 2 C�
1 . Therefore, (X

�; C�
1 ) is regular.

This completes the proof of Proposition 4.5. 3

The completion ((X�; C�
1 ); j) also has the uni-

versal property same as the Wyler completion.

The completely regular and w-regular �lter spaces

are still to be studied in a subsequent paper.
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