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Abstract: - This paper presents a stability analysis method for the discrete time fuzzy system based on a 
piecewise Lyapunov function. It is shown that the stability of the system can be established if a piecewise 
Lyapunov function can be constructed, and moreover, the function can be obtained by solving a set of Linear 
Matrix Inequalities (LMI) that is numerically feasible with commercially available software. 
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1   Introduction 
Fuzzy logical control (FLC) has recently proved to 
be a successful control approach for certain complex 
nonlinear systems, see [1–5] for example. However, 
conventional fuzzy control system [1] has proved 
extremely difficult to develop a general analysis and 
design theory. The reason for this is believed to be 
due to the fact that no mathematical model is 
available from the conventional fuzzy system.   
     Recently, there have appeared a number of 
stability analysis and controller design results in 
fuzzy control literature, where the Takagi-Sugeno’s 
fuzzy models are used, see references in [7-11]. The 
stability of the overall fuzzy system is determined 
by checking a Lyapunov function or a set of Linear 
Matrix Inequalities (LMI). It is required that a 
common positive definite matrix P can be found to 
satisfy the Lyapunov function or the set of LMIs. 
However, this is a difficult problem to solve since 
such a matrix might not exist in many cases, 
especially for highly nonlinear complex systems. 
Most recently, a stability result of fuzzy systems 
using a piecewise quadratic Lyapunov function has 
been reported [14]. It is also demonstrated in the 
paper that the piecewise Lyapunov function is a 
much richer class of Lyapunov function candidates 
than the common Lyapunov function candidates and 
thus it is able to deal with a larger class of fuzzy 
systems. Further references to piecewise Lyapunov 
functions can be found in [15-18]. 

     During the last few years, we have proposed a 
number of new methods for the systematic analysis 
and design of fuzzy logic controllers based on a so-
called fuzzy dynamic model which is similar to the 
Takagi-Sugeno’s model [7-11]. These methods 
include designs based on a nominal model, a 
common Lyapunov function and a piecewise 
Lyapunov function. However, for the methods based 
on the piecewise Lyapunov function, certain 
restrictive boundary conditions have to be imposed.  
     Motivated from the results of continuous time 
piecewise Lyapunov functions in [14], we develop a 
new stability theorem for discrete time fuzzy 
systems based on a piecewise Lyapunov function in 
this paper. This function is guaranteed to be 
decreasing when the state of the system stays within 
the subspace or jumps from one subspace to another. 
It should be noted that with this kind of piecewise 
Lyapunov function, the restrictive boundary 
condition existing in our previous analysis can be 
removed and global stability of the system can be 
easily established. Moreover, the stability checking 
procedure is to solve a set of LMIs that is 
numerically feasible with commercially available 
software. 
     The rest of the paper is organized as follows. 
Section 2 introduces the discrete time fuzzy system. 
Section 3 defines the piecewise Lyapunov function 
candidate and the S-procedure technique. Then a 
new stability theorem for discrete time fuzzy 
systems is presented and an example is given to 



illustrate the theorem. Finally, conclusions are given 
in Section 4. 
 
 

2   Problem Formulation 
The fuzzy dynamic model proposed in [7-11] can be 
used to represent a complex discrete-time system 
with both fuzzy inference rules and local analytic 
linear models, 

:lR  IF 1x  is lF1  AND ... nx  is l
nF                                     

THEN  ll atxAtx +=+ )()1( ,  

 ml ,...,2,1=             (1) 

where lR  denotes the l-th fuzzy inference rule, m 

the number of inference rules, l
jF  (j=1,2,...,n) are 

fuzzy sets, x(t) nℜ∈  the system state variables, 
),( ll aA  is the l-th local model of the fuzzy system 

(1), and la  is the offset. 
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By using a center-average defuzzifer, product 
inference and singleton fuzzifier [7-11], the discrete 
time fuzzy system (1) can be expressed by the 
following global model, 
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Remark 2.1: It is noted that the system models 
defined in (1) or (3) are in fact affine systems instead 
of linear systems. They include an additional offset 
term. These models have much improved function 
approximation capabilities [7,12]. 

     Define L as the set of subspace indexes, LL ⊆0  
as the set of indexes for subspaces that contain the 
origin and LL ⊆1  the set of indexes for the 
subspaces that do not contain the origin. Since the 
rules of the fuzzy system (1) induce a polyhedral 

partition { } n
LiiS ℜ⊆∈  of the state space, the fuzzy 

system (3) can be viewed as a set of individual 
subspaces, which consist of crisp (operating) and 
fuzzy (interpolation) subspaces.   
     The crisp subspace is defined as the subspace 
where 1)( =xlµ  for some l , all other membership 
functions evaluate to zero. The system dynamics of 
crisp subspace is given by l-th local model of the 

fuzzy system (1). On the other hand, the fuzzy 
subspace is defined as the subspace where 

1)(0 << xlµ  and the system dynamics is given by a 
convex combination of several affine systems.  
     In the extreme case where all the subspaces of a 
fuzzy system are crisp, that is, 1))(( =txlµ  for some 
l  and all other membership functions are equal to 
zero, then fuzzy system (3) becomes a piecewise 
linear system, ll atxAtx +=+ )()1( . However, in 
terms of fuzzy system (3), the membership function, 

))(( txlµ  for some l , could be between 0 and 1. 
Thus we are required to find a mean to evaluate this 
fuzzy subspace. 
     In our previous attempts [7-11], we treated the 
fuzzy subspace in terms of uncertainties and 
modelled them in terms of upper bound 
approximation to perform stability analysis. As 
noted in [14], these same subspaces can be 
considered as a region with crisp subspaces blend 
and overlap each other. Hence, in each subspace, we 
can write the fuzzy system (3) as a convex 
combination of affine systems 
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with 1)(0 ≤≤ xkµ , ∑ ∈
=

)(
1)(

iKk k xµ . For each 

subspace iS , the set )(iK  contains the indexes for 
the system matrices used in the interpolation within 
that subspace. For crisp subspace, )(iK  contains a 
single element. 

Assumption 2.1: We assume that given any initial 
condition 0)0( xx = , the global model (4) has a 

unique solution for all 0≥t .  

Assumption 2.2: We also assume that when the state 
of the system transits from the subspace iS  to jS  at 

the time t, the dynamics of the system is governed by 
the dynamics of the local model of iS  at that time. 

For future use, we also define a set Ω  that 
represents all possible transitions from one subspace 
to another, that is, 

},)1(,)(|,{: jiStxStxji ji ≠∈+∈=Ω   (5) 

Remark 2.2: Due to the discrete nature of the system, 
it is noted that Ω  as in (5) could include transitions 
occurred between non-adjacent subspaces in one 
step. 

For convenient notation, we also introduce 
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where it is assumed that 0=ka  for all )(iKk ∈  with 

0Li ∈ . Then using this notation, the system model 
(4) can be expressed as 

∑
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with 1)(0 ≤≤ xkµ , ∑ ∈
=

)(
1)(

iKk k xµ . Note in 

comparison with (3), the state space in fuzzy system 
(7) is partitioned and analyzed in terms of subspaces. 
The following example illustrates the idea. 

Example 1: Consider a discrete time fuzzy system 
that switches between 3 rules, 

:1R  IF 1x  is about negative  

THEN 11 )()1( atxAtx +=+  

:2R  IF 1x  is about zero 

  THEN 22 ax(t)A1)x(t +=+  

:3R  IF 1x  is about positive  

THEN 33 ax(t)A1)x(t +=+  
where the membership function for “about 
negative”, “about zero” and “about positive” is 
defined as in Fig.1. The effect of these membership 
functions on state space is shown in Fig. 2. 
     As shown, rather than consider the fuzzy system 
as in the form (3), 

)())(()())(()1( 2211 txAtxtxAtxtx µµ +=+  

  )())(( 33 txAtxµ+ ,   
we considered it in this paper as in the form (7), 

)()1( 1 txAtx =+ ,   1Sx ∈   

)()()1( 2211 txAtxAtx µµ +=+ ,  2Sx ∈  

)()1( 2 txAtx =+ ,   3Sx ∈  

)()()1( 3322 txAtxAtx µµ +=+ ,  4Sx ∈  

)()1( 3 txAtx =+ ,   5Sx ∈  

so the stability of the system can be checked by a 
piecewise Lyapunov function as in section 3.  

Remark 2.3: During simulation, subspace 3S  is 
further separated by origin into 2 subregions. This 
operation is carried so the S-procedure as in section 
3 can be performed. 

 
 

3   Problem Solution 
It is demonstrated in [14] that continuous time fuzzy 
systems can be analysed by piecewise quadratic 
Lyapunov function. We extend the same idea to 
discrete time case. The general idea of our approach 
is to consider the state space of the fuzzy system (1)  

 

 

 

 

 

 

 

 

 

 

Fig.1. The membership functions for x1 for the fuzzy 
system in Example 1 and 2. 

 

 

 

 

 

 

 

 

Fig.2. The membership functions for x1 divide the state 
space into 5 subspaces. 

in terms of subspace form as in (7). Then we can use 
the piecewise Lyapunov function to check for the 
stability of discrete time fuzzy systems in each 
subspace.  
     Due to the fact that the state in discrete time 
system may jump between non-adjacent subspaces, 
the structural information, like the matrices F’s in 
[14], cannot be used to characterize the state 
transition from one subspace to another as dealt with 
in the case of continuous time systems. More 
specifically, it may not be helpful to construct a 
piecewise Lyapunov function that is continuous 
across boundaries for the discrete time systems to 
analyse stability of the system as in [14] for the 
continuous time systems. Nevertheless, it may also 
be unnecessary to require the piecewise Lyapunov 
function to be continuous across boundaries for the 
discrete time piecewise linear systems since the state 
of such systems may never pass through the 
boundaries. 
     As Lyapunov function candidate we consider 
function of the form 
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This function combines the power of quadratic 
Lyapunov functions near an equilibrium point with 
the flexibility of piecewise linear functions in the 
large. 
     Since the matrix iP  or iP  is only used to describe 

the Lyapunov function in subspace iS , it is natural 
to use the S-procedure to allow the Lyapunov 
function search in a less conservative way. To this 
end, construct matrices, LieEE iii ∈= ],[  with 

0=ie  for 0Li ∈  such that 

LiSx
x

E ii ∈∈≥
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
,,0

1
.              (9) 

It should be noted that the above vector inequality 
means that each entry of the vector is nonnegative. 
Now, for every symmetric matrix iU  with 
nonnegative entries, condition (9) implies that 

0
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, iSx ∈∀ , Li ∈ .            (10) 

Remark 3.1: A systematic procedure for constructing 

these matrices LiEi ∈,  for a given fuzzy system 

can be found in [14]. The procedure is directly based 
on the information in the fuzzy rule base. The 
interested readers please refer to [14] for details. 

Then we come to our theorem.  

Theorem 3.1: Consider the discrete time fuzzy 
system (7). If there exist symmetric matrices, 

,,,, 0LjiPP ji ∈  1,,, LjiPP ji ∈ , symmetric matrices 

kii WU ,  and kjiQ  such that kii WU ,  and kjiQ  have 

nonnegative entries, and the following LMIs are 
satisfied, 

ii
T
ii EUEP −<0 ,                (11) 

0<+− iki
T
iiki

T
k EWEPAPA ,  (12) 

for 0Li ∈ , )(iKk ∈  and 

ii
T
ii EUEP −<0 ,            (13) 

0<+− iki
T
iiki

T
k EWEPAPA ,  (14) 

for 1Li ∈ , )(iKk ∈  and 

0<+− ikji
T
iikj

T
k EQEPAPA ,   (15) 

for Ω∈ji, , 1Li ∈ , Lj ∈ , )(iKk ∈  and 

0
~ <+− ikji

T
iikj

T
k EQEPAPA ,   (16) 

for Ω∈ji, , 0Li ∈ , Lj ∈ , )(iKk ∈ ,        
where we define  

]0[]0[ 11 ××××= nnnj
T

nnnj IPIP  for 0Lj ∈  in (15), 
T

nnnjnnnj IPIP ]0[]0[
~

11 ××××=  for 1Lj ∈  in (16), 

then the discrete time fuzzy system is globally 
exponentially stable, that is, x(t) tends to the origin 
exponentially for every trajectory in the state space. 
Proof: See Appendix. 

The above conditions are linear matrix inequalities 
in the variables ,, ji PP ,, ji PP  kii WU , , and kjiQ . A 

solution to those inequalities ensures V(t) defined in 
(8) to be a piecewise Lyapunov function for the 
system. The LMI in (11) or (13) for each subspace 
guarantees that the function is positive and the LMI 
in (12) or (14) guarantees that the function decreases 
along all system trajectories in each subspace. The 
LMIs (15)-(16) guarantee that the function is 
decreasing when the state transits from one subspace 
to another. The terms involving kiiii WUEE ,,,  and 

kjiQ  are related to the S-procedure to reduce the 

conservatism of those inequalities. 

Remark 3.2: For each fuzzy subspace, we are 
seeking for a “common” piecewise quadratic 
Lyapunov function which can satisfy all the partial 
influencing state matrices, and which decrease in 
time within or between the subspace.  

Remark 3.3: Matrices iE , iE  are the structural 
information for each subspace. We exploit this 
information even for the case when the state 
trajectory )(tx  transits between different subspaces 
as in (15)-(16), based on Assumption 2.2.   

Remark 3.4: Due to the discrete nature of the system, 
it is noted that transitions could occur between non-
adjacent subspaces in one step. Thus, every subspace 
pair, ( ji SS , ) as defined by (5), has to be computed 

in (15)-(16).   

Remark 3.5: It is noted that when the state of the 
system does transit across the boundaries, that is, 

ji SStx ∩∈)(  for some t, the result in Theorem 3.1 

still holds since the case can be covered by 
considering the transition from the subspace iS  to 

jS  at the time t or 1+t . 

Remark 3.6: Theorem 3.1 is only a sufficient 
condition for system stability. Thus, the discrete 
time fuzzy system may still be stable even if the 
piecewise Lyapunov function (8) can not be 
identified from the above inequalities. Shall 
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refine the partition in order to increase the flexibility 
of the Lyapunov function candidate and try anew 
[14]. 

Remark 3.7: The stability test of the discrete time 
fuzzy system in (11)-(16) can be easily facilitated by 
a commercially available software package Matlab 
LMI toolbox [19-20]. 

 
Example 2: Consider the discrete time fuzzy system 
given in Example 1. The system matrices are given 
by 
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The trajectory of simulations result with initial 

conditions Tx ]33[)0( = , T]33[ − , T]33[− , and 
T]33[ −−  indicates that the fuzzy system is stable 

though there does not exist a common positive 
definite matrix P for the system, see Fig. 3. The 
matrices characterizing the subspaces are given by 
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Using the Theorem 3.1, we can find the following 
solutions to those 54 LMIs, 
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Fig.3. Simulation and level curves of the computed 
piecewise quadratic Lyapunov function in Example 2. 
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and thus one can verify that the fuzzy system is 
exponentially stable. Note LMI solutions 1P , 2P , 4P  

and 5P  are indefinite. This is because the 
conservatism which requires them to be positive 
definite was reduced by the S-procedure. The 
piecewise Lyapunov function obtained is shown in 
dashed line in Fig. 3. 
 

 

4   Conclusion 
In this paper, a new method is developed to test 
stability of discrete time fuzzy system based on a 
piecewise Lyapunov function. It is shown that the 
stability can be determined by solving a set of LMIs. 
The approach can be extended to performance 
analysis of such systems as in [14] for their 
continuous counterparts. 
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Appendix 
Proof of Theorem 3.1: Consider the Lyapunov 
function candidate (8), or in a more compact form  

xPxtV i
t=)( , iSx ∈ , Li ∈ .                           (17) 

It is obvious from (8) that in an open neighborhood 
of the origin there exists a constant 0>β such that 



2||||)( xtV β≤ , since the affine term does not appear 
in this case. Moreover, (11) and (13) imply that there 

exists a constant 0>α such that xPxx i
T≤2||||α  for 

iSx ∈ . 

Thus we have,  
22 ||||)(|||| xtVx βα ≤≤          (18) 

In addition, it follows from (12), (14)-(16) that there 
exists a constant 0>ρ  such that 

0I <+− ρikj
T
k PAPA , where ij =  when x(t) stays 

in the subspace iS , ij ≠  when x(t) transits from the 

subspace iS  to jS . 

Then along trajectories of the system, we have 

)()1()( tVtVtV −+=∆  
           xPAPAxx ikj

t
k

T

iKk
k ][)(

)(

−⋅= ∑
∈

µ  

Since ∑ ∈
=

)(
1)(

iKk k xµ  for all x , we have 

xxtV T )I()( ρ−≤∆  

           2|||| xρ−≤                                  (19) 

Therefore, the desired result follows directly 
from (18) and (19) based on the standard 
Lyapunov theory.   ∇∇   
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