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Abstract: - This paper presents the discrete adaptive sliding-mode agorithm for adaptive filtering in signa
processing. The parameter updated law of the adaptive filter is based on the FIR (Finite Impulse Response)
model and is the non-switching type. The adaptive gain of the parameter updated law is adaptively adjusted to
make the dliding variable to converge to zero in a finite duration. Then the gain is adjusted to keep the error
dynamics in the sliding mode so that the desired error dynamics can be achieved in the sliding mode. The error
dynamics are insensitive with respect to the bounded disturbances. The concept of the sliding mode was
originally used for the design of robust control systems. Now it can be used for adaptive filter design to further
improve the performance of adaptive filters. Simulation results are presented to illustrate the features of the

proposed scheme.
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1 Introduction

Sliding-mode control of continuous-time systems
offers the advantage of robustness against parameter
variations and externa disturbances [1]. The
robustness property is achieved by using high
frequency switching to keep the state on the sliding
surface. However this high-frequency switching
leads to undesirable chattering of the control inpui.
In recent years, discrete sliding mode controllers
have received much attention [2]-[5]. Most of these
studies have concentrated on fixed strategies. Some
studies of the adaptive control of discrete systems
based on sliding mode have been carried out [6]-[7].
The discrete dliding-mode controllers have been
developed mainly using state-space models.
However, the use of the input-output models in
designing discrete sliding-mode controllers has also
received some attention [3]-[5].

The advantages of sliding mode controller in contral
theory are well-known. However, the use the sliding
mode techniques [1] in signal processing does not
get much attention as the sliding mode techniques in
control engineering. It is possible to use dliding-
mode techniques to design the adaptive filter in
order to further improve the performance of adaptive
filters. In this paper, a discrete sliding-mode
adaptive agorithm for adaptive filtering in signa
processing is proposed. The present work differs
from previous works on adaptive filtering. The
parameter updated law of the adaptive filter is based
onthe FIR (Finite Impulse Response) model [8]-[10]
and is the non-switching type. The adaptive gain of
the parameter updated law is adaptively adjusted to
make the sliding variable to converge to zero in a

finite duraion. Then the gain is adjusted to keep the
error dynamics in the sliding mode so that the
desired error dynamics can be achieved in the
diding mode. The error dynamics are insensitive
with respect to the bounded disturbances. The idea
of the diding mode was initially used for the design
of rabust control systems. In our approach, it can be
used for adaptive filter design to further improve the
performance of adaptive filters. Simulaion results
are presented to illustrate the features of the sliding-
mode adaptive filters.

The organization of this paper is as follows. Section
2 presents the discrete dliding-mode adaptive
filtering. The stability andysis and discussion are
presented in Section 3. Simulation results to
illustrate the features of the proposed filter are
presented in Section 4.

2 Problem Formulation

L et the sliding surface be defined as follows:

sk = C(g") e = 0 (22)
where eK) = r(K) - y(k) (2.2)
r(k) is the bounded reference input. The &) is the
error between the reference input and the filter
output. g is the unit-delay operator. C(q™) is the
stable polynomia defined as

CE@Y) =1+ g™+ ...+ cur g™ (23)

For the purpose of designing the adaptive filter, the
following finite impulse response (FIR) modd is
used. The FIR model can be considered as moving



average or MA moddl, in which the filter has only
zeros, characterized by the difference equation

N-1

y(k) = > w (K)x(k—i)
The difference &IJljaIi onin (2.4) can berewritten as

y(K) =WT (k)X (k) (2.5)
where W(k) = [w, (0), w, (@), .., w (N-DJ

X(K) = [X(K), X(K- 1), ..., x(k-N+1)] "
The filter we ght vector update equation is

WK) = Wk - 1) + u(K) (k) (2.6)
where u(K) is the adaptation gain and A(K) is defined
as

(2.4)

BR)=rK) -WT (kDXK + ce(k-l) (2.7)

The u(k) in (2.6) is updated in the sense that the
dliding variable s(k) will converge to zero in afinite
duration. In the sliding mode s(k) = 0 or e(k) + c-
ek-1) = 0O, the eror ek) will asymptoticaly
converge to zero with the convergence rate specified
by the constant c.

XK (, |ek-1)+cdk-2)]
k)= 1- 2.8
1 ||><(k>||2[ AR j 29

where 0<x <1.

Remark 2.1: By observing the expressions (2.1)-
(2.8), this scheme is independent of stochastic
properties of the input disturbance and input signd.
Only the input signal and the reference input are
required to update the filter parameters.

3 Stability Analyss

To proof the stability of the proposed sliding-mode
adaptive agorithm, the following Lyapunov
function isfirst defined.

V(K) =5 (K) (3.1)
where
KW =C(q”) ek
= e(k) + ¢ ek-1) (3.2)

AV (K) =V (k) =V (k — 1)
= [e(k) +c(e(k —1)]* —[e(k—1) + ce(k - 2)]®
=[r(k) =W T (k) X (k) + ce(k —1)]?
—[e(k —1) + ce(k — 2)]°
=[r(k)-W" (k=2 X (k) —u" (k) B(k) X (k)
+ce(k —1)]% —[e(k 1) + ce(k - 2)]
=[r(k)-W" (k-=2)X (k) —u" (k) B(k) X (k))
+ce(k-1]* —[e(k-1)+ce(k —2)]?

=[r(k)-WT (k-1 X (k) +ce(k —1)
—u" (k) BK)X (K))]* ~[e(k —1) + ce(k - 2)]°
=[B(K) ~u" (K) BK)X (K)]* ~[e(k -1 + ce(k — 2)]*
(3.3)
Substituting the equation (2.8) in the equation (3.3),
AV (K) =[7 |e(k —=1) + ce(k — 2) ]|
—[e(k =1) + ce(k —1)]?
=—(1-7?)ek -1)+ce(k -1)]?
<0

(3.4)

Remark 3.1: According to Lyapunov stability theory
[11], the system is stable.

Remark 3.2: If u(k) in (2.8) is updated in the sense
that AV(K)=—(1-72)[ek -1 +cgk-1]*<0
the dliding variable s(k) will converge to zero in a
finite duration. In the sliding mode s(k) = 0 or (k) +
c- ek-1) = 0O, the eror ek) will asymptoticaly
converge to zero with the convergence rate specified
by the constant c.

Remark 3.3: Due to the reason that the error
dynamics are only determined by the parameter c in
the dliding mode (3.2), the eror dynamics are
insensitive with respect to the bounded disturbances.
It can be seen from the above that u(k) in (2.8) is
adaptively adjusted to make the sliding variable s(k)
to converge to zero, and then u(k) is adaptively
adjusted to keep the error dynamics in the diding
mode (3.2) so that the desired error dynamics can be
achieved in the sliding mode.

Remark 3.4: The convergence rate of the error e(k)
is aso dependent on the constant t. The smdler the
constant T is, the faster the error convergence.

Remark 3.5: In order to prevent singul arities due to
the denominator terms of A(K) and ||X|I?, the adaptive
gain, u(k) can be modified as follow

Fr—) [1_,|e(k—n+ce(k—2)|J 25)
IX(W)IF +6 B)+8,

where 0<x <1, &, 6, are smal positive numbers,
for example, 0.001. Same values of these constants
can be sdected. Smale these vaues provide
smaller error, (k).

4 Simulation

In this section, we illustrate the performance of the
proposed sliding-mode filter to the adaptive noise
filtering problem. The speech signal, which is



denoted 2 and identical to that used by Prof. S.
Haykin isused. The signals are available from the
VWWWW homepage [12] and are described as foll ow:
. gpeech sample "When recording audio data ...",
length 10000, sampled at 8kHz. (Fig. 1)

The FIR filter has the following structure;
2
y(k) = > w (K)x(k i) (4.1)
i=0

In this simulation, the additive bounded random
noise, N(K) is used and this additive noise satisfies
the foll owing bounded condition:

0<n(k) <0.01.

speech signal S2

10 20 30 o 50 60 0 80 920 100
10000 iterations

Fig. 1: The speech signd, S2

The followi ng specifi cations have been used:
C(gh) =1-0.9q"

Parameters 6, = &, =0.01

Parameter 7= 0.01

Fig. 2 shows the plots of 10000 samples of the
filtered output signals for S2 versus time. Fig. 3
illustrates the plots of 10000 samples of the filter
output error, e(k) or the difference between the
reference input and the filter output of the proposed
diding-mode filter for S2.
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Fig. 2: Thedliding-mode filter output, y(K) for S2
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The simulation is then repeated for the speech signal
S using difference polynomial, C(q") to revea the
effect of constant c. In this case, the specifications
are selected as follow:

C(q" = 1-0.01q"

Parameters 6, = 8, =0.01

Parameter T = 0.01

Fig. 4 shows the output error of the sliding-mode
filter. The result has indicated that in the sliding
mode s(k) = 0 or &k) + c- ek-1) = 0, the error (k)
will asymptotically converge to zero with the
convergence rate specified by the constant c. A
smal congant ¢ vaue gives faster error
convergence.
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Fig. 3: The output error of thefilter, e(k) for S2
(Note: y-axis: x107°)
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Fig. 4: Theerror, k) for S2 - C(q™*) = 1-0.01q"
81 = 8, =0.01,7=0.01 (Note: y-axis. x10°®)

Finaly, the simulation is replicated with the
following specifications:

C(gY) = 1-0.01q"

Parameters 6, = &, =0.001

Parameter T = 0.001

Fig. 5 illustrates the squared error, €’(k). The
convergence rate of the error e(k) is aso dependent
on the constant t. The smaller the constant 1 is, the



faster the error convergence. Smaller the values of
81, &, contribute smaller error, e(k).Further Smaller
error can be achieved if smaller vaues of these
parameters are selected. The adaptive parameters of
the dliding-mode adaptive filter are shown in Fig. 6.
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Fig.5: Theerror, e(k) for S2 - C(q") = 1-0.01q™,
81 = 8, =0.001,7=0.001 (Note: y-axis: x10™)
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Fig. 6: Thefilter parameters, wo(k), wi(k), wo(K).

5 Concluson

This paper has presented a new approach in
designing an adaptive agorithm using the sliding-
mode technique. The parameter updated law of the
adaptive filter is based on the FIR modd and it can
be extended to IR (infinite impul se response) model
easily. The adaptive gain of the parameter updated
law is adaptively adjusted to make the dliding
variable to converge to zero in a finite duration.
Then the gain is adaptively updated to keep the error
dynamics in the sliding mode so that the desired
error dynamics can be achieved in the sliding mode.
The error dynamics are insensitive with respect to
the bounded disturbances. The concept of the sliding
mode was origindly used for the design of robust
control systems. In this paper, diding mode
technique has been be used for adaptive filter design
to further improve the performance of adaptive

filters. However, further work needs to be conducted
in this area. Many issues need to be addressed
regarding simulations, practical implementations,
and the further analysis on the improvement of the
tracking precision, stability, and robustness for the
dliding mode adaptive filters.

References:

[1] Utkin, V. I, Siding modes in control optimisation.
New York: Springer, 1992.

[2] Drakunov. S.\V and Utkin, V. I, On discrete-time
diding modes. In Proc. IFAC Conf. On
Nonlinear Control Systems Design, Capri, Italy,
99. 1989, pp. 273-277.

[3] Furuta, K., Siding mode control of a discrete time
system. Syst. Control Letter, Vol.14, 1990,
pp.145-152.

[4] Kaynak, O. and Denker. A, Discrete-time sliding
mode control in the presence of system
uncertainty. Int. J. Control No. 57, ,1993, pp.
1177-1189.

[5] Chan, C. Y. Robust discrete quasi-sliding mode
tracking controller. Automatica 31, , 1995,
pp.1509-1511.

[6] Bartolini, G., Ferrara. A. and Utkin, V. |, Design
of discrete-time adaptive sliding mode control.
In Proc. 31% IEEE Conf. On Decison and
Control, Tucson, AZ, ,1992, pp. 2387-2391.

[7] Furuta, K., VSS-type sdf-tuning control - B
equivalent control approach. In Proc. American
Control Conf., San Francisco. CA, 1993, pp.
980-984.

[8] C.E.N. Cowan, P.M. Grant, Adaptive Fitlers:
Prentice-Hall Signal Processing Series, 1985

[9] Bernard Mulgrew, Colin F. N. Cowan, Adaptive
filters and equalisers: Kluwer Academic
Publishers, 1984.

[10] S. Haykin, Adaptive filter theory. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[11] Slotine, JJ. E. and Li, W. Applied nonlinear
control, Prentice-Hall, Englewood Cliffs, NJ,
1991

[12] http://www.ert.rwth-
aachen.de/Presonen/balterse.html.




