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Abstract: M. Benado [1] and later D.J. Hansen [8] have offered an algebraic characterization of a multilattice,
(4, <), i.e., a poset, where every finite subset satisfies that any upper bound is greater than a minimal element
of the upper bounds, and the dual property. To obtain this, they introduce some algebraic operators — denoted
in this paper as Fx and F\, —that are a generalization of the operators A and V in a lattice However, both
algebraic definitions present various serious disadvantages, derived from imposing the property of absorption
onto F and F\, and, more importantly, because these authors chose to substitute the associative property of A
and V in a lattice by another which they consider to be a generalization of the associative property  which
we will call B-associativity and H-associativity, respectively:

e These properties are, in both cases, a non-natural generalization of the associative property and, even more
importantly, their definition cannot be fully disassociated from the properties specific to the order relation
<.

e These properties do not take into account the behaviour of F\ and F\ separately and, therefore, they do
not allow us to offer an algebraic definition of multisemilattices.

e Furthermore, they do not allow the use of operators with flexible arity.

The usefulness of the multilattice structure considered by M. Benado in [1] is framed within the field of arithme-
tic. However, our interest in this structure is rather different and is driven by the search for efficient automated
provers for temporal logic [3, 4].

In this work, we solve these disadvantages. Concretely, we introduce the structure of multisemilattices in
algebraic terms, defining the weak associativity property for non-deterministic operators (i.e., operators of a set
A in 24) of flexible arity. We prove that this property is independent from the B/H-associativity. The notion
of algebraic multisemilattices we introduce here allows us to define the multilattices in algebraic terms and in a
natural way. Specifically, we do this by taking as a starting point two algebraic multisemilattices (A, Fx) and
(A, F,), adding the property of absorption. On the other hand, the algebraic definition provided makes these
structures a natural generalization of the algebraic semilattices and lattices. In particular, we demonstrate that
by substituting in our definition the property of weak associativity by the associativity for operators Fa and F\,
the multisemilattices and multilattices are reduced to semilattices and lattices, respectively.

Keywords: Poset; Non-deterministic operators; Multisemilattice; Multilattice; Universal Algebra.

1 Introduction time, where the unique fragment taken into account is

the future fragment. In this kind of logic, the greater

The results of our research group in the field of auto-
mated deduction [7, 6] are based on the efficient mani-
pulation of unitary implicate and implicant sets. The
main obstacle we face when attempting to extend the
results obtained for classical logics [5] and many-valued
logics [10] to temporal logics, is the greater complexity
of the set of unitary formulae, or literals, with the “lo-
gical implication” relation, (Lit, <).

The first temporal logic we studied was the tempo-
ral propositional logic with linear and discrete Fnext

complexity of the set of literals was easily overcome
because (Lit, <) has a lattice structure (Fig. 1).

However, when we add the past fragment in Fnext+,
we find that (Lit, <) does not have a lattice structure,
but it does preserve a large part of the lattice properties
(Fig. 2.). The same applies to fully expressive tempo-
ral logics, such as US logic [9] and LN logic [2]. This
made clear the need to carry out a theoretical study
of new order structures that would enable us to work
with the set of literals to obtain efficient methods of au-
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Figure 1: (Lit, <) in FNext

tomated deduction for temporal logics. In these new
structures, we substitute the concept of supremum and
infimum with multi-supremum and multi-infimum that
are the minimal elements of the upper bounds and the
maximal elements of the lower bounds, respectively.

In these sets of literals the two following conditions
are ensured:

(i) For every finite subset, any upper bound is greater
or equal than a multi-supremum

(ii) and every lower bound is less or equal than a
multi-infimum.

The partially ordered sets that fulfill this property re-
ceive the name multilattices and were introduced by
Benado in [1]. This is then a generalization of lattices.
However, for our purposes, we require,

e a generalization of semilattices that we call multi-
semilattices and

e a good algebraic definition of both structures that
would also allow us to use operators with flexible
arity.

In the literature, we have found two algebraic defini-
tions of multilattice, i.e., those proposed by M. Benado
[1] and by D.J. Hansen [8]. To obtain them, they in-
troduced some algebraic operators — denoted in this
paper as F and F\, that are a generalization of the
operators A and V in a lattice. However, both algebraic
definitions present some serious disadvantages, derived
from imposing the property of absorption onto Fy and
F,, and, more importantly, because these authors chose
to substitute the associative property of A and V in a
lattice by another which they consider to be a gene-
ralization of the associative property  which we will
call B-associativity and H-associativity, respectively:

e This property is, in both cases, a non-natural ge-
neralization of the associativity property and, even
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Figure 2: (Lit, <) in FNext+

more importantly, its definition cannot be fully di-
sassociated from the properties specific to the or-
der relation <.

e These properties do not take into account the
behaviour of )y and I\, separately and, therefore,
they do not allow us to provide an algebraic defi-
nition of a multisemilattice.

e Furthermore, it does not allow the use of operators
as flexible arity operators.

In this work, we solve these disadvantages by the al-
gebraic characterization of properties (¢) and, (i7). In
other words, we define the structure of multisemilatti-
ces in algebraic terms. The starting point is to define
a property — the weak associativity property — for non-
deterministic operators (i.e., operators of a set A in 24)
of flexible arity. The notion of algebraic multisemilat-
tice we introduce here allow us to define multilattices
in algebraic terms and in a natural way. Specifically,
we do so by taking as a starting point two algebraic
multisemilattices (A, Fa) and (A, F\/) and adding the
property of absorption. On the other hand, the alge-
braic definitions provided make these structures a na-
tural generalization of algebraic semilattices and lat-
tices. In particular, we prove that by substituting in
our definition the property of weak associativity by the
associativity for operators F, and F\, the multisemi-
lattices and multilattices are reduced to semilattices
and lattices, respectively.



This paper is structured as follows: Section 2 intro-
duces the non-deterministic operators of flexible arity
and their basic properties.

Section 3 describes the weak associativity property,
and demonstrates that, contrary to what happens with
B-associativity: every weakly associative deterministic
operator is actually associative; the weak associativity
and B-associativity properties are independent; and,
finally, if F' is a non-deterministic operator of flexible
arity and weakly associative, and a has a symmetrical
clement, this symmetrical element is unique.

In Section 4 we define both the ordered and the alge-
braic structures of multisemilattices and we prove that
both definitions are equivalent. Furthermore, we prove
that a multisemilattice is a semilattice if and only if it
is associative. In this section, we also study the subsets
of a multisemilattice that are semilattices. Finally, we
conclude by paying special attention to the notion of
submultisemilattice and its characterization.

In Section 5 we define the ordered and the algebraic
structures of multilattices and we relate them to mul-
tisemilattice structures.

In Section 6 we contrast our definition with those
of Benado and Hansen (adapting the notations to the
ones introduced in this work), to validate our state-
ments in the introduction.

2 Non deterministic operators

In a partially ordered set, the set of multi-supremum
and multi-infimum of a subset are not necessarily uni-
tary. So, it is necessary to consider operators that have
a set of elements of the domain as image.

Definition 2.1 Let A be a set. We define the non-
deterministic operator (ond') of arity n in A, any
total application F : A™ — 24,

We define the non-deterministic operator of flexi-
ble arity in A, any total application F : A* — 24,
where A* is the universal language defined in A.

If F is an ond with arity p € N U {x} in A and
@ #+ B C A, we call restriction of I’ to B, denoted
by F,, to the ond in B given by F, (a) = F(a) N B.
We say that F is full if F(a) # @ for all o € AP.

Definition 2.2 Let F' be an ond of flexible arity in A.
We say that

1. F is commutative if for all n € N and all

ZT1ye.o. @y € A we have that F(x1,...,2,) =
F(z,1,... ,Zon) for all permutations of n ele-
ments, o.

1In Spanish ”operador no determinista’.

2. F is associative if for all n € N and all

ZEl,...,IL’HGA

F(xq,... (F(Z1,. . yTpe1),Tn)

>mn) =F
= F(xlaF(x%'" 7xn)>

8. F is idempotent if F(x,.". ,x) = {x}, for all
r €A and alln € N.

Definition 2.3 Let F' be an ond of flexible arity and
e € A. We say that e is a neutral element for I if
for all w € A* we have that F(w) = F(wy) where wy it
is the chain obtained when eliminating e from w.

Let F be a binary ond in A, a € A, and e € A the
neutral element. We say that b € A is the symmetric
element of a if F(a,b) = F(b,a) = {e}.

As in the deterministic case, our interest lays in
structures that have the absorption property. This will
become patent in the algebraic characterization of the
new ordered structures introduced in section 5.

Definition 2.4 Let F' and G be two onds of flexinle
arity in A. We say that the pair (F,G) has the ab-
sorption property if for all w € A* we have that:

o Ifx €w, then G(ay) = {x} for ally € F(w).
o Ifr €w, then F(xy) = {z} for ally € G(w).

Notice that if (F, G) has the property of absorption,
the two following conditions are satisfied:

(&) If F(ay,22) # @, then G(a1, F(x1,22)) = {21}
(Z'il) If G<$1am2) 7é 2, then F(ml,G<IL’1,IL’2)) = {ml}

The two previous conditions, (i’) and (ii’), are used
to define the property of absorption by M. Benado in
[1] for binary operators. However, as shown in the
following example, these conditions are not enough:

EXAMPLE 1.- We consider the binary onds F’ and G in
the set A ={1,2,3,4,5}, given by the following tables:

P 1 2 3 4 5
1 {1} {2,3,4,5} {3} {4} {5}
2 | {2,3,4,5} {2} (3} {4} {5}
3 {3} {3} {3 {4y {5}
4 {4} {4} {4y {4} {5}
5 {5} {5} 5y {5F {5}

G| 1 2 3 4 5

{1y 2 {1y {1} {1}

2 (& {2} {2} {2} ({2}

sy {2 {3y {3} {3}

4 1 {1}y {2} {3} {4} {4}

5 1{1F {2} {3} {4} {5}

(F,G) satisfies the conditions (i") and (ii’). Howe-

ver it doesn’t satisfies (i) and (ii), because, although
G(1,F(1,2)) = {1}, we have that 2 € F(1,2) but
G(1,2)=o.



3 Choosing the associativity
property

As we will see later, it is excessive to demand the as-
sociativity property to the o.n.d.s for the posets con-
sidered in this work. M. Benado in [1] introduces as
associativity the following property for binary onds:

Definition 3.1 Let F be a binary ond in A. F is B-

associative if it satisfies:

1. Given a,b,c € A such that F(a,b) # @ and
F(F(a,b),c) # @, then F(b,c) # <@ and
F(a,F(b,c)) # &.

2. For each z € F(F(a,b),c) exists 2/ € F(a, F(b,c))
such that F(z,2') = {z}.

On the other hand, D. J. Hansen in [8], introduces
the following property for binary onds:

Definition 3.2 Let F be a binary ond in A. F is H-
associative if it satisfies:

Given a,b,c € A such that F(b,c) # @, and
F(a,x2) # @ for some x € F(b,c). Then, F(a,b) # @
and F(a,F(b,¢)) C F(F(a,b), F(b,c))

However, as we shall see, these properties are not
a natural generalization of associativity, because if I
is deterministic, they are not the associative property.
For this reason, we introduce a new property which is
weaker than the associative property.

Definition 3.3 Let F be a binary ond in A. We say
that F is weakly associative if for all v1,29,23,2 €
A we have that: if F(x1,22) = {2}, then:

{ F<F(m1>m2)>m3) - F(I’l,F<5E2,$3))
F(l'g,F(l‘l,lQ)) C F(F(l‘g,lj),.l'g)

EXAMPLE 2.- The binary ond F in 2V given by
F(A,B) = {AUB, AN B} is not associative, but is
weakly associative.

Definition 3.4 Let F be a binary ond in A. We
say that F is weakly associative if for every a =
arasag € A* with as £ ¢ and every z € A it satisfies
that: if F(ag) = {2}, then

F(()Z1F(OZQ)()Z3) = m F(w1F(w2)w3>

a=w)wgows

waFE

EXAMPLE 3.- Let (A, <) be a poset. The ond of flexi-
ble arity F(z1,...x,) = Minimals{z,...2,} is not
associative. However, it is weakly associative.

The following result is an immediate consequence
from definition:

Lemma 3.5 Let F be a deterministic operator. If F
is weakly associative, then is associative.

Theorem 3.6 The B-associativity and the H-
associativity properties are independent of the weak
assoctativity.

Proof 1 Let us consider A = {1,2,3} and B =
{a,b, ¢} and the binary onds

F 1 2 3 G a b c
(I I O - a [{a} T} {a]
2 2} @ {1,2} b | {c} {b} {b}
3 2] {1,2} c [ {e} {e} {c}

F is weakly associative, but it is not B-associative,
because: F(1,1) = {2,3} and F(F(1,1),3) = {1,2},
and however, F(1,3) = @ and F(1,F(1,3)) =
@.  Furthermore, F is mnot H-associalive, because:

F(2,3) = {1,2} and F(1,1) = {2,3} and however

F(1,2) =
G is not weakly associative, because: {c} =
G(G(b,b),a) L G(b,G(b,a)) = {b} However, G is B-

associative, because:

(b,b),a) =
e.b) = {c}
G( 7C> ) =
¢,b) ={c}
Furthermore, G is also H-associative, because for all

x1,T2,23 € B, we always have that F(xq, F(xg,z3)) =
F(F(z1,22), F(21,23)).

{C}, G(va(bva)> = {b} Y

{C}, G(bv G(C, CL)) =

G(G
G(
G( b} vy
G(

The previous example shows that, contrary to what
happens with the weak associativity (see lemma 3.5),
a B-associative deterministic operator is not necessa-
rily associative. The following proposition ratifies us
the kindness of the weak associative respect the B-
associativity.

Proposition 3.7 Let F be a binary ond in A, and e

the neutral element of F. Then:

(1) If F is weakly associative, and a € A has symme-
trical, this is unique.

(2) If F is B-associative, the unique element that has
symmetrical is e.

Now, we highlight a particular result of interest to
the rest of the development:

Proposition 3.8 Let I’ be an ond in A with flexible
arity, weakly associative and idempotent. Then the th-
ree following conditions are satisfied:

Fw) = ﬂ F(wi F(wy)ws)
w=wjwows
woFE

1. For allw e A",



2. For all w = ayasas € A*, if Fag) is an unitary
set, F(ag) = {2z}, we have that F(w) = F(ai2a3)

3. Givenw € A* and z € A, if F(x,z) = {2} for all
xr € w then F(wz) = {z}

Proof 2 1. This is an immediate consequence of weak
associativity and of the fact that, for the idempotent
property, we have that F(z) = {z} for all x € w.

2. Let w = ayanas € A* and Fag) = {z}. Then,

i T
F(ajzas) L : ’

e

where in T, we use weak associativity; in o idempo-
tency and in Tg the item 1. Consequently, F(w) =
F(ayzag).

3. If the length of w is 1, the result is obvious. Let
us assume that the result is true for length n. If w =
wi1x1 € A* is a chain of length n+1 then, for all z € w
we have that F(x,z) = {z}, in particular F(z1,z) =
{z}. Therefore,

F(wz) = Flwyz12) L5 F(w F(z12)) = F(w2) fz {2}

where we use item 2 in t, , and the induction hypothe-
815 i To.

As a consequence of the previous lemma, we obtain
the following result:

Corollary 3.9 Let F' be an ond with flexible arity,
weakly associative, commutative and idempotent in a
set A. Then, for all w =21...2, € A* we have that
Flry...xp) =F(xp, ... xn,) where 2y, ... 2y, =W is
the chain obtained after eliminating the repetitions of
elements in w =1o1...Ty.

4 Multisemilattices

We begin by introducing some concepts and results.

4.1 Multi-supremum and
Multi-infimum

Definition 4.1 Let (A, <) be a poset. If B C A, we
denote by Cot! (B) the set of upper bounds of B and by
Cot|(B) the set of lower bounds of B. So, we have two
operators Cot!,Cot| : 24 — 24 defined as follows:

Cot'(B)= (b);  Coty(B) = [

beB beB

The next result is immediate.

ﬂ F(w Flwa)ws) € F(w) C Fajzas)

Lemma 4.2 Let (A, <) be a poset and () |,() T the
down and up-closure operators. Then, operators Cot!
and Cot| satisfy the following properties:

1. idy < CotyoCot!; idy < Cot!oCot|

2. Cotl =Cotl o () |= ()10 Cotl;
COfl = COtl o () T: () l o C()fl.

U

zeCot!(B)

3. Cot!(B) =

U @

zeCot | (B)

[x); Cot|(B) =

Our interest focuses on ordered structures where
unions of the kind U [z) and U(:U] play a relevant

el zel
role.

Proposition 4.3 Let (A, <) be a poset.
Minimals(X) = Minimals(X7) for oll X C A.

Then

Definition 4.4 Let (A, <) be a poset, a € A and B C
A.

e A multi-supremum of B is a minimal element
of Cot'(B). We denote by Multi-sup(B) the set

of multi-supremum of B.

o A multi-infimum of B is a mazimal element of
Cot|(B). We denote by Multi-inf(B) the set of
multi-infimum of B.

4.2 Ordered Multisemilattices

In this section we introduce the concept of multisemi-
lattices ase ordered structures.

Definition 4.5 An ordered V-multisemilattice is
a poset, (A, <), such that for every nomempty finite
subset, H C A we have that:

Cot' (H) = U{[z) | 2z € Multi-sup (H)} 2

For duality, we obtain the definition of ordered A-
multisemilattice.

The following proposition allow us to provide an
equivalent definition.

Proposition 4.6 A poset, (A,<), is an ordered V-
multisemilattice if and only if for every nonempty finite
subset H of A the following condition is satisfied:

If v € Cot'(H), then exists 2 € Multi-sup(H) such
that z < x

By duality, we obtain the result for A-multisemilattices.

2Notice that we don’t need that Cot!(H) # @.



FEXAMPLE 4.- Let A be the poset whose diagram is:

d C
L]
I
g
AN
NS
Diag;

This poset is a A-multisemilattice, but it is not a
V-multisemilattice. Indeed, given an arbitrary ¢;, we
have that ¢; € Cot!({a,b}), but there is not any z €
Multi-sup({a, b}) that fulfils z < ¢;.

4.3 Algebraic Multisemilattice

In order to introduce the algebraic characterization of
multisemilattice, we define new specific properties for
onds.

Definition 4.7 Let F be an ond with flexible arity in
A. We say that F has the property of comparabi-
lity if for all w € A* the two following conditions are
satisfied:

comp;: if z € F(w), then F(z,z) = {2} for allx € w.
compsy: if 21,20 € F(w) and F(z1,22) = {z1}, then
Z1 = Z92.

Proposition 4.8 Let F' be an ond in A of flexible
arity, weakly associative, commutative and idempotent.
If F satisfies the property of comparability, then

z € Flw) iff Flw) ={z} forallw € A* andzew (1)

Proof 3 It is obvious that (1) is sufficienct. Let us
prove the necessity. From corollary 3.9 we can assume
that = £y for all x,y € w. We have that, if z € F(w):

{2} & Plw2) & P(o)

where in T, we have made use of comp; and item 2 of
lemma 8.8, and in T4 we have made use of corollary 3.9.

The following example shows that the reciprocal is
not true.

EXAMPLE 5.- Let us consider the binary ond given in
the following table:

F a b c d
a {a} {c,d} {b,d} {b,c}
b | {c,d} {b} {a,d} {a,c}
c | {b,d} {a,d} {c} {b,a}
d|{bch fea) (b} (&)

F is commutative, idempotent, weakly associative and
it satisfies the property (1) given in the previous propo-
sition, but not the comparability because, for example,
¢ € F(a,b) but {c} # F(a,c) = {b,d} and, conse-
quently, F' does not satisfies comp;. Therefore, the
ond of flexible arity F” defined from F as: F'(a) = {a}
and F'(aw) = F'(aF'(w)) for all w € {a,b,c,d}* is the
counter-example we were looking for.

Definition 4.9 Let (A,<) be an ordered V-
multisemilattice. We define the ond of fle-
zible arity, F,, in A by F, (x1,...,2,) =

Multi-sup ({x1,...,2,}).

Dually, let (A, <) be an ordered A-multisemilattice
and we define the ond F_ in A by F (21,... ,2,) =
Multi-inf ({z1,... ,2n}).

From the definitions of F., and F,, we obtain the
following result:

Proposition 4.10 Let (A, <) be an ordered ©-
multisemilattice. Then, the ond I salisfies the com-
mutative, idempotent and comparability properties.

The following theorem establishes the more outstan-
ding properties of F\, and Fx.

Theorem 4.11 Let (A, <) be an
multisemilattice.  Then, given w =
where as # ¢ we have that:

ordered (-
ajag € A*

1. F,(w) = MinimalsF, (a1 F,(a2)) and F, (w) =
MaximalsF, (on F (ag)).

2. F (w) C m F_ (w1 F (w2))

waFE

Proof 4 To prove F,(w) = MinimalsF, (a1 F, (a2)),
from proposition 4.3, il is enough to prove
that F, (a1 F,(a2)) T= Cot'(w).  The inclusion
F (a1 F,(a9))T C Cotl(w) is evident. If z € Cot!(w)
then, by definition of F,, there exists z1 € F,(ag)
such that 21 < z and z € Cot'(ay21). Again by the
definition of F,, zo € F (a1z1) C F,(anF,(a2))
exists, where zo < z. Therefore z € F,(an F,(a2)) 1.
The proof for F, is similar. The item 2 is immediate
from 1.

The example given below shows that, in general, the
ond Fp is not associative in an ordered ®-multisemila-
ttice .

EXAMPLE 6.- The following diagram corresponds to a
V-multisemilattice where F|, is not associative.



and

{22}

because  F, (z1,F, (22,23)) =
F(F (21, 22),23) = {21, 22}

Proposition 4.12 Let (A,<) be an ordered ©-
multisemilattice. Then, Fg is weakly associative.

Proof 5 We prove it for © = V. Given that F, is
commutative, it is enough to prove that given w =
aray € A* where ag £ ¢, if F,(as) = {z}, then:

F(anF, ()= () F,(w1F, (w2))

w=w)wy
wo F#e

Since F,(a2) = {z}, we have that F, (a1 F,(ag)) =
MinimalsF, (on F,(a2)) and, in consequence, the re-
sult is an immediate consequence of theorem 4.11.

Now we can provide the definition of an algebraic
multisemilattice.

Definition 4.13 An algebraic multisemilattice,
(A, F), is a set A with an ond F of flexible arity in
A, that satisfies the following properties:

(MSR1) Commutative law.
(MSR2) Weakly associative law.
(MSR3) Idempotency law.
(MSR4) Comparability law.

Theorem 4.14

i) Let Mgy, = (A,<) be an ordered V-
multisemilattice. Then, (A,F,) where
F,(z1,...,2,) = Multi-sup ({z1,... ,2,})
is an algebraic V-multisemilattice, denoted by
Mg, .

i) Let Mgy, = (AF,) be an algebraic V-
multisemilattice. The set A with the order rela-

tion “r <y if and only if F (x,y)={y}” is an
ordered V-multisemilattice, denoted by MY,,.

For duality, the vresult is oblained for A-
multisemilattices.
Proof 6 i) Let us assume that Mg, = (A, <) is an

ordered \V-multisemilattice. The propositions 4.10
and 4.12 ensure that F,, verifies the axioms in de-
finition 4.18 and, therefore, MISY, = (A, F,) is an
algebraic \V-multisemilattice.

it) Conversely, let us assumne that My, = (A, F,) is
an algebraic V-multisemilattice. Firstlt, let us see
that < is an order relation:

- The idempotency law ensures that < is reflexive.

- The commutative law ensures that < is antisym-
metric.

- < is transitive because, for all x,y,z € A, if x <
y < 2 then T (a,y) = {y} and F,(,2) = {2}
and, from weak associativity, F,(F,(x,y),z) =
F, (x,F,(y,2)), that is, {z} = F (z,2).

Let us prove that, if v € Cot! ({x1,22}), then there
exists z € A, such that z <z and z € F, (11, 22).
Based on the hypothesis, F (x1,2) = {z} and
F,(z2,2) = {z} and, item 2 of lemma 3.8,
we have that F,(z1,22,2) = {x}. Therefore,
according to the property of weak associativity,
{z} C F (F, (x1,22),2), that is, there ezxists z €
F,(z1,x2) such that x € F,(z,2) and, from pro-
position 4.8, F,(z,x) = {x}, so, z < x.

Theorem 4.15

i) If Mz, = (A

, <) is an ordered ®-multisemilattice,
then (Mg, )° =

M, .

i) If My, = (A,F,) is an algebraic ©-multise-

milattice, then (Mg_)* = M.
Proof 7 The item i) is immediate. Let Mgy = (A, F,)
be an algebraic V-multisemilattice and (MSY)® =
(A, F"). Firstly, we will prove that F, C F'. If
z € F (w), by the comparability law, F, (x,z) = {z}
Jorallz € w and s0 z € C’OtLFv (w). Next, we prove

that z is a minimal element of the set CotLF (w). If
-V

271 € C’oflp (w) where z1 < z, we can ensure that
—*Vv

2o € F (w) exists, such that zo < z; < z. Then, by
comparability, zp = z and, consequently, z € F' (w).
Finally, we prove that F' C F,, that is, if z is

a minimal element in Cotl (W), then z € F,(w).
=F,

Since z is an upper bound (respect to the order <p )
of w, we have that F,(z,z) = {z} for all z € w
and, therefore, there exists z1 € F,(w) where z1 < z.
On the other hand, the comparability law ensures that
2 € C’otLF (w) and, as z is a minimal element of this
set, z = z_1 J

EXAMPLE 7.- Let us consider the poset given in exam-
ple 4 whose diagram is Diag;. This poset is not
an ordered V-multisemilattice. Indeed, the ond F|
is not weakly associative: F (a,F, (b,c)) = {¢} ¢
F (F, (a,b),c) =@.



4.4 Associative Multisemilattice

In this section we prove that, as indicated in the intro-
duction, the presence of associativity reduces multise-
milattices to semilattices.

Definition 4.16 Let (A, F) be a ©-multisemilattice.
We say that is associative if I has the associative
property.

Lemma 4.17 Let (A, I,) be a O-multisemilattice. A
is associative if and only if |F_ (w)| <1 for allw € A*.

An immediate consequence of the previous lemma is
the following theorem.

Theorem 4.18 Let (A, F.) be a O-multisemilattice.
Then A is a ©-semilattice if and only if F_ is associa-
tive and full. 7

Moreover, if (A, F,) is a bounded ©-
multisemilattice, A is a ©-semilattice if and only
if I, has the associalive property.

4.5 Submultisemilattices

Obviously, in a multisemilattice, we can found semilat-
tices as shows the following example. This justify the
name given to this structure.

EXAMPLE 8.- In the following diagrams, Diags repre-
sents a V-multisemilattice A, and Diagy and Diags

are semilattices of A.
1 1
NN

N d
e I P e

Diags Diag,

As usual, we can give the following definition:

Definition 4.19 Given a ©-multisemilattice (A, F,)
and a subset & # B C A, we say that B is ®O-
submultisemilattice of A if the restriction of F_ to

B, F,_,,, provides the structure of ®-multisemilattice
lo B.

A first approach to characterize submultisemilatti-
ces, could be the following:

A subset B of a ©-multisemilattice (A, F_) is a ©-
submultisemilattice of A if for all w € B such that
F_(w) # @ we have that F_(w) N B # @.

However this characterization is not the appropriate
one, as we can see in the following example:

EXAMPLE 9.- Let (A, <) be a multisemilattice whose
diagram is:

eO/r \0

en ffn
o
=
a b
\ /V
0
Diagg

and B = A — {d}. Although B satisfies that
F. ({x,y}) N B # @ for all x,y € B, it is not a ©-
multisemilattice.

Theorem 4.20 (Submultisemilattices characterization)
Let (A, F_) be a @-multisemilattice, & # B C A and
F! the restriction to B of F_ . Then, B is a
©-submultisemilattice if and only if for all a,b,x € B,

F! (a,x) = F!(b,x) = {z} dmplies that
x € F/ (F. (a,b),x)

Notice that the previous characterization means that
if, when checking the table given by the operator
F!, we observe that if F' (by,z) = I/ (b2, 7) = {2},
then there is an element y € F'(by,bz) such that
Fl(y,x) = {«}.

F’ T by
N {y,---}
b2 €T

EXAMPLE 10.- Let us consider A = {a,b,¢,d, e}, B =
{a,b,c} and Ba = {a,b, e} and the following onds:

F a b c d 3
a fa}  A{e,d} {e} {d} {e}
b [ {e,dy {6} {c} {d} {e}
c [ A{e} {c}  A{er A{e} A{e}
d {d} {a}  {e} {d} {e}
e fe} fe} {e} {e} {e}
F, /B, a b c F, B, a b e
a fa}  {c,d} {c} a fa} 2 {e}
b | fedr (b} o b | e (0 {e
c fc} feb  {c} e fe} {e} {e}
(B1,F,/p,) is a submultisemilattice of (A, F, ), while
(B2, F,/p,) is not a submultisemilattice of (A4, F,).

5 Multilattices

We have now all the neccesary elements to discuss the
study of ordered structure which is a generalization of
the lattice structure.



5.1 Ordered Multilattices

Definition 5.1 An ordered multilattice is a poset,
(A, <), such that for every nonempty finite H C A we
have that:

Cot!(H) = |_J{[2) | # € Multi-sup(H)}

Coty(H) =|_J{(] | z € Multi-inf(H)}

The following lemma, of immediate demonstration,
enable us to provide an equivalent definition of an or-
dered multilattice.

Lemma 5.2 A poset, (A, <), is an ordered multilat-
tice if and only if for every nonempty finite subset H
of A the following conditions are satisfied:

o If x € Cot!(H), then erists z € Multi-sup(H)
such that z < x.

o Ifx e Cot (H), then exits z € Multi-inf(H) such
that v < z. 3

EXAMPLE 11.- Diagram Diag is an infinite multilat-
tice, and diagram Diagg shows the set of subchains of
“abab”, which is a multilattice but not is a lattice.

ay by
ao bo \ /
€
Diagr
1 \ Diagsg
do
dy
d,

Diagg

5.2 Algebraic Multilattices

Definition 5.3 Let (A, <) be an ordered multilattice.
We define F,(x1,...2,) = Multi-sup{z1,...z,} and
F (z1,...2,) = Multi-inf{zq, ...z, } in A.

3This is the definition of multilattice given by Hansen en [§]

The next lemma is an immediate consequence of the
ordered multilattice definition:

Lemma 5.4 Let (A, <) be an ordered multilattice.
Then, (A, <) is a lattice if and only if for all w €
A* ~{e} we have that F,(w) and F, (w) are unitary
sets.

Diagg shows that in the previous lemma is not pos-
sible to make weaker the hypothesis that (A, <) is an
ordered multilattice, that is, if A is an arbitrary poset
and F, and F, have as images unitary sets, we can not
ensure that A is a lattice neither a multilattice.

Lemma 5.5 Let (A, <) be an ordered multilattice.
Then the pair (F,,F,) satisfies the absorption law.

Definition 5.6 An algebraic multilattice,
(A,F,,F ), is a set A with two onds F, and F,
i A, that verify the following axioms:

(MR1) Commutative laws.

(M R2) Weakly associative laws.
(MR3) Idempotency laws.

(M R4) Comparability laws.

(M R5) Absorption law.

Lemma 5.7 Let F and G be two onds in A such that
they verify the absorption law. Then:

1. F(a,b) = {a} if and only if G(a,b) = {b}.
2. F and G satisfy the compy property.

Proof 8 1. is immediate. The proof of 2 is as follows:
If z € F(w), then according to the absorption property
we have that G(x, z) = {z} for allz € w, and according
to item 1, if we apply again the absorption property, we
have that F(z, z) = {2} for all z € w.

Notice that from this result, we can modify the de-
finition 5.6, by substituting the laws of comparability
given in axiom (M R4), by compa.

Theorem 5.8

i) Let M = (A, <) be an ordered multilattice. Then
(A, F,,F) is an algebraic multilattice denoted by
M®*, being F,(x1,...2,) = Multi-sup{z,...2,}
and F (x1,...2,) = Multi-inf{zy,...2,}.

it) Let M = (A, F,,F,) be an algebraic multilat-
tice. The set A with the order relation “x <
y if and only if F,(x,y) = {y}” * is an ordered
multilattice, denoted by MP°.

iii) Given the ordered multilattice M = (A, <), we
have that (M%) = M.

40r, by lemma 5.7, x < y if and only if F, (z,y)) = {z}



iv) Given the algebraic multilattice M =
we have that (M°)* = M.

(A B, F),

Proposition 5.9 Let (A, F,) and (A, F,) be multise-
milattices. Then, (A, F,,F,) is a multilattice if and
only if (F,,F,) it satisfies the property of absorption

5.3 Associative multilattices

In this section we will prove that, as in the multisemi-
lattices case, associativity reduces the multilattices to
lattices.

Definition 5.10 Let (A, F,, F,) be a multilattice. We
say that A is an associative multilattice if F, and F',
satisfy the associative property.

Theorem 5.11 Let (A, F,,F. ) be a full multilattice.
Then, the following conditions are equivalent: 1) F,
is associative; 2) F, is associative; 3) (A, F,,F,) is a
lattice.

Proof 9 It is immediate to prove that item 3) implies
items 1) and 2). To prove that item 1) implies item 3)
(and, by duality, that item 2) implies item 8)) it is suf-
ficient to verify that if F, is associative and full, then
F,(a,b) and F, (a,b) are unitary sets for any a,b € A.
F,(a,b) is unitary by lemma 4.17. Let us see that
F (a,b) is also unitary:

Since F (a,b) # @, if ¢,d € F (a,b), we have
that ¢,d € Mazimal(Cot|({a,b})). On the other
hand, a,b € Cot! ({c,d}) and, since F,(c,d) is unitary,
x = sup({c,d}) exists, and therefore x € Cot|({a,b}).
Also, since ¢ <z and d < x, the maximality of ¢ and d
ensures that ¢ = x = d. Finally, the lemma 5.4 ensures
that A is a lattice.

Corollary 5.12 Tet (A F,,F ) be a bounded multi-
lattice. A is a lattice if and only if, is associative.

5.4 Submultilattices

Definition 5.13 Let (A, F,, F ) be a multilattice. We
say that @ # B C A is a submultilattice of A if
(B, F,, 5, F, 5) is a multilattice.

Theorem 5.14 (Submultilattices characterization)
Let (A,F,,F ) be a multilattice, and @ #+ B C A.
Then, B is a submultilattice if and only if for all
a,b,x € B the two following conditions are satisfied:

sla,z) = F, p(byx) = {x} implies that x ¢
v/B(FV/B( b),x)

spla,z) = F  p(bx) = {x} implies that = €
A/B( F,/p(a,0), )

n

6 Comparative Study

We finish this paper by comparing our definitions with
those of Benado in [1] and Hansen in [8] (but adapting
the notations to those introduced in this work), in order
to confirm what we stated in the introduction.

Definition 6.1 (Benado[1]) An algebraic multi-
lattice, (A,F,,F,), is a set A with two operators
F,:AxA =28 and F, : Ax A — 24, that sa-
tisfies: (MI) Idempotency laws, (MII) B-associative
laws, (MIII) B-absorption law, (MIV) Commutative
laws and (MV)

(a) Let a,b € A be such that F,(a,b) # &, and let
:pyeF(ab)beauchthatF(,y) #+ . Ifa:;éy,
then z # x,y for each z € F,(z,y).

(b) Let a,b € A be such that F (a,b) # &, and let
m,yEFA(a,b) be such that F, (x,y) £ @. If x # y,
then z # x,y for each z € F, (:13 y)

Definition 6.2 (Hansen[8]) An algebraic multi-
lattice, (A, F,,F ), is a set A with two operators
F,:AxA =24 and F, : Ax A — 24, that verify
the following azioms: (AI) Idempotency laws, (AIT)
Commutative laws, (AIIT) Absorption law, (AIV) H-
associative laws and (AV)

Let a,b € A be such that F, (a,b) # & (resp.
F (a,b) # @). Then for each z,y € F,(a,b),
F (x,y) £ @ andx € F,(a,F, (x,y)). (resp. for each
myeF(ab) (my)%@andazeF(aF(xy)))

Notice that in our definition 5.6 of an algebraic
multilattice, the transitivity of the relation “a >
b if and only if F,(a,b) = {a}” is an immediate con-
sequence of the weak associativity of F,,. This has
allowed us to define algebraic multisemilattices, since
no property on F, is required.

Tn the definition of Benado [1], it is necessary to use
the B-absorption law (ORIII), the commutative laws
(MIV), and the law (9V) to guarantee the transitivity
and, therefore, the operators F, and F, are required.
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