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Abstract: - Algebraic Numerical Algorithm (ANA), especially Algebraic Finite Difference Equation (AFDCE) are
treated by agebraic geometrically. By coherent sheaf and proper morphism condition [1], we can treat
integrability of ANA and AFDCE. In this work we treated integrable properties of Linear AFDCE and Durand

-Kerner -Aberth method from this condition as examples.
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1 Introduction

Criteriafor integrability of discrete dynamical system,
especially for the integrability of non-linear finite
difference equation are proposed recently [2-3]. Using
these criteriawe can find out new non-linear AFDCES
that are candidates of integrable AFDCEs (IAFDCEsS).
These criteria are called Singularity Confinement and
Algebraic Entropy criteria, respectively. Though we
can get IAFDCEs by these criteria, we have not yet
had clear theoretical background for these criteria.

On the other hand, algebraic treatment of discrete
evolutional equationsin control system was attempted
[4]. In this approach, concepts of coherent sheaves
were introduced to treat discontinuous dynamical
systems properly.

From these works, GAGA principle was introduced
into AFDCE[1, 5, 7, 8, 9, 10]. Though the principleis
abstractive for practical application, we have to
trandate it into proper statement using orthodox
numerical notation. The next few sections are
prepared for this purpose. In these sections, we will
introduce open coverings by Zariski topology, and
sheaves and coherent sheaves by ideals from AFDCE.
By these preparations we can define IAFDCEs as
algebraic evolutional equations of which solution
functions are holomorphic functions in analytic space
by several complex variables except for appropriate
singularities. In this work we introduce Stein space
[11] as analytic space and proper space as algebraic
space for AFDCE. GAGA principle connects analytic
space and algebraic space. From this point, AFDCEs
are functional equations in analytic space. Simple and
important algebraic space which corresponds to

analytic (Stein) space is projective space. Therefore
we can confirm some vadlidity of singularity
confinement criterion. Moreover we can understand
background of agebraic entropy criterion from this
approach.

2 Coherent sheaves by AFDCE in

affine space

Algebraic trandations of AFDCE are shown in this
section. Consider following simple 2-step algebraic
finite difference equation as an example,

(l) F(fn-l’fn’fn+1)zol

here n is integer and F(f.1, fo, fie1) | Clfoa, fo, fred].
C[fn1, fny fae1] is polynomial function by {f. 1, f., fori}
with complex coefficient C. We write C,=C[f,4, f,,
fed and Fy =F(f,_,, f,, f..,) . Here fi=f(z), z1 C,
and j means order of the sequence of points{...., 7.1, z,
Z+1, Z+2, ....}. Then we can regard (1) as functional
equation of f(2). It isknown C, is Noetherian (consists
of finite number of ideals).

Consider localization by treating F, asideal in C,.. If
Fnisirreducible polynomial (primeideal) in C, , then
C.\F, becomes multiplicative set in C,. We put
S=Cn\F,and A=S'C, . Then A, and F,A, become

local ring and maximal ideal. (An,FhA,) islocalization
and A/F.A, is function field. We define X,=SpecA,
and X, as al primeideal of A,. We call X, as affine
scheme at n.

We can consider morphismj  : X, ® X ,,. Thisis

aso akind of map or connection between X; and X1
that should satisfy some condition for integrability.



Discrete analogy for sheaves of modules in

AFDCE to usual affine scheme can be obtained as,

(i) Assume every F; corresponds prime ideals. If F;
isn’t primeideal, we decompose it to primeideas
first.

(i) Make A, from F;. Then A, is Noetherian locally at
least, because Ideals of A, give sub-algebra of
Clfi1, o, frra]. Clearly C[f,.1, fr, far 1] 1S Noetherian
by Hilbert's basis theorem , therefore each A, is
Noetherian. A, becomes Of, modules. Notation
Orn» means local quatient ring and function field.

(iii) Treat each f, : A ® A, is homomorphism by

natural morphism {f,.1, fn, fre} ® {fn, fres, frea}.

If this condition is broken, we must modify F;.
(iv) Define (X, A)={Collection of al (X, A )}.We

introduce Zariski topology to (X, A) by open

covering U; and D; that aredefined asU;={p | fjl p,

pl X} and D={p | F| p, pl X}. Here

X=pecA={Collection of all SpecA}, Xj=pecA.

We find X is Noetherian locally because A is

Noetherian.

Using above definitions, we can introduce sheaves of
AFDCEs. It is known that sheaves by Ideals become
coherent sheaves. Proper scheme over C, which is
coherent sheaf, corresponds to some analytical scheme
by GAGA. Especialy projective scheme over C is
proper scheme. Therefore validity of singularity
confinement criterion is found. It is natural condition
rather than criterion in projective space. Using this
principle  more actually, we show what
implementation of AFDCE satisfies property of sheaf,
especially coherent sheaf, and becomes proper scheme
by following some examples.

Sincenl Z, collection of al A, and Cy=C[fn1, fn,
fred], Clfn, fress faealy- oo Clficts fir fied] @re polynomials
consist of infinite number of variables. Therefore
Hilbert's basis theorem is not satisfied globally. That
is, SpecA has infinite elements and not Noetherian.
Please remember that previous implementation (i) to
(iv) satisfy coherent sheaf condition only localy (at
every n). Therefore we need more conditions to
construct entire coherent sheaf of AFDCE by this
formulation.

For the condition of finite number of variables in
entire space, we must add more condition for AFDCE.
For example, forcing following condition gives
Noetherian property of entire space of AFDCE,

F, TR,
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Since by implicit function theorem, we can find
following local relations at every n,

(3) fn+1= gn(+)(fn1 fn-l); fn-1= gn(-)(fm fn+1)1

here gn+), 0.n( Should be algebraic function and never
spoil algebraic property of each F,. We know that this
condition can be modified to the case of gn.) and 9.,
are holomorphic, but we leave it. Then we can delete
foiand fo.o from C[f,q, f, faed], Clfn, foer, feo] as
C[gn(-)(fn, fn+1) ) fn; fn+1]1 C[fn, 1:n+11 gn+1(+)(fn, fn+1)]-
Appling this condition for all F,, we find al C[f..1, f,,
fre1], Clfn, fret, frr2lse o Clfica, T fiea],... @reincluded in
the two variable polynomial C[fy, fx.1] or holomorphic
function. Since kis arbitrary, wecan say C[ fy, fir1] is
germ at (k, k+1) and also representation of solution
function of AFDCE by germ at (k, k+1).

It is easy to generalize this treatment for multi-step,
several variable and simultaneous AFDCE. With this
condition in this example, (X=SpecA, Ox(collection of
An)) becomes coherent sheaf entirely. Expression of
CIf;, fi+1] by C[fi, fied], J * K is analogous to Taylor
series representation C[fj, fj+1] by {f«, fr1} . Inthiscase
it corresponds functional series representation for near
neighbor functions. We aso found the condition (2)
corresponds to preserving dimension of variables in
each A.. .2 in Aqptakes over independency of f,,1 in
A, orinitial conditions are preserved from A, to A 1.
Definition: We call AFDCE that satisfies coherent
sheaf conditions as coherent AFDCE (CAFDCE). We
call these conditions as coherent condition for
abbreviation. For general multi-step, several variables
or simultaneous ADFCE, we define coherent
condition as, (i) F, gives coordinate ring, and F,
generates coverings of AFDCE as a non-singular
algebraic manifold. Moreover A, becomes Noetherian
a every n. (ii) Existence of proper morphism
A, « A, aeveryn, andevery A, satisfies coherent
condition by Zariski topology [8]. (iii) Following
dimensiona condition is satisfied independently of n
in each covering with regular coordinate system.
dim(A,)=dim(Initial  conditions or  Boundary
conditions) = Const.

Definition: We call singular point (set) of AFDCE
where coherent condition is broken.

It is clear from the definition that CAFDCE has no
singular point (set). In other words it becomes
non-singular algebraic manifold using proper local
coordinates.

1, foraln.




2.1 |AFDCE example, Linear AFDCE
Consider n-sep linear AFDCE and its solution,

(4)  Csyy+Csy, +Cs,y, ++-+Cs,y, =0,

(5) Coy+C1y1+C2y2+"'+Cnyn=O’

hereCs, ¢ and y" are Casoratian, integral constant and
fundamental solutions. Usually integral constants are
noted as Cj=-c/c, and Casoratian Cs is defined as
Nn° n matrix determinant by eliminating column
from following (N +1)" nmatrix,
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Let F,=Cs,y+Csyy, +Cs,y, +---+Cs )y, . It is
clear A, is Noetherian, because the number of
elementsy; (j=1,..., n) arefinite. Moreover F, satisfies
condition for finite number of total variables, because
fF,/fy=Cs,2 0 and fF,/fy,=Cs,* 0
Conditions Cs, * 0 and Cs, * 0due to fundamental
solutions y (j=1,..., n). By this property we can
rewrite (4) as,

y=-(Csy, +Cs,y, +---+Cs.y,)/Cs, OF

Yo =- (Cs¥ +Csy, +++Cs,,¥,.,)/ Cs, - We found
similarity between (4) and (5), comes directly from
algebra of coherent property.

Algebraic singularity of F, is given by
1F,/fy=0and §F, /fy, =0,j=1,...,n. Clearly F,is
non-singular because Cs, * O and Cs, * 0.

Linear AFDCE is atypical model equation that
reflects coherent sheaf structure well. Note that Linear
AFDCE satisfies finite algebraic property. We can
easily confirm this property from,

@ Y = {(Csprnn G ) Ys + (Cspns CS) Yo +
+ hn-l(CSO""'CSn-l)ys+n-1} / hn (CSO""'CSn-l)'

In this case arbitral y, can be represented by a general

algebraic relation (7) with arbitral germ at {s, st+1,...,

s+n-1}, and the number of germs, n, isindependent of

position.

3 Projective schemein AFDCE

We introduced coherent condition into AFDCE. The
sheaf condition include concept of connection
between each covering.
Traditional ways of analysis for AFDCE also pay
attention for the connection; although it hasignored the
agebraic finite property until now. We never overlook
investigation of finite property for AFDCE after this,
because algebraic finite property is the main concept
of coherent sheaf. Inaddition if we use GAGA togive
integrability to AFDCE, we never overlook proper
morphism property of AFDCE. It is known that
morphism in projective space is proper morphism,
therefore we don't need to pay attention to this
property when we treat AFDCE in projective space.
From thisfact we found projective spaceissimple and
convenient space for applying GAGA to AFDCE. In
this section we review projective scheme shortly for
this purpose. We can find more details from many
textbooks of algebraic geometry.

We assume al AFDCEs in this section are
homogeneous equations. As an example, using the
same notationin previoussection wetreat F,inC,. In

this case C, =C[ f ; f ] corresponds to

n- l’ n’ n+l’ o n
polynomial function with complex coefficient in
projective space. Then F,isdefined in the subspace of
extended projective space by fol Iowi ng treatment,

f,  f
(8) {fn 1 n’ n+1}?/4 = 11}’

fO,n fOn

herefy, O, {O;O;O;O}I {fn_l, A f0n} and
) F,® (fo)"F(frs fo foa) 0£m,

o,n o,n o,n
when total order of F(f.4, fn, fiee) equals m. By this
treatment we can regard F, in projective space as,

(10) B=(for)" F(fnz fo four
o,n o,n fO,n
=Gy(fra; Tn; n+1; fon),
here B 1 C[f is homogeneous

equation, and F= G(f,.1; fn; frr1; 1). Therefore we can
regard B, as homogeneous ideal. For simplicity we
assume B, is ahomogeneous prime ideal. We consider
a space Proj(PA,) which consists of al homogeneous
prime ideals except forirrel evant ideaI in quotient ring
PA=s , here S= C[ f 1\B,. We
call this Space PX.=Proj(PA,). Asthe same manner in

affine space, we can introduce Zariski topology
locally using following definitions for open covering,

(11)  D={p|PAl p,pl PX}.

n11 n’ n+11 on]

nl1 n’ n+1’ on



We also use affine covering U; to cover D;. In this case
set of U; isfiner covering than set of D;.
Inu,, CU,, * F wetreat,

(12) (fOi)m F( fi 1 fi fi+1 )

- (fol)m (f0|) F( f. 1 fo,i
(fD,i) fO,i fO,’ ’

We can treat inclusion F, to projective space by
different way from previous example, asfollowing. In

UO,n-l C’ UO,n C UO.n+1 ! !

(13) {fn-ll fn ’ n+1} ?/4 fn ) fn+1 ,1,1,1}1

Onl fO,n fO,n+1

hefe 1:Cln-ll 0’ fO.n ! O f0n+1 01
{0’0’01010’0} l { fn 1 fn’ fn+1’ fO,n-l; fO,n; fO,n+1} and
(14 F,®

(o)™ (fon) ™ (fore)™ F( St o Tou
1:O,n-l 0,n fO,n+1
= Gn(fn-l; fn ; 1:n+l; fO,n-l; fO,n; fO,n+1)1
0 £ mL,m2,m3, order of fnq, fy, frerin F.
Connection between each covering at
(U 0o,n-1 C U o,n C U O,n+1) C (U o,n C UO,n+1 C U O,n+2) ! F
can be defined by the same way as previous example.
We use notation PX={Collection of all Proj(PA)}.
Note that PX,=Proj(PA,) becomes finitely generated
Ogn-module, because B, is defined by F,, and A, and
A, is clearly finitely generated Og,module. A,
becomes finite covering of B,. Moreover graded ring
PA,, is Noetherian. Then Proj(PA,) becomes coherent
sheaf at nlocally.

We must add more condition to PX which becomes
coherent sheaf globally in addition to (2). At the first
we must define a rule how to choose proper fo; for all
j. Clearly we have no rule yet for selecting fo; for all j.
We must choose the total number of fy; is finite.
Instead Proj(PA,) becomes not finitely generated
space. It maybe also proper choice for fo; to make PA,
non-singular algebraic manifold, for example fo; is
defined from blowing-up at each j. We must also
assume fo; is finitely generated. For the purpose we
assume another relation for example,

(15) Fo,n(fo,n-L fon, fO,n+1):O .

In addition, (10) or (14) also satisfies condition same
to (2) and (3). More complex caseisalso considerable,
for example

(16) Fon(fon1, fon foness faa, foy fre)=0.

Ao

—h

Shortly, (1) and (15) or (16) should form loca
connection for each fjand fo; .

When these conditions are satisfied by new AFDCE
system and each PX consists of finite number of
generator by homogeneous element, then the new
AFDCE system gives condition for Proj(PA) which
becomes coherent sheaf. In this case each PA becomes
non-singular algebraic manifold with finite number of
affine coveri ng A, therefore we find PX by

{f 1 n’ n+1’ on} OF {f 45 fus Fosss Fonas Tons fomed
becomes regular local ring.

Regular ring gives appropriate local parametersfor the
algebraic manifold; a last they span regular
coordinate ring. In this example, dimension of each
local base spaceat (n, n+1) iseight by { fon.1, fon fon1s
fone2s fra, Tn s frens freo} with four relations { G, Gp. 1,
For» Fon1}=0. We expect dim(Proj(PA,)) =
dim(Proj(PA1)) = 4 because { fon, fone1, fn s fres}
should become finite number of base element for germ
a (n, ntl). It is clear dim(ProjPA,)=4 aso
corresponds to number of integral constants or initial
conditions at (n, n+1). In other words, arbitrary f;and
foj can be regarded as function in C[fy, fre1, fon, fone1]

] PA, or holomorphic function by { f, fu1, fon,

fone}
We find divergence of some variables

{f,. f,, f.} in AFDCE which can be properly
treated by space {f,; f. ;f .;f, .} by using loca

affine covering, because it is proper morphism by
coherent condition. The divergence of AFDCE is
found in only part of affine covering space. Note that
resolution or blowing-up procedure is necessary to
make above covering. At present we have no
automatic blowing-up and down agorithm. Therefore
algebraic entropy criterion becomes a kind of
prescription for this problem at present.

4 Convergence and integrability of
ANA

We treat orthodox numerical algorithm as a sample
application using previous results. Durand -Kerner
-Aberth method is numerical root finding algorithm
for algebraic equation. Consider n-th degree algebraic
eguation with real number coefficient,

17 P@=2"+az"*+---+a,=0a,! 0,

here zT C. The n number of roots can be obtained
numerically by following Newton’s method,



ézi(k)q ?fl(zlvrzn)u éfl(z)l;'
20 =g gf(z):g boiTe g
gzrak)H gfn(zilu.’zn)g @fn(Z)H
I(2) = (1f; (2 /11zy),
(18) 7K+ = () _ J(Z(k))-l f (Z(k)) ,
k isiteration number. Then (18) can be written as
(A9 0 =20 p() 1O (2 - 29),i =12,..0m.

j=1
i

We can easily find that (19) is holomorphic mapping
except for the case z¥ - z{9 =0. Usualy we can

assume z - z{9 1 0 at every iteration step, therefore

we can regard (19) as holomorphic mapping at
anytime. Clearly (17) has n numbers of constants
which are equalsto given g, j=1,..., n.
Especialy a; isinvariant for k, that is
(20) alz-én z}"):-én‘ Z9 k1.
j=1 j=1

From the same agebraic treatment to AFDCEs,

(19) gives n numbers of generators for ideals. It is

clear that each equation for ¥ ® z**¥ (j=1,..., n)

in (19) is independent, therefore they become
generator of ideals. We can introduce open covering
by Zariski topology as shown in Fig 1.

)
Z

Fig 1. Algebraic view of Durand-K erner-Aberth method

We can define restricion mapping on
(k+1) (k) (k+1) (k)
DV 1 D, Dy CD¥*f as
(21) r D® @ Dk
T J

I (k+1)
Inthiscase, it is clear that mapping

(22) | ©:z9@ 729
| J
is proper mapping [8, 12] whenever if z® - z{¥ 1 0 is

satisfied. From these facts we can say that
Durand-Kerner-Aberth method satisfies coherent and
proper conditions. It is CAFDCE agorithm and

generates  integrable system  step-by-step by
self-integrable  deformation. Moreover  giving
appropriate initial condition which grantees

convergence corresponds to giving some deformed
integrable system. This property may give superior
convergent property of Durand-Kerner-Aberth
method. Note that this deformation is not reversible as
to k, because the deformation is contractive by
convergence property.

5 Conclusion

Algebraic treatments of AFDCEs and ANAs are
shown. It became clear that singularity confinement
and algebraic entropy criteria are some parts of
conditions of coherent and proper morphism
conditions related to GAGA. Moreover sample
AFDCEs which satisfy coherent condition and give
proper morphism are given. By these samples, simple
but actual treatment of AFDCEs and applying
possibilities to analyze orthodox ANAs using
proposed condition are shown.
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Appendix GAGA principle
Theorem 1 (Serre): Let X be a proper (projective)
scheme over C. Then the functor h induces an
equivalence of categories from the category of
coherent sheaves on X to the category of coherent
analytic sheaves on X,. Furthermore, for every
coherent sheaf A on X, the natural maps

a, :H'(X,A)3® H'(X,,A,)
are isomorphisms, for al i.



