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Abstract: - This paper presents a controller synthesis method for the discrete time fuzzy systems based on a 
piecewise Lyapunov function. The basic idea of the proposed approach is to construct controllers for the fuzzy 
systems in such a way that a piecewise Lyapunov function can be used to establish the global stability of the 
resulting closed loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set 
of Linear Matrix Inequalities (LMI) that is numerically feasible with commercially available software. Two 
examples are given to demonstrate the advantage and the applicability of the proposed method. 
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1   Introduction 
Fuzzy logical control (FLC) has recently proved to 
be a successful control approach for certain complex 
nonlinear systems, see [1–5] for example. However, 
conventional fuzzy control system [1] has proved 
extremely difficult to be analyzed and designed. The 
reason for this is believed to be due to the fact that 
no mathematical model is available from the 
conventional fuzzy system. 
     Recently, there have appeared a number of 
stability analysis and controller synthesis results in 
fuzzy control literature, where the Takagi-Sugeno’s 
fuzzy models [6] are used, see references in [7-14]. 
The stability of the overall fuzzy system is 
determined by checking a Lyapunov function or a 
set of Linear Matrix Inequalities (LMI). It is 
required that a common positive definite matrix P 
can be found to satisfy the Lyapunov function or the 
set of LMIs. However, this is a difficult problem to 
solve since such a matrix might not exist in many 
cases, especially for highly nonlinear complex 
systems. Most recently, a stability result of fuzzy 
systems using a piecewise quadratic Lyapunov 
function has been reported [15]. It is also 
demonstrated in the paper that the piecewise 
Lyapunov function is a much richer class of 
Lyapunov function candidates than the common 
Lyapunov function candidates and thus it is able to 

deal with a larger class of fuzzy systems. Further 
references to piecewise Lyapunov functions can be 
found in [17-20]. 
     During the last few years, we have proposed a 
number of new methods for the systematic analysis 
and design of fuzzy logic controllers based on a so-
called fuzzy dynamic model which is similar to the 
Takagi-Sugeno’s model [7-11]. These methods 
include designs based on a nominal model, a 
common Lyapunov function and a piecewise 
Lyapunov function. However, for the methods based 
on the piecewise Lyapunov function, certain 
restrictive boundary conditions have to be imposed.  
     Motivated from the results of continuous time 
piecewise Lyapunov functions in [15], we developed 
a new stability theorem for discrete time fuzzy 
systems based on a piecewise Lyapunov function in 
[16]. In this paper, we extend the same idea to a new 
controller synthesis method for same class of fuzzy 
systems. It should be noted that with this kind of 
piecewise Lyapunov function, the restrictive 
boundary condition existing in our previous analysis 
can be removed and global stability of the closed 
loop fuzzy control system can be easily established. 
Moreover, the controller synthesis procedure is to 
solve a set of LMIs that is numerically feasible with 
commercially available software. 



     The rest of the paper is organized as follows. 
Section 2 introduces the discrete time fuzzy system. 
Section 3 defines the piecewise Lyapunov function 
candidate, introduces the stability theorem and then 
presents a new controller synthesis method for such 
systems. Two examples are given in same section to 
demonstrate the advantage and the applicability of 
the proposed approach. Finally, conclusions are 
given in Section 4. 
 
 

2   Problem Formulation 
The fuzzy dynamic model proposed in [7-11] can be 
used to represent a complex discrete-time system 
with both fuzzy inference rules and local analytic 
linear models, 

:lR  IF 1x  is lF1  AND ... nx  is l
nF  

THEN )()()1( tuBtxAtx ll +=+ , 

   ml ,...,2,1=         (1) 

where lR  denotes the l-th fuzzy inference rule, m 
the number of inference rules, l

jF  (j=1,2,...,n) are 

fuzzy sets, x(t) nℜ∈  the system state variables, 
ptu ℜ∈)(  the system input variables, and ),( ll BA  is 

the l-th local model of the fuzzy system (1). 

Assumption 2.1: For the controller synthesis in the 
following sections it is assumed that the fuzzy 
system (1) is locally controllable, that is, all the pairs 
( )ll BA , , ml ,...,2,1= , are controllable. 

Let ))(( txlµ  be the normalized membership 

function of the inferred fuzzy set lF  where 
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1))((0 ≤≤ txlµ  and 1
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l
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By using a center-average defuzzifer, product 
inference and singleton fuzzifier [7-11], the discrete 
time fuzzy system (1) can be expressed by the 
following global model 
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      (3) 
Define L as the set of subspace indexes. Since the 
rules of the fuzzy system (1) induce a polyhedral 

partition { } n
LiiS ℜ⊆∈  of the state space, the fuzzy 

system (3) can be viewed as a number of subsystems 
in a set of individual subspaces, which consist of 
crisp (operating), and fuzzy (interpolation) 
subspaces. 

     The crisp subspace is defined as the subspace 
where 1)( =xlµ  for some l, and all other 
membership functions evaluate to zero. The system 
dynamics of crisp subspace is given by l-th local 
model of the fuzzy system (1). On the other hand, 
the fuzzy subspace is defined as the subspace where 

1)(0 << xlµ  and the system dynamics is given by a 
convex combination of several linear systems. 
     In the extreme case where all the subspaces of a 
fuzzy system are crisp, that is, 1))(( =txlµ  for some 
l and all other membership functions are equal to 
zero, then fuzzy system (3) becomes a piecewise 
linear system, )()()1( tuBtxAtx ll +=+ . However, in 

many cases, the membership function, ))(( txlµ  for 
some l, could be between 0 and 1.  
     In our previous attempts [7-11], we treated the 
fuzzy dynamic systems in the fuzzy subspace in 
terms of uncertainties and used upper bound 
approximation of those uncertainties to perform 
stability analysis. However, in this paper, we will 
follow the idea of [15] to write the fuzzy system (3) 
in the fuzzy subspaces as a convex combination of 
linear systems 
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∈
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kkk tuBtxAtxtx µ , iStx ∈)(

      (4) 

with 1)(0 ≤≤ xkµ , ∑ ∈
=

)(
1)(

iKk k xµ . For each 

subspace iS , the set )(iK  contains the indexes for 
the system matrices used in the interpolation within 
that subspace. For crisp subspace )(iK  contains a 
single element. 

Assumption 2.2: We assume that given any initial 
condition 0)0( xx = , the global model (4) has a 
unique solution for all 0≥t .  

Assumption 2.3: We also assume that when the state 
of the system transits from the subspace iS  to jS  at 

the time t, the dynamics of the system is governed by 
the dynamics of the local model of iS  at that time.  

For future use, we also define a set Ω  that 
represents all possible transitions from one subspace 
to another, that is, 

},)1(,)(|,{: jiStxStxji ji ≠∈+∈=Ω  (5)  

Remark 2.1: Due to the discrete nature of the system, 
it is noted that Ω  as in (5) could include transitions 
occurred between non-adjacent subspaces in one 
step. 

Note that in comparison with (3), the fuzzy system 
(4) is described in each subspace.  



 
In this section, we will first present the stability 

development of our controller synthesis method. 

fuzzy system can be analysed by piecewise quadratic 

discrete time case. The general idea of our approach 

(4). Then we can use the piecewise Lyapunov 
function to check t
system. 
     Due to the fact that the state in discrete time 
fuzzy systems will most likely jump between 

-adjacent subspaces, the structural 
F’s in [15], cannot be 

haracterize the state transition from one 
subspace to another as dealt with in the case of 

may not be helpful to construct a piecewise 
Lyapunov function that is continuous across 

ete time fuzzy systems to 
analyse stability of the system as in [15] for the 

also be unnecessary to require the piecewise 
Lyapunov function to be continuous across 

ystems since 
the state of such systems may never pass through the 

 
     As for the Lyapunov function candidate, we 

 

xPtV i
t=)(  itx ∈)( , i  (6)

Then we are read
result of the paper [16]. 

Theorem 3.1 [16]: Consider the global discrete time 
fuzzy system (4) with 0≡u . If there exist 
symmetric matrices iP , jP , Lji ∈,  and the 

following LMIs are satisfied, 

iP<0 ,     Li ∈    (7) 

0<− iki
T
k PAPA , Li ∈ , )(iKk ∈  (8) 

0<− ikj
T
k PAPA , Lji ∩Ω∈, , )(iKk ∈  (9) 

then the discrete time fuzzy system is globally 
exponentially stable, that is, x(t) tends to the origin 
exponentially for every trajectory in the state space. 

Proof: See [16]. 

The above conditions are linear matrix inequalities 
in the variables ji PP , . A solution to those 

inequalities ensures V(t) defined in (6) to be a 
piecewise Lyapunov function for the system. The 
LMI (8) guarantees that the function decreases along 

all system trajectories within each subspace. The 
LMI (9) guarantees that the function is decreasing 
when the state transits from one subspace to another. 

Remark 3.1: For each fuzzy subspace, we are 
seeking for a “common” piecewise quadratic 
Lyapunov function which can satisfy all the partial 
influencing system state matrices, and which 
decrease in time within or between the subspace. 

Remark 3.2: Due to the discrete nature of the system, 
it is noted that transitions could occur between non-
adjacent subspaces in one step. Thus, every subspace 
pair, ( ji SS , ) as defined by (5), has to be computed 

in (9).  

Remark 3.3: It is noted that when the state of the 
system does transit across the boundaries, that is, 

ji SStx ∩∈)(  for some t, the result in Theorem 3.1 

still holds since the case can be covered by 
considering the transition from the subspace iS  to 

jS  at the time t or 1+t . 

Remark 3.4: Theorem 3.1 is only a sufficient 
condition for system stability. Thus, the discrete time 
fuzzy system may still be stable even if the 
piecewise Lyapunov function (6) can not be 
identified from the above inequalities. Shall 
Theorem 3.1 fail to generate solutions, one may 
refine the partition in order to increase the flexibility 
of the Lyapunov function candidate and try anew 
[15]. 

Remark 3.5: The stability test of the discrete time 
fuzzy system in (7)-(9) can be easily facilitated by a 
commercially available software package Matlab 
LMI toolbox [21-22]. 

     Now, we will address the controller synthesis 
problem for the discrete time fuzzy systems (1). The 
proposed state feedback controller synthesis is based 
on linear system(s) defined in each subspace. For the 
stabilization of the fuzzy system (1), we consider the 
following piecewise discrete time controller as 

)(ˆ)( txKtu i= ,  iStx ∈)( , Li ∈             (10) 
So the closed loop discrete time fuzzy control 
system is 

)())(()1(
)(

txAtxtx
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                           (11) 
where 

 ikkck KBAA ˆ+= , )(iKk ∈ , Li ∈           (12) 
 
Then we have the following results. 
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Theorem 3.2: The fuzzy control system (11) is 
globally exponentially stable to the origin, if there 
exist matrices iY , Li ∈ , symmetric matrices 

LjiRR ji ∈,,, , such that the following LMIs are 

satisfied, 

iR<0 ,  Li ∈              (13)
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   Lji ∩Ω∈, , )(iKk ∈ .(15) 
Moreover, the control law for each subspace is given 
by 

1ˆ −= iii RYK , Li ∈              (16) 

Proof: Based on the result in Theorem 3.1 and its 
proof, we learn that the fuzzy control system (11) is 
globally exponentially stable if there exist symmetric 
positive definite matrices iP , jP  satisfying the 

following inequalities,  

0<− icki
T
ck PAPA , Li ∈ , )(iKk ∈             (17) 

0<− ickj
T
ck PAPA , Lji ∩Ω∈, , )(iKk ∈ . (18) 

We will first show that the inequality (14) is 
equivalent to (17). Using Schur’s complement, (14) 
is equivalent to 

0<− iR ,   

0)()( 1 <+++− −
ikiki

t
ikiki YBRARYBRAR          (19) 

Since  iii RKY ˆ= , t
ii RR = , and ikkck KBAA ˆ+= , 

(19) becomes 

0)()( 1 <+− −
icki

t
icki RARRAR              (20) 

Multiply (20) with iP  both sides of each term, with 

the fact 1−= ii PR , we have 

0<− icki
T
ck PAPA . 

Thus, we have shown that the inequality (14) is 
equivalent to (17). Following the above procedure, it 
can also be shown that the inequality (15) is 
equivalent to (18). Therefore, it can be concluded 
that the closed loop fuzzy control system is globally 
exponentially stable and thus the proof is completed.
     ∇∇  
Example 1: Consider the discrete time fuzzy system 
that switches between 3 rules, 

:1R    IF 1x  is about negative 

          THEN   )()()1( 11 tuBtxAtx +=+  

:2R     IF  1x  is about zero 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 The membership functions for the fuzzy system as 
in Example 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Trajectory of closed loop fuzzy control system with 

different initial conditions, [ ]t33− , [ ]t33 , [ ]t33 −−  

and [ ]t33 − . 
 
           THEN  )()()1( 22 tuBtxAtx +=+  

:3R      IF  1x  is about positive 

           THEN  )()()1( 33 tuBtxAtx +=+  
where the membership function for “about 
negative”, “about zero”, and “about positive” is 
defined as in Fig.1. The system matrices are given 
by  
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It is noted that the open loop fuzzy system is 
unstable, from Theorem 3.1 and simulations, and 
that there is no solution to the common quadratic 
Lyapunov function approach. That is, if a common 
positive definite matrix P is used in Theorem 3.2, 
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then there is no solution to those LMIs. However, if 
using the piecewise Lyapunov function approach 
proposed in this paper, we can obtain the following 
feasible solutions to those 40 LMIs. 









−

−
=

3368.87838.0

7838.04534.3
1R , 








−

−
=

2240.53150.0

3150.04025.3
2R , 









=

3328.65148.1

5148.12335.6
3R , 








=

7505.48862.0

8862.03518.6
4R , 









=

7547.49519.0

9519.06188.7
5R , 

[ ]0108.13913.01 −=K ,  [ ]1431.03336.02 −=K , 

[ ]4744.06214.03 −−=K , [ ]3978.07713.04 −−=K , 

[ ]3710.00128.15 −−=K . 
It thus follows from Theorem 3.2 that the stability of 
the closed loop fuzzy control system is guaranteed. 
Simulation results of four different initial conditions 
are shown in Fig.2. which illustrate the stability of 
the system. 
     This example clearly demonstrates the advantage 
of the piecewise Lyapunov function approach to the 
common Lyapunov function approach. 
 
Example 2: We now apply the above synthesis 
technique to backing up control of a computer 
simulated truck trailer. We use the following truck-
trailer model formulated in [5]: 

( ) )(/~)(/~1)1( 11 tultvtxLtvtx ⋅⋅+⋅−=+

)(/~)()1( 122 txLtvtxtx ⋅⋅+=+  

[ ])(2/~)(sin~)()1( 1233 txLtvtxtvtxtx ⋅⋅+⋅⋅+=+ . 
     The following fuzzy system [5] is used to design 
a fuzzy controller: 

:1R  IF )()()( 12
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tv ⋅+= ⋅  is about zero 

 THEN )()()1( 11 tuBtxAtx +=+   
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tv ⋅+= ⋅  is about π  or -π  

 THEN )()()1( 22 tuBtxAtx +=+   
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8.2=l , 5.5=L , 0.1−=v , 0.2~ =t , π/01.0=d . 
     We use the trapezoidal membership functions as 
defined in Fig.3 for “about zero”, “about π ” and  

  
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Membership functions for fuzzy system as in 
Example 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Closed loop truck-trailer position response, with 

initial condition of [ ]t1075.05.0 −ππ . 

 
“about -π ”. 
     Using Theorem 3.2, we obtain the following 
feasible solutions, 
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


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
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
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−

−
==

4552.148193.20746.0

8193.27145.40803.6

0746.00803.67163.16

51 RR , 


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
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−
==

4628.148243.20946.0

8243.21152.34925.5
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0265.201990.48241.0
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8241.04607.51031.17

3R , 

[ ]5645.08490.29442.251 −== KK , 
 [ ]7045.05617.30813.342 −== KK , 
 [ ]5612.09476.31362.33 −=K . 
Thus the closed loop truck-trailer fuzzy control 
system is stable in Lyapunov sense. When the initial 

position of the truck-trailer is [ ]t104
3

2 −ππ , Fig.4 



shows the position response of the system. 
 
 

4   Conclusion 
In this paper, a new method is developed to 
synthesize controllers of discrete time fuzzy systems 
based on a piecewise Lyapunov function. It is shown 
that the controllers can be obtained by solving a set 
of LMIs. Two examples are also presented to 
demonstrate the advantage and applicability of the 
proposed approach.  
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