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Abstract:- A necessary and sufficient condition is obtained for a filter space to have a regular com-
pletion. Also, T35 and strict regular completions of a 75 filter space are discussed as special cases.
Subsequently, different completion functors and completion subcategories are constructed for the cat-

egory FIL.
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1 Introduction
Filter spaces are generalizations of Cauchy

spaces, which were studied by Kent, Richardson
and several others [2,7,8] in the past few decades.
Categorists [1,5] have shown that the category FIL
of filter spaces forms a strong topological universe,
since it is isomorphic to the filter-merotopic spaces.
It is also cartesian closed and preserves the quo-
The category CHY of Cauchy
spaces is a bireflective subcategory of FIL. A
completion theory was developed and a comple-
tion functor was defined for FIL by the author
and one of her co-authors [3]. As we have seen
in [3], the Wyler completion of filter spaces has
nice functorial properties, but it does not pre-
serve regularity and uniformizability. In this pa-
per, different completions on certain subcategories
of FIL are constructed which preserve reularity
and other important characteristics. The com-
pletion theory for regular filter spaces, developed
here generalizes several of Kent and Richardson’s
techniques [2,4] for completions of regular Cauchy
spaces, the study of which was initiated by Ra-
maley and Wyler [7]. In Section 2, some of the
frequently used notations and definitions are pre-
sented together with the two basic problems dis-
cussed in later sections. In Section 3, a regularity
series for filter spaces is defined for obtaining a
regular modification, which later leads to the reg-
ular completion of these spaces. This section also
generalizes the concept of regular completion of
Cauchy spaces without the T restriction, which
was investigated by the author in [8]. Finally, in

tient structure.

Section 4, strict regular completion of filter spaces
are discussed. Some of the completions discussed
in this paper also have the universal extension
property, which leads to the definition of corre-
sponding completion functors on subcategories of
FIL. The author intends to carry on a more in-
tensive investigation of completion functors and
modification functors for F'IL in a later paper.

2 Preliminaries

The following are some of the basic definitions
and notations which will be frequently used through-
out the paper. Let X be a nonempty set and
F(X) be the set of all filters on X, partially or-
dered by inclusion. If B is a base [9] of the fil-
ter F, then we write F = [B] and F is said to
be generated by B. In particular, £ = [{z}] and
FNG=[{FUG|FeF, GeG}. UFNG#¢
for all F € F and G € G, then FV G =[{
FNG | F € F, G € G}]. If there exists F' € F,
G € G such that F NG = ¢, then we say that
F VG fails to exist. f A C X, F € F(X), then
Fa=[{FNA|F € F}] is the trace of F on A.
Definition 2.1 Let X be a set and C CF(X).
The pair (X, C) is called a filter space, if the fol-
lowing conditions hold :
(1) z€C, Vr e X;
(co) F € C and G > F imply that G € C.

If (X,C) and (X, D) are two filter spaces and
C C D, then C' is said to be finer than D, written
C>D.

For a set A CF(X), two filters F, G € A are
said to be A — linked, written F ~ 4 G, if there



exist a finite number of filters Hy, Ho, -, Hy in
A such that FVH1, HiVHo, HoVHsz, -+, Hp_1V
Hn, Hn VG exist. In particular, if A = C then
~. defines an equivalence relation on C. Let [F].
denote the equivalence class containing F € C.
Associated with the filter space (X, C), there is a
preconvergence structure[3] p. defined as

F % if andonly if F ~¢ . (1)

A filter space (X, C) is a c-filter space, if F ~,
z = FNz € C and it is a Cauchy space, if
F~.G = FNG e C. It is known that the
category CFIL of c-filter spaces and the category
CHY of Cauchy spaces are bireflective subcate-
gories of FIL of filter spaces [1]. The preconver-
gence structure p. associated with the filter space
(X, C) is a convergence structure [6] iff (X,C) is
a c-filter space.

For any A C X, we define cl,, A = {z € X |

AF € C such that F —% and A € F}andclp A =
{cl, A | A e A}]. A filter space is said to be
e Ty or Hausdorff iff x = y, whenever & ~. .
e regular iff cl,, F € C, whenever F € C,
e complete iff each F € C p,. converges.
e locally compact iff F p. converges implies that
3 F € F such that each ultrafilter containing F'
pe converges to a point in F.
Note that a regular filter space is a c-filter space.
Let AC X and C4 = {G € F(A) | there exists
F € Csuch that G > Fa}. Then (A, Cy) is a filter
space, called the subspace of (X,C). A mapping
f:(X,C) = (Y,D) is continuous if and only if
F € C implies that f(F) € D. The map f is a
homeomorphism if and only if it is bijective and
both f and f~' are continuous. Moreover, f is
an embedding of (X,C) into (Y, D) if and only if
[ (X,C) = (f(X), Dfx)) is a homeomorphism.
A completion of a filter space (X, C) is a pair
((Z,K), ¢), where (Z, K), is a complete filter space
and the map ¢ : (X,C) — (Z,K) is an embed-
ding satisfying the condition clp, ¢(X) = Z. The
completion ((Z,K),¢) is said to be Ty (respec-
tively, regular, T3), if the filter space ((Z, K) is T,
(respectively, regular, T3). A Ty Wyler comple-
tion was constructed for filter spaces in [3]. Next,
we generalize the concept of stable completion of
Cauchy spaces [8] to filter spaces.
Definition 2.2 A completion ((Z, K), ¢) of a filter
space (X, C) is said to be stable , if z € Z \ ¢(X)

and ¢(F) 25 z for some F € C imply that z is the
unique limit of ¢(F) in Y.

The category REG of regular uniform con-
vergence spaces is a bireflective subcategory of
SUCONYV of semiuniform convergence spaces [5]
Since RFIL, the category of regular filter spaces
forms a subcategory of C'FIL, which generalises
semiuniform convergence spaces, the study of com-
pletion subcategories for RFIL is important. In
the next two sections attempts have been made to
(1) find characterization of filter spaces which have
regular completion,

(2) construct strict completions under suitable con-
ditions on the filter space.

3 Regular Completions
Let ACF(X)and A ={2 |z € X} UA We
define the following sets :
e PCy={F eF(X)|3IG € A with F > G}.
e ¢-Cy={F €F(X) | 3G € A’ and a finite num-

ber of elements z1, z9, -, z, € X with G ~ 4 x;
foreachi=1,---n,such that F > gGnz N---N

e CCy = {F €F(X) | 3 a finite number of A'-
linked filters Hi, - - -, Hy such that F > N7 H;}.
Proposition 3.1 The following statements are
true for PC'y4, ¢-C 4 and CCy :

(I) PC 4 is the finest filter structure on X contain-
ing A.

(IT) g-C 4 is the finest c-filter structure on X con-
taining A.

(III) CC 4 is the finest Cauchy structure on X
containing A.

The proof of (I) is clear from the construction
of PC 4 and the proofs of (II) and (III) follow from
Proposition 1.11 in [3], if we replace C by A.

Next, following the idea in [2], we construct a
regularity series for a filter space (X,C) which is
used later in the section in costructing a regular
completion.

Let roC = C,rC = PC4,, where A; = {clgroof |
F € C, n € N} and ro(C) = PCy,, where

Ay = {dp F | F € C, n € N} In gen-
eral, 7"5(0) = PCAga where "4‘6 = {CZ;LTB_I(C)F |

F € C, n € N}, if 8 is a non-limit ordinal and
rg(C) = U{ro(C) | o < B}, B is a limit ordinal.
From the construction it is clear that C' = roC >
mC > - > rg(C) > rg41(C), for all ordinal



numbers .

The length I, of a regularity series r for a filter
space (X, C) is the smallest ordinal number v for
which 7, (C) = r,;1(C). Let rC, called the reg-
ular modification of C, be the finest regular filter
structure on X which is coarser than C.
Proposition 3.2 (I) C > r3(C) > r,(C) > rC,
for any any ordinal numbers vy > £.

(IT) r(C) = rC iff v > I,.

Proof. The proof of (I) follows by transfinite in-
duction. To prove (II), first note that rC < r,(C)
follows from (I). Let v > [,. If y is a limit ordi-
nal, then 7 € r,(C) = F € ro(C), Y o < 7.
Since each 7,(C) is regular and coarser than C, it
follows that F ¢ rC. Next let v be a non-limit
ordinal. So F ¢ r,(C) = 3 a regular filter struc-
ture 7, (C) on X which is coarser than C such that
F & ry(C). Hence F ¢ rC. So rC > r,(C). Con-
versely, let r,(C') = rC. If possible, let v < ,. So
r4(C) # ry41(C). Hence 3 F € r41(C) such that
F & ry(C) = rC, which implies that F & r.,41(C)
(by (I)). This leads to a contradiction. Therefore,
~ > [,. This proves Proposition 3.2 . &
Proposition 3.3 If (X,C) is a complete filter
space, then (X, rg(C)) is complete for each ordinal
number f.

Proof. (X,r,C)) = (X, C) is complete. Next, let
G erC. SoG > clgmo]-" for some n € N and
F € C. Since (X,C) is complete 3 z € X such
that F ~, . C > riC and CZPTOO‘F e rnC =
G ~p,c @. Therefore, (X,r1C) is complete. The
proof follows by transfinite induction. <
Corollary 3.4 (X,rC) is complete, if (X,C) is
complete.
Observe that clgrl(k)f(}") < f(cl;‘no}"), which es-
tablishes the continuity of f on (X,r;C). The
proof of the following proposition follows by ap-
plying induction and Proposition 3.2.
Proposition 3.5 If f : (X,C) — (Y, K) is con-
tinuous, then f : (X,rC) — (Y,rK) is also con-
tinuous.

The notion of s-map, introduced in [8] can be
extended to filter spaces in general. A continuous
map f: (X,C) = (Y,K) is an s-map, if F € C
converges to at most one point implies that f(F) €
K converges to at most one point. The identity
map, any continuous map with a Tb co-domain
and the embedding map in a stable completion of a
filter space and is an s-map. are all examples of s-

maps. The c— regylarity and c— separatedness of
Cauchy spaces [4] are generalised for filter spaces
by using s-map.
Definition 3.6 A filter space (X, C) is said to be
c-regular if F ¢ C implies that 3 a complete regu-
lar filter space (Y, K) and an s-map f : (X,C) —
(Y, K) such that f(F) € K.
Examples of c-regular filter spaces are not difficult
to find out. In fact, each complete regular filter
space is c-regular. This can be verified by taking
(Y,K) = (X,C) and f = Ix in Definition 3.6.
Proposition 3.7 Every c-regular filter space is a
c-filter space.
Proof. Let (X, C) be a c-regular filter space. Let
F € C and F ~. . If possible, let F Nz & C. So
3 a complete regular filter space (Y, K) and an s-
map f : (X,C) — (Y, K) such that f(FNi) & K.
Since f is an s-map, f(F) € K and f(F) ~ f(z).
But, since every regular filter space is a c-filter
space, (Y, K) is a c-filter space and this leads to a
contradiction. <
The proof of the following lemma has been omit-
ted, since it can be proved the same way as the
Lemma 3.15[8].
Lemma 3.8 A filter space (X,C) has a regular
stable completion iff ((X,rC), j) is a regular com-
pletion of (X, C).
Proposition 3.9 A filter space (X, C) has a reg-
ular stable completion iff it is c-regular.
Proof. (<) Let (X,C) be c-regular. By Lemma
3.8, we need only show that j~! : (X,rC) —
(X, C) is continuous. If possible, let 3H € rC such
thatj ' (H) ¢ C. By the c-regularity of (X, C),
3 a complete regular space (Y, K) and an s-map
f:(X,C) = (Y,K) such that f(j-'(H)) ¢ K.
Since (Y, K), being regular, is a c-filter space it
follows that the extension f : (X,C) — (Y, K) ex-
ists. Since (Y, K) is regular, f : (X,rC) = (Y, K)
is continuous. Since # € rC, f(H) € K. But
F(G7H(H)) = f(H) implies that f(~'(H)) € K, a
contradiction. So j~! is continuous and therefore,
((X,rC), ) is a regular, stable completion.
(=) By Lemma 3.8, ((X,rC),j) is a regular sta-
ble completion of (X, C). Since j ! is continuous,
F ¢ C implies that j(F) € rC. Also, since this
is a stable completion, j is an s-map. Therefore,
(X, C) is c-regular. <©

Let (X, C) and (Y, K) be c-regular filter spaces.
By Proposition 3.7, (Y, K) is a c-filter space. Hence,



if f: (X,C) — (Y, K) is an s-map, then by Propo-
sition 2.2 in [3], there exists a unique s-extension
f* o (X*,rC*) = (Y*,rK*) such that jy o f =
frojx.

Let CRFIL be the full subcategory of FIL
consisting of c-regular filter spaces as objects and
s-maps as morphisms. Note that CRFIL is a
full subcategory of CFIL' whose objects are all
c-filter spaces and morphisms are the s-maps. De-
fine for any object (X,C) in CRFIL, R(X,C) =
(X*,rC*) and for any morphism f, R(f) = f*.
Recall that RFIL is the full subcategory of FIL
consisting of all regular objects in FIL. f CRFIL*
is a full subcategory of C RFIL consisting of com-
plete objects in CRFIL and RFIL* is the full
subcategory of RFIL consisting of complete ob-
jects in RFIL, then CRFIL* = RFIL*.
Proposition 3.10 R : CRFIL — RFIL* defined
by R(X,C) = (X*,rC*) for each object (X, C) in
CRFIL, and R(f) = f* for each morphism f, is
a completion functor and CRFIL is a completion
subcategory [8] of CFIL'.

The proof of this proposition is simple, since the
functor R: CRFIL — RFIL" is a reflector.
Definition 3.11 A filter space is c-separated, if it
is T and the following condition holds

for F, G € C there is no H € C such that F Vv
H, HV G exist implies that 3 a complete T3 filter
space (Y, K) and a continuous map f : (X,C) —
(Y, K) such that f(F) #x f(9).

The proof of the following proposition is rou-
tine. Lemma 3.12 The property c-separated is a
hereditary property.

A (4 filter space is one which admits a T3 com-
pletion.

Proposition 3.13 Any C} filter space is c-regular
and c-separated.

Proof. Let ((Y, K), ¢) be a T3 completion of a fil-
ter space (X, C). Since ((Y, K), ¢) is a stable com-
pletion, by Proposition 3.9, (X, C) is c-regular.
So it remains to show that (X, C) is c-separated.
From Lemma 3.12 it follows that (¢(X), K(4(x)))
is c-separated. Let F, G € C such that there ex-
ists no H € C for which FVH, HV G exist. Then
there is no 7 € K such that ¢(F) £x ¢(G) ex-
ist, and consequently, there is no § € Ky(x) such
that ¢(F) VS, SV ¢(G) exist. Hence, 3 a com-
plete T3 filter space (Z,S) and a continuous map

g : ($(X),D') = (Z,5) such that g(¢(F)) £,

9(¢(G)). Since f = g o ¢ is a continuous map,
(X, C) is c-separated. <&
Recall that ((X*,C*).7) [3] is the Wyler comple-
tion of a Ty Cauchy space (X, C), where X* is the
set of all equivalence classes of filters in C, the
mapping j is defined by j(z) = [z], Vz € X and
* = {A € F(X*) | either 3 a convergent filter
F € C such that A > j(F) or 3 a non convergent
filter G € C such that A > j(G) N[G]}.
Lemma 3.14. If (X, C) is c-separeted, then
(X*,rC*) is Tb.
Proof. We argue contrapositively. Let [F], [G] €
X* such that [F] # [G]. We show that [F] ~..-
[G]. Now F . G implies that 3 no H € C such
that FVH, HV G exist. So, 3 a T3 Cauchy space
(Y, K) and a continuous map f : (X,C) — (Y, K)
such that f(F) o f(G). By Proposition 2.2 [KR],

let f*: (X*,C*) — (Y,K) be the unique exten-
sion of f such that f* oj = f and by Proposition
3.5, f* (X7, ’)”C*) (Y, K) is continuous. We
have f*([F]) # £((G)), because f(F) £ F(O),
and f(]-") = f* o j(F) B f*([F]) and similarly

76 % J*([G]). Since (Y, K) is Ty, this implies
that f* ([.7-"]) #i £*(G]). Since f* is continuous,

[.7-'] %re= [G]. This proves that (X*,rC*) is Th. <
The following proposition gives a characterization
for Cjs filter spaces. The corresponding characteri-
zation for C'3 Cauchy spaces was studied in details
by Kent and Richardson [4].

Proposition 3.15. A filter space is C5 iff it is
c-regular and c-separated.

Proof. (=) Proof of this direction follows from
Proposition 3.13.

(<) Let (X, C) be a c-regular and c-separated fil-
ter space and ((X*,C*),7) be its Wyler comple-
tion. We show that ((X*,rC*),j) is a T3 com-
pletion of (X, C). The fact that (X*,rC*) is com-
plete and T5, follows from Proposition 3.4 and 3.14
respectively. Therefore, it remains to show that
((X*,rC*),7) is a completion of (X,C). Since
((X*,C%), ) is a completion of (X,C) and rC* <
C* it follows that ((X*,C™),j) is complete and
Jj: (X,C) = (X*,rC*) is continuous such that
X* = clp,.j(X) C clp, .j(X). Then, as in the
later part of Proposition 3.9 we can show that j !
is continuous. This proves Proposition 3.15. <.
Corollary 3.16. If a T filter space (X,C) ad-
mits a regular completion, then ((X*,rC*), ) is a
regular completion of (X,C). ((X*,rC*),j) is a



T3 completion iff (X, C) is c-separated.

The proof of the following proposition is now im-

mediate.

Proposition 3.17 The following statements for a

T; filter space (X, C) are equivalent:

() (X.0)is Cs,

(IT) (X, C) has a regular completion and (X, C)

is c-separated,

(III)  ((X™*,rC™),j) is a T3 completion of (X, C).
The T3 completions also have the extension

properties similar to the regular completions. Let

CRSFIL be the full subcategory of ToFIL con-

sisting of all c-regular and c-separated filter spaces

as objects and continuous maps as morphisms. It

is Cs iff (X, C) is c-separated.

Proof. (<) This follows from Proposition 3.13.
(=) Let (X,C) be c-separated. We show that
((X*,rC*),7) is a T3 completion of (X,C). By
Lemma 3.14, (X*,rC*) is Ty and by Lemma 3.19,
G elr s §(F)) = ¢l F for allm € N and F € C.
Let 7Cj x) be the subspace structure on J(X).
So it follows that j ! : (j(X),rC]’?‘(X)) — (X,0)
is a continuous map. Therefore, (X*,rC*) is a
T3 completion of (X, ). This proves Proposition
3.20. &

4 Strict completions
In this section, we assume that (X,C) is a T

follows that CRSFIL® = T3 FIL", where CRSFIL ey space, unless otherwise mentioned. Kent and

consists of tbe complete objects in CBSF I L and  Richardson [4] obtained strict T3 completions for
T3 FIL" consists of the complete T objects in To ' LG chy spaces. Similar techniques are used to ob-

Proposition 3.18 R' : CRSFIL — CRSFIL*
defined by R'(X,C) = (X*,rC*), V objects (X, C)
in CRSFIL and R'(f) = f*, V morphisms f,
where f* is the unique extension of f, is a com-
pletion functor. CRSFIL is a completion subcat-
egory of To F'IL.

The proof of this proposition follows from the fact
that the functor R’ is a reflector. The following
lemma is required to characterize the locally com-
pact C3 spaces.

Lemma 3.19 Let (X, C) be a locally compact T3
filter space which is also c-separated. If A C X*,
then 5! (clp, . A) = clp 57 (A).

Proof. Let = € cly,j~'(4). So 3 F € C such
that F % & and j='(A) € F. This implies that
§(F) "8 j(x) and A € j(F). Therefore, z €
i, . A and so clp j7H(A) C 57 (clp,.. A). To
prove the inclusion in the other direction, let €
57" (clp, .. A). So 3 A € rC* such that A ™S j(z)
and A € A. 3 F € C and some n € N such that
A >l j(F)N[F]. This implies that A ™5 [F].
By Proposition 3.14, F ~. & and since (X, C)
is regular, F Nz € C, which implies that A4 >
cly . J(FN). Since clp, (FNi) has a base of com-
pact sets and since (X*,rC*) is Ty, these compact
sets are closed. So cly _j(FNi) = j(clp F Ni),
which implies that A > j(cl,, F N &). Moreover
since F 28, cl, (F N i) also converges to .
Hence cl,, (F N &) has a trace G on 5 (A) and
G % x. This implies that z € cl,,j~'(A), which
proves the lemma. <&

Proposition 3.20 A locally compact T3 filter space

tain strict completions for filter spaces.
Definition 4.1 A completion ((Y, K), ) of a filter
space (X, () is said to be strict if A € K implies
that 3 F € C such that A > ¢, ¢(F).

It is a known that all topological completions
are strict. Also if (X,C) is a T filter space and
X*\ j(X) is finite, where ((X*,C*),7) is the Ty»-
Wyler completion of (X, C), then any completion
of (X,C) is strict. Let XA = {[F] € X* | A €
G forsome G € [F]} for each subset A C X and
YF = [EF | F € F}], for each F €F(X). Let
Ci ={A €F(X*) | 3F € C such that A > LF}.
Proposition 4.2. ((X*,CY),7) is a completion of
(X, C) in standard form [KR] iff (X, C) is regular.
Proof. Let (X, C) be regular. Cf is a filter struc-
ture on X*, because [F] > XF. The mapping j
as defined in the T5-Wyler completion is injective,
and since j(F) > XF, VF € C, j is a continu-

ous map. (X*,CY) is complete, since XF pii [F].
Observe that for A C X, cl, A = j'ZA. So
it follows that for any A € Cf, with A > ¥F
i YA > cl,, F € C. Therefore, ;! is a contin-
uous map. Also, since Cf < C*, (X*,CY) is a
completion of (X,C). Also it is a completion in

standard form, since j(F) > EF pi% [F].
Conversely, if ((X*,CY),7) is a completion of

(X,C), then £F € Cf, VF € C, which implies

that j~I1XF = cl,, F € C. So (X, C) is regular.

This proves Proposition 4.2. &

The following proposition shows that ((X™*, CY), j)

is the unique strict completion for a T filter space



(X,0).

Proposition 4.3.

(I) If ((X*,K),j) is a T» completion of (X,C)
in standard form, then for any subset A C X
clp, j(A) = DA,

(IT) A completion ((X*, K), 7) is strict iff K > Cf}.
Proof. (I) [F] € ¥A = 3G € C such that
G e€[F]and A € G. So j(G) ~k j(F) and since
((X*,K),§) is in standard form, 5(G) 2% [F]. Also,
j(A) € j(G), which shows that [F] € clp,j(A).
Next, let [F] € clp,j(A). 3 H € K such that
H 2 [F] and j(A) € H. Since G = j7'(H) € C,
A € G, and j(G) ~i [F], it follows that G ~. F.
Hence [F] = [G] € £A. Therefore, ¥A = cl,, j(A).

(<) By Proposition 4.3, it remains to show that
(X*,C7) is a T3 space. To show that this space is
Ty, let [F] ~¢: [G]. So 3 H1,- - Hy € C such that
SFNV YXHq, -, Hp V EG exist. By condition (I)
this implies that F ~. G. Hence (X*,CY) is Ts.
By condition (II), since X2F € Cf, cl, . XF € Cf
for each £¥F € Cf. Therefore, (X*, CY) is regular.
This completes the proof of Proposition 4.5. <

The completion ((X*,CY),7) also has the uni-
versal property same as the Wyler completion.
The completely regular and w-regular filter spaces
are still to be studied in a subsequent paper.
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