
An Improved Nearest Neighbor Search

Algorithm Based on LAESA

Kazuaki Yamaguchi Yoichi Kondo
Faculty of Engineering

Kobe University
1-1 Rokkodai, Nada, Kobe, 657{8501

JAPAN
ky@eedept.kobe-u.ac.jp http://www.eedept.kobe-u.ac.jp/~ky/

Abstract: Nearest neighbor search is to �nd the nearest object to the query from a set S. Nearest

neighbor search is one of the important parts of pattern recognition and multimedia data manage-

ment. We introduce an improved algorithm based on the current fastest algorithm, LAESA, to

�nd nearest neighbors in general metric spaces. Our algorithm is faster than mvp-tree, the most

well-known method, and requires smaller storage than LAESA.

Key-Words: nearest neighbor, metric space, branch and bound, LAESA, mvp-tree, distance axiom

1 Introduction

NNS (Nearest Neighbor Search) is to �nd the

nearest object to the query q from a set of objects

S of n objects. NNS can be applied for pattern

recognition and multimedia data management.

NNS consists of following two procedures.

1. To construct an appropriate data structure

from an object set S and its distance func-

tion d(�; �).

2. To search the nearest object to the query

q from S as fast as possible.

We refer to the procedure 1 and procedure 2 as

precomputing and search, respectively.

We assume that the distance function d :

S2 7! R satis�es the distance axiom, where R

is the set of real numbers. Thus, any x; y; z in S

satisfy the following.

d(x; y) = 0 , x = y

d(x; y) = d(y; x)

d(x; y) + d(y; z) � d(x; z)

In many cases, objects in S are converted into

feature vectors during precomputing process, be-

cause vectors are much easier to deal with than

objects themselves. NNS algorithms to deal with

feature vector are SR-tree[4], Voronoi diagram[7]

and so on.

But there are some objects, for example,

chemical compounds, which are impossible to

be converted into feature vectors without los-

ing structural information. There exist several

NNS algorithms, which only use distance func-

tion. For example, AESA[9], LAESA[5], vp-

tree[10], mvp-tree[1], the algorithm in [8] and so

on. AESA is the fastest algorithm among the

NNS algorithm only using distance function, al-

though it requires quadratic storage size. So,

LAESA is the fastest algorithm among practi-

cal algorithm. We propose an eÆcient algorithm

based on LAESA.

In article [5], it is assumed that the compu-

tation time of distance function is very expen-

sive, and it is assumed that the search time can

be evaluated only with the number of distance

computation. This criterion is useful because it

is independent from the di�erence of the experi-

mental environment, and more detailed than the

O(�) evaluation. In this paper, we use this eval-

uating criterion.



2 Preliminaries

Here we briey introduce the relationship be-

tween NNS and branch and bound, and briey

show the idea of LAESA.

2.1 Branch and bound

Branch and bound is a generic algorithm to solve

optimization problems. The branch and bound

is described in the following.

� Partition an original minimization (max-

imization) problem into several smaller

minimization (maximization) subproblem.

� Calculate the lower (upper) bound of the

evaluate function of each subproblem.

� Solve each subproblem in the order of

smaller lower bound (bigger upper bound).

NNS can be thought as an optimization

problem to �nd the object sj , which satis-

�es d(q; sj) = mins2S d(q; s), from a set S =

fs1; s2; � � � ; sng. So, we can apply branch and

bound for NNS, and actually most NNS algo-

rithms use branch and bound implicitly.

A simple algorithm of calculating lower

bound is shown in [2]. The following inequality

is derived from the distance axiom.

d(q; s0) � jd(q; s)� d(s; s0)j (1)

for any s; s0 2 S

If we compute d(s1; s2), d(s1; s3), � � �, d(s1; sn)

before we receive q, we can immediately ob-

tain the lower bounds jd(q; s1) � d(s1; s2)j,

jd(q; s1) � d(s1; s3)j, � � �,jd(q; s1) � d(s1; sn)j for

d(q; s2),d(q; s3),� � �, d(q; sn) respectively, only by

calculating d(q; s1) when q is given.

Vp-tree and mvp-tree recursively use branch

and bound method. LAESA, which provides

more tight lower bound than these algorithms,

calculates less number of distances, even though

LAESA is non-recursive.

2.2 LAESA

In this section we briey introduce the method

LAESA.

2.2.1 Precomputing

The precomputing process is as follows :

1. Choose a subset B with m elements from

S with a heuristic algorithm[5].

2. Calculate d(bi; sj) for all bi 2 B, sj 2 S.

The data structure of LAESA is the 2-

dimensional matrix to store d(bi; sj).

2.2.2 Search algorithm

The search algorithm is as follows :

1. Calculate d(q; b1),d(q; b2),� � �,d(q; bm).

2. Calculate

A(sj) = max
1�i�m

jd(q; bi)� d(bi; sj)j

for each sj 2 S �B.

3. Calculates d(q; sj) for each sj 2 S � B, in

increasing order of A(sj). Stop the calcu-

lation if an element whose distance to q is

smaller than the smallest lower bound of

the rest, is found.

2.2.3 Features

The number of distance computation of LAESA

is smaller than other methods. According to the

article [5] and other articles, the number of dis-

tance computations of LAESA is asymptotically

constant, no matter how big n is. We veri�ed

the fact with some experiments. The numbers

of distance computations asymptotically become

13, 90 and 614 if we use Euclidean metric space

with the dimension of 5, 10 and 15 respectively.

But to obtain the result above, the number

m must be considerably bigger, whereas LAESA

requires to store a 2-dimensional matrix of mn

elements. For example, the best number of m

is 48 if S is the set of points in 10-dimensional

Euclidean metric space [5]. And LAESA also

requires to calculates the lower bound for all el-

ements in S � B, whose computation requires

O(mn) time.



3 Our algorithm

We present an improved algorithm based on

LAESA. Our algorithm requires smaller storage

for the data structure than LAESA. Our algo-

rithm reduces the computation time for comput-

ing the lower bounds.

Our method uses an integral parameter c (�

2). Theoretically c can be any integer, but the

appropriate number for c is between 28 and 210.

Our method also uses a real number �, a function

f(�; �) and m-dimensional vector �(sj) de�ned in

the following.

� = max
1�i�m; 1�j�n

d(bi; sj)=c (2)

f(bi; x) = dd(bi; x)=�e (3)

�(sj) = (f(b1; sj); f(b2; sj); � � � ;

f(bm; sj)) (4)

From the equation (2), 0 � f(bi; sj) < c for

any i; j is easily obtained. We sometimes refer

to f(bi; sj) as f(i; j) in the following. De�ne

d1(x; y) =
m

max
i=1

jxi � yij (5)

for m-dimensional vectors x = (x1; x2; � � � ; xm)

and y = (y1; y2; � � � ; ym). d1(x; y) is called

`1 distance. We refer to d1(�(bi); �(sj)) and

d1(�(q); �(sj)) as d1(bi; sj) and d1(q; sj) re-

spectively.

Theorem 1

�(d1(q; sj)� 1) � A(sj) � �(d1(q; sj) + 1)

for any sj 2 S.

Proof

The two inequalities can be proved almost

the same way. So we show only the proof of

�(d1(q; sj)�1) � A(sj). From the equation (3),

�f(bi; x) � d(bi; x) < �(f(bi; x) + 1)

for any x. Thus,

jd(q; bi)� d(bi; sj)j

= maxfd(q; bi)� d(bi; sj); d(bi; sj)� d(q; bi)g

� maxf�f(q; bi)� �(f(bi; sj) + 1);

�f(bi; sj)� �(f(q; bi) + 1)g

= �maxff(q; bi)� (f(bi; sj) + 1);

f(bi; sj)� (f(q; bi) + 1)g

= �(jf(q; bi)� f(bi; sj)j � 1)

A(sj) =
m

max
i=1

jd(q; bi)� d(bi; sj)j

�
m

max
i=1

�(jf(q; bi)� f(bi; sj)j � 1)

= �((
m

max
i=1

jf(q; bi)� f(bi; sj)j)� 1)

= �(d1(�(q); �(sj))� 1)

2

3.1 Data structure

In most practical cases, the distance is real num-

ber, whose size is usually 4 or 8 bytes. So,

LAESA requires storage 4 or 8 bytes per object.

But our algorithm stores d(bi; sj), whose size is

dlog
2
ce. Our algorithm with c = 28 requires only

1 byte per object.

Data structures for high dimensional vectors,

k-d tree or MD-tree [6], can deal with �(si).

We propose to store �(sj) in such a data struc-

ture, whereas LAESA stores d(bi; sj) just in a

2-dimensional array. The eÆciency of the di�er-

ence can be seen later.

3.2 Search algorithm

The search algorithm of our method is similar to

LAESA.

1. Calculate d(q; b1),d(q; b2),� � �,d(q; bm).

Then we immediately obtain �(q).

2. Calculate d1(q; sj) for each element sj 2

S �B.

3. Calculates d(q; sj) for each sj 2 S � B, in

increasing order of A(sj). Stop the calcu-

lation if an element whose distance to q is

smaller than the smallest lower bound of

the rest, is found.



If the distance between the query q and sj is

smaller than r in `1 metric space, sj is in the

hyper-cube of size (2�)m. So, to �nd sj in in-

creasing order of d1(q; sj), which is equivalent

to NNS in `1 metric space, is eÆciently calcu-

lated with k-d tree or MD tree.

The only demerit of our algorithm could be

the looseness of the lower bound. Theorem 1

shows that the lower bound of our method is

always looser than the lower bound of LAESA.

But it also shows that the di�erence of the lower

bounds of our method and LAESA is smaller

than 2�. From that fact we can obtain

�(d1(q; sj)� 1)=A(sj) > 0:99 (6)

if c = 28, for example. We show the experi-

mental result to make sure the di�erence of the

performances is very slight.

3.3 Experimental Results

In the experiments, we used the points in multi-

dimensional Euclidean space.

Figure 1 shows the number of distance com-

putation with n = 10000. The constant num-

bers, 13, 90 and 614 in Figure 1 are the numbers

of distance computation by LAESA of dimension

5, 10 and 15 respectively. It shows that the num-

bers of distance computation of our algorithm

converge to the numbers of LAESA if c ! 1,

and that the performance of our algorithm is al-

most equivalent to LAESA when c � 28. We had

another experiments with di�erent n. The result

was almost same even though n was changed.

The results show that the number of distance

computation of our method is almost same as

the number of distance computation of LAESA

if c � 28.

4 Conclusion

Our method, based on LAESA, can reduce the

size of data structure, and requires almost same

number of distance computation as LAESA.

Our method allows to use multidimensional data

structure, so that we can reduce the number of

computation of the lower bounds. In the future

we would like to make sure if our method is really

eÆcient in practical cases.

] distance computation

parameter c

10

100

1000

10000

1 10 100 1000 10000

dim=5
dim=10
dim=15

13
90
614

Figure 1: Comparison with LAESA



References

[1] T.Bozkaya, M.Ozsoyoglu, \Distance-based

indexing for high-dimensional metric

spaces," Proceedings of the 1997 ACM

SIGMOD, 1997, pp.357{368.

[2] C.D.Feustel, L.G.Shapiro, \The nearest

neighbor problem in an abstract metric

space," Pattern Recognition Letters, vol.1,

no.2, 1982, pp.125{128.

[3] A.K.Jain, R.Dubes, Algorithms for cluster-

ing data Prentice-Hall, 1988.

[4] Norio Katayama, Shin'ichi Satoh, \The

SR-tree: An Index Structure for High-

Dimensional Nearest Neighbor Queries,"

Proceedings of the 1997 ACM SIGMOD,

1997, pp.369{380.

[5] M.L.Mico, J.Oncina, E.Vidal, \A new ver-

sion of the nearest-neighbour approximat-

ing and eliminating search algorithm (AESA)

with linear preprocessing time and memory

requirements," Pattern Recognition Letters,

vol.15, no.1, 1994, pp.9{17.

[6] Y.Nakamura, S.Abe, Y.Ohsawa, M.Sakauchi,

\Md-Tree: a Balanced Hierarchical Data

Structure for Multi-Dimensional Data with

Highly EÆcient Dynamic Characteristics,"

Ninth International Conference on Pattern

Recognition, 1988, pp.375{378.

[7] V.Ramasubramanian, K.K.Paliwal,

\Voronoi projection-based fast nearest-

neighbor search algorithms: box-search and

mapping table-based search techniques,"

Digital Signal Processing, vol.7, no.4, 1997,

pp.260{277.

[8] D.Shasha, T.Wang, \New techniques for

best-match retrieval," ACM Trans. Inf. Sys-

tems, vol.8, no.2, 1990, pp.140{158.

[9] E.Vidal, \An algorithm for �nding nearest

neighbours in (approximately) constant aver-

age time," Pattern Recognition Letters, vol.4,

no.3, 1986, pp.145{157.

[10] P.N.Yianilos, \Data structures and algo-

rithms for nearest neighbor search in gen-

eral metric spaces," Proceedings of the 1993

ACM-SIAM Symposium on Discrete Algo-

rithms, 1993, pp.311{321.


