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Abstract: - The purpose of this study is to investigate the independent set of de Bruijn graphs. We propose
an algorithm to obtain a cover of the de Bruijn graph UB(d, D). For the investigation, we can use
some properties concerning line digraph operation and matching, and cycle decomposition of de Bruijn

digraphs.
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1 Introduction

We construct an independent set of the de Bruijn
graph using cycle decomposition and line digraph
operation. In this paper, de Bruijn graphs are
underlying graphs of de Bruijn digraphs.

V(G) and A(G) are the vertex set and the arc
set of a digraph G(V, A), respectively. The arcs
are directed edges. There is an arc from x to y
if (z,y) € A(G). The vertex z is called a pre-
decessor of y and y is called a successor of x.
The pair of arcs (z,y) and (y,z) is called sym-
metric arcs. The vertices x and y are adjacent if
(z,y) € A(G) or (y,z) € A(G). The sets O(u) =
{v|[{u,v) € A(G)} and I(u) = {v|(v,u) € A(G)}
are called the outset and the inset of the vertex
u, respectively.

For a digraph G with arcs, the line digraph L(G)
is the graph whose vertices correspond to the arcs
of G, and for two vertices (ui,us), (v1,v2) €
V(L(G)), (u1,u2) is adjacent to (vi,ve) if and
only if uo = v1.

V(@) and E(QG) are the vertex set and the edge
set of a graph G(V, A), respectively. The vertices
z and y are adjacent if (z,y) € E(G).

The underlying graph U(G) of a digraph G is
the graph obtained by replacing each arc (u,v) or
symmetric arcs (u,v), (v,u) by an edge (u,v)

and omitting loops.
The set S C V(G) is independent if no two ver-

tices in S are adjacent in the graph G. The inde-
pendent set S C V(G) is a mazimal independent
set if there is a vertex v € S such that u is ad-
jacent to v, for any vertex u € V(G)\S. The
maximal independent set is also called a cover. If
a vertex set S is a cover, then S is also an in-
dependent dominating set[1]. The independence
number Bo(G) is the maximum cardinality of an
independent set in a graph G. A maximum inde-
pendent set is called a (y-set.

The arcs (u1,u2) and (vi,ve) are adjacent if
u; = v; for some integers i and j (1 < 4,5 < 2).
A set T C A(G) is arc independent, also called a
matching, if no two arcs in T' are adjacent. The
matching number $1(G) is the maximum cardi-
nality of an independent arc set in G. A maxi-
mum independent arc set is called a [;-set.

The de Bruijn digraphs have several definitions.
The definitions by alphabet, line digraph and
modular arithmetic are well-known[2]. Now we
state the definitions by alphabet and line di-
graph.  Especially, the definition by line di-
graph is a key to construct independent sets
of de Bruijn graphs in this paper. The defi-
nition of the de Bruijn digraph by alphabet is
as follows: V(B(d,D)) = ZP, ZP is the set



of d-ary D dimensional vectors. A(B(d,D)) =
{<(’U0, Vly ey ’UD_1), (’Ul, V2,...UD—1, ZL‘)>|ZL‘ € Zd}-
We denote an edge by (vg,v1,...,vp_1,z) in-
Stead.0f<(U0,U1,...,Ul)_l),(Ul,UQ,...UI)_l,x)> €
A(B(d,D)). The definition of the de Bruijn di-
graph by line digraph is as follows: The de Bruijn
digraph B(d,1) is the complete symmetric di-
graph with loops K. B(d, D) is L(B(d, D — 1)).
The de Bruijn digraph B(2,3) is shown in Fig.
1. We can obtain the de Bruijn graph UB(d, D)
from de Bruijn digraph B(d, D) by altering arcs
to edges and symmetric arcs to one edge and
omitting loops, i.e. UB(d, D) is the underlying
graph of de Bruijn digraph B(d, D). Fig. 2 shows
the de Bruijn digraph B(2,4) and de Bruijn graph
UB(2,4)

Fig. 1: de Bruijn digraph B(2, 3).

There are several studies for UB(2, D) concern-
ing independence and related topics. Livingston
and Stout [6] studied the perfect dominating sets
for binary de Bruijn digraphs B(2, D) and binary
de Bruijn graphs UB(2, D). They showed that
UB(2,D) has a perfect dominating set for D =
1,2 but has no perfect dominating set for D =
3,4,5. Bryant and Fredricksen[3] demonstrated
the bounds for the size of a cover of UB(2, D). Lu
et al.[7] investigated (d,2)-dominating number of
UB(2,D). Above studies deal with only binary
de Bruijn graphs. The de Bruijn digraph B(d, D)
is d-regular, that is, |O(u)| = |I(u)| = d for any
u € V(B(d, D)), but the de Bruijn graph is not
a regular graph (see Fig. 2). This fact makes
the study for de Bruijn graph difficult. We deal
with the d-ary de Bruijn graph UB(d, D). Since
B(d, D) is d-regular,the vertices without the ver-
tices that have either self-loop or symmetric arcs
have 2d neighbors in UB(d, D) where D > 3.

The vertices that have self-loop in B(d, D) have
2d —2 neighbors in UB(d, D) where D > 3. Thus
we obtain the following proposition for lower and
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Fig. 2: de Bruijn digraph B(2,4) = L(B(2,3))
and de Bruijn graph UB(2,4).

upper bounds for Sy.

Proposition 1.1 For UB(d, D) where D > 3, it
follows that
arP abP

< < .
a1 =P S50

The directed cycle dC,, has n vertices, |O(u)| =
|I(u)] = 1 for all vertex u and is a simple con-
nected digraph with |V(C,,)| = |E(C,)| that can
be drawn so that all of its vertices and arcs lie
on a circle. It is easy to see that L(dC),) is iso-
morphic to dC;,. The cycle C,, is the underlying
graph of dC,,.

A sequence Hi,Ho,...,H, of graphs(digraphs)
whose union is the graph(digraph) G is called a
decomposition of G if each edge of G is in H; for
exactly one 7 (1 < ¢ < n), and in this case we

n
write G = Hi @ Hy & - - & Hy, = P H;. If each

H; (1 <i<n)is a cycle(directed cycle), we call
it a cycle decomposition of G. If in addition the
subgraphs(subdigraphs) H; are isomorphic to H,
then we write G = nH, say that H isomorphi-
cally decomposes G, and write H||G.



We call a subgraph(subdigraph) F' of G a factor

of G if it contains all vertices of G. A sequence

F,F,,...,F, offactors with G = F1 ®Fo®--- P
n

F, = @ F; is called a factorization of G.

i=1
Let a and b be integers. Then the greatest com-
mon divisor of @ and b is written by ged(a, b).

2 Cycle decomposition of de
Bruijn digraphs

We introduce a function f, from ZP into Z,.
For f = (fla f27 f37"'7 fDa fl) € ZdD+17
a = (a1, as, as, ..., ap) € ZP and any inte-
ger o; between 0 and d — 1, (0 < 7 < d — 1),
f,(a) is defined as follows:

fo(a)=

(oo if fia1 + foas +---+ fpap+ f' =0
(mod d)

o1 iff1a1+f2a2+---+fDaD+f’E1
(mod d)

{ o2 if fiaq + foas + -+ fpap + f' =2
(mod d)

oq—1 if fia1 + foag + -+ fpap + f'
{ =d—1 (mod d)

where ¢ is a mapping on Z; and we could write
o out by showing what it does to every element,
eg,o0:0—o0p,1 —o01,...,d—1— 04_1.
But this notation is cumbersome. Our short cut
might be to write o out as

0 1 2 d—1

7
op 01 02 ... Od—1

or more simply [0¢ 01 02...04-1] where o; is the
image of 4 under o. If 0; # 0}, for any 1,7, ¢ # j,
then o is a permutation on Z;. When o is a
permutation on Z;, we represent o by a product
of cyclic permutations such as (o3, ok, -..0k,_,)-
Next, we construct a mapping ¢ fo For f =
(f1, fos fay ooy o f'), 0 =00 01 02...04—1]
and a = (a1, ag, as, ..., ap), qﬁf,a(a,) is defined
as follows:

» @p, fo'(a‘))'

Lemma 2.1 The mapping ¢fa is a bijection

on ZdD7 fOT f = (f1> f?a f37 LR fD7 fl)7
ged(f1,d) =1 and a bijection o on Zj.

qﬁf’g(a) = (ag, as, ...

PROOF We can only show that the map-
ping ¢f,ais an injection on Zf. Let a =
(al, agz, a3, ..., aD) and b = (bl, bg, b3,..., bD)
in ZP, and assume that ¢f,g(a) = ¢f,g(b)- Then
a; =b;, (2 <i<D)and f,(a) = f,(b). Since
o is a bijection, we obtain fia; + feas + --- +
fpap + f' = fibi+ foba+ -+ fpbp + f'. Hence
fiar = fiby. Since ged(f1,d) = 1, we obtain
a1 = b;. |

We construct a mapping ¢g  from zZP to
ZdD+1- For f = (f17 f27 f37 ) fD7 f,)a
fi # 0, 0 = [og 01 09...04 — 1] and @ =
(a1, a9, as, ..., ap), Cf.o is defined as follows:
<pf70(a) = (a, f,(a)). Let S be a subset of Z !
obtained by ¢ fo Then we can identify S with a
subset of A(B(d,D)). If (a, f,(a)) € S then a is
adjacent to ¢ f’a(a). Hence S induces a subgraph
of B(d, D). So we call S an arc induced subdigraph
by Cfo and ¢ f o an arc induced mapping, and S
is denoted by C £ If ¢ fo is an injection, then
nya is a factor of B(d,D) and components in
o f.o are directed cycles.

Lemma 2.2 Let f = (f17 f27 f37 tey fD7 fl)7
ged(fi,d) = 1 and o a bijection on Zg. Then
for any de Bruijn digraph B(d, D), Cfo is an
arc induced mapping and Cf,a 18 constituted of
directed cycles.

PROOF It is easy to see that Pf.o is an arc
induced mapping, from Lemma 2.1 and definition

Of(Pfyg—' Sincef = (fla f27 f37 SRR fDa fl)>f1 7é

0 and o is a bijection on Z, qu - 18 a bijection on

Zf. Hence Pf .o is an injection from ZdD to Zf“.
Thus C fo is constituted of directed cycles. H

We consider two special cases such that B(d, D)
is factorized by arc induced subdigraphs.

Theorem 2.3 Let f = (f1, f2, f3,---»fDy ['),
ged(f1,d) =1 and 0 = (09 01 02...04-1) be a
cyclic permutation of length d and Cf,a an arc
induced subdigraph by Pfo

Then Cg ,®Cf 2 @---©Cf 0= B(d, D) and
Cf,ai (1 < i <d) is constituted of directed cycles.

PROOF From Lemma 2.2, for an integer i be-
tween 1 and d, C foi is constructed by directed

cycles and a factor of B(d, D), where Cf bl =



Of,a' Furthermore |E(Cf,ai)| =dP. Let i, j
be distinct integers between 1 and d. We show
E(Cf,oi) N E(nyaj) = (. Suppose there is
an arc that is in E(Cf,ai) N E(nyaj). Then
there is a vector @ = (a1, a2, a3, ..., ap)
such that P f i (a) = wf,aj(a). Thus we obtain
Dt i (a) = DF i (a). Hence this contradicts to a
cyclic permutation o of length d. [ |
Theorem 2.4 Let f; = (f1, f2, f3, --., D, 1),
ged(fi,d) =1, (0<i<d—1), o a bijection on
Zq and Cfi,ff an arc induced subdigraph by CFf.c
Then Cfo;ff S Cfl,cf D---D Cfd-u" = B(d, D),
and Cf-,a (1 < i <) is constituted of directed
cycles. ' [ |

We call a factor F' of G a cycle component factor
of G, if all components of F' are cycles(directed
cycles). We consider three special cases with re-
spect to f and o.

Theorem 2.5 Let f =(1, 0,0, ..., 0,0) € ZP
and o — 01 2 3 d—1 -

01 2 3 d—1
Then Cf,a is a factor of B(d, D) and the size of
component in Cf,o' s a divisor of D. [ |

In Fig. 3, bold and dashed arcs are {a, f,) where
£=1(1,0,0,0,0), 0 = [0 1] and a € V(B(2,4)).

Fig. 3: Cp . in B(2,4) where f = (1,0,0,0,0)
and o = [0 1].

Theorem 2.6 Let i and j be any integers. Let
f=011...14) €2z and
o 1 ... k
JJ-1 J—k

d—1
j=(d-1) |’

where j—k (1 < k < d—1) is taken under modulus
d. Then Cf , i a factor of B(d, D) and the size
of component in Cf » s a divisor of D + 1.

PROOF Cf

» 18 a cycle component factor of
B(d, D) from Lemma 2.2. We can only consider

the following case : f = (111 ... 10) € Z2"

and

Jo 1 .k d—1
Joi-1 =k . j—(d-1)

, where j — k (1 < k < d —1) is taken under
modulus d. We show fa(qﬁfa(a)) = a for any
ap} € ZP. From the defini-
apf,(a)). From the

a:{a1 a2 az ...

tiOIl, (]Sfa(a) = (a2 az ...
definitions of f and o,

fola)=j—(a1+az+---+ap) (modd). (1)
)

Then f,(¢5 ,(a)) = j—(aztas+:--+ap+f,(a
(mod d). From (1), we obtain fa(qﬁf,a(a)) =am
|

Theorem 2.7 Let i be any integer. Let f =

(101010...10101) € Z3°*" and

o 1 ... kE ... d-1
o= i -1 ik d-1 ,where
j—k (1 <k < d-—1) is taken under modu-
lus d. Then Cf,a s a cycle component factor of
B(d,2D) and the size of a component in Of,a 18
a divisor of 2D + 2.

PROOF We can show this statement by similar
way to the proof of Theorem 2.6. [ |

3 Finding independent set on
UB(d, D)

The line graph L(G) of a graph G is the graph
whose vertices can be put in one-to-one corre-
spondence with the edges of GG in such a way that
two vertices of L(G) are adjacent if and only if
the corresponding edges of G are adjacent. It is
well known that 51(G) = Bo(L(G)) for any undi-
rected graph with no loops and no multiple edges
[4]. If G is a multigraph having loops and multi-
ple edges, then 81(G) < Bo(L(G)). Similarly, for
a digraph G with no loops and no multiple arcs,
B1(G) < Bo(U(L(G))). Furthermore for a multi-
digraph G having loops and multiple edges, we
could say that 5, (G) < Bo(U(L(G))). Now we in-
troduce the notion of weak arc independence. A



set T € A(G) is a weak arc independent set of G,
if no two distinct arcs in T are adjacent. If T is a
weakly arc independent set, then 7' could contain
loops. The weak matching number wp (G) of G is
the maximum cardinality of weakly independent
arc set in G. Then for a digraph and multidi-
graph G, we can see that 81(G) < wpi(G) and
wph1(G) < Bo(U(L(G))). Furthermore a weakly
arc independent set of digraph G corresponds to
the independent set of U(L(G)). Thus maxi-
mal weakly arc independent set T' for a digraph
and multidigraph has one to one correspondence
to the cover of U(L(G)). Therefore we obtain
wphi(B(d,D — 1)) < po(UB(d,D)) for the de
Bruijn graph UB(d, D) (2 < D) and the maxi-
mal weakly arc independent set for B(d,D — 1)
corresponds to the maximal independent set of
UB(d, D).

A colouring of a graph(digraph) G is an assign-
ment of colours to the vertices of GG, one colour
to each vertex, so that adjacent vertices are as-
signed different colours. A colouring in which &
colours are used is a k-colouring. The minimum
integer k for which a graph G is k- colourable
is called the chromatic number of G, and is de-
noted by x(G). An assignment of colours to the
edges(arcs) of a nonempty graph(digraph) G so
that adjacent edges(arcs) are coloured differently
is an edge colouring(arc colouring) of G (a k-
edge colouring(k-arc colouring) if k colours are
used). The minimum k for which a graph G is k-
edge(k-arc) colourable is its chromatic index and
is denoted by x1(G). It is clear that x1(G) =
X(L(G)). For an odd cycle C, x1(C) = 3, and if
C has the even length, then x;(C) = 2.

We construct cover of UB(d, D) using the fol-
lowing algorithm. We can see that this algorithm
takes linear time for the number of vertices.

Algorithm 1

input de Bruijn graph UB(d, D),
i.e. two integer d and D
output an independent set of UB(d, D)

k,t : integers

n: number of component in cycle
component factor C fo
the arc set of component C}, of C fo
number of arcs in the component

EC;

ag(t) the arc in the component EC},

Agr : the arc set whose arc is
coloured red

Ap : the arc set whose arc is
coloured blue

Ay : the arc set whose arc is
coloured yellow

Ve @ the vertex set that corresponds
edge set of nya of UB(d, D)

Vr : the vertex set that corresponds
Ag of UB(d, D)

ViB(4,D) the vertex set of UB(d, D)

generate a cycle component factor C fo of
B(d,D — 1) using d and D;
do{
k=k+1;
t:=0;

if(k(m) :=1){
t:=t+1;
colour the arc ay ;) coloured red;
A = Ag U{aywy };
}
else if(k(m) is even){
do{
t:=1t+4+1;
if(¢ is odd){
colour ayy) € ECy red;
Ar = ArU{aqrw };
}
else{
colour ay(y) € EC) blue;
Ap = ApU{ayp};
};
}while(t < k(m));
}
else{
do{
if(t = 0){
colour ayy) € EC) yellow;
Ay = Ay U{ayu)};
}
else if(¢ is odd){
colour ay(y) € ECy red;
Ag = ArU{arw};
}
else{
colour ay(;) € EC) blue;
Ap = Ap U{ayu};



};
t=1t+1;
twhile(t < k(m));
};
}while(k < n);
return (Vypa,p) \ (VeUI(VR)UO(VR)))UVE;

Theorem 3.1 We can obtain a cover of
UB(d, D) by using by Algorithm 1. [

we can obtain a cover whose cardinality is 3 for
B(2,3). Furthermore this cover is a maximum in-
dependent set of B(2,3). We would like to obtain
a cover that contains as many vertices as possi-
ble. Then we can obtain covers for special cases
using Algorithm 1 and applying Theorem 2.5, 2.6
and 2.7.

Corollary 3.2 Let f € Zﬁn and o that is a bijec-
tion on Z4 be the similar one to those in Theorem
3. We can obtain a cover of B(d,2"+1) by Algo-

" +d

rithm 1 and this cover contains at least

vertices. [ |

Corollary 3.3 Let f € Z2 ' and o that is a
bijection on Zg be the same one in Theorem 2.6.
We can obtain a cover of B(d,2") by Algorithm

d¥" 1 4+d
1 and this cover contains at least % ver-

tices. [ ]

Corollary 3.4 Let f € Zﬁn_Q and o that is a
bijection on Z; be the same one in Theorem 2.7.
We can obtain a cover of B(d,2" — 1) by Algo-

d?"—24d
rithm 1 and this cover contains at least @ ta
vertices. [ ]
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