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1. Introduction

The classical inequalities of Hardy, Capson
and Hilbert [HLP] describe the norms of certain
matrix operators on the sequence space Kp. In
the present paper, we address the problem of
finding the norms of these operators when ¢, is
replaced by the Lorentz sequence space d(w,1)
determined by a weighting sequence (wy,).

First we establish the conditions under which
the norm of an operator on d(w, 1) is determined
by decreasing, non-negative sequences. For op-
erators satisfying these conditions, a pleasantly
simple general theorem is available. In fact, our
problem reduce to the study of a certain se-
quence, as follows. Let the operator have ma-

trix (b;;), and let u; = sz‘bi,j- Write W,, =

=1
w1 +...+wy, (and U, similarly). Then the norm

of B is the supremum of —. This amount to

saying that is determined by elements of the form
(1,...,1,0,...).

However, evaluating these quantities in par-
ticular cases can be far from trivial, and we turn
to the problem of doing so for the classical op-
erators mentioned above. The problem is only
complete when we have chosen the weighting se-
quence, and we consider two natural choices, de-

fined respectively by w, = - and W,, = n'P.
n

Each operator then presents the problem of eval-
uating specific suprema, usually concerning par-

tial sums or tails of series. .
Typical results are as follows. For w, = —
n
the Cesaro operator has norm &(1 + p). By

contrast, for W,, = n'7P, the norm is ~. For
p

when

the Copson operator, the norm is

Wy, = " or W,, = n'~P. For the Hilbert opera-

1
tor, with w, = — the norm is (which is
n

sin pm
analogous to the /£, case).

U,
In certain cases, the bounds of (Wn) coincide
n

with those of (ﬁ) Though the sequences in
w

question are often?ncreasing or decreasing, it can
be substantially harder to prove this fact than t o
show directly that the limit (or the first term) is
the supremum. Also, small changes to the opera-

n

tor, or to (wy,), are enough to change (W) from
n

an increasing sequence to a decreasing one, or

(worse) to one that decrease first, then increase,
with obvious implications for the supremum.

The case of d(w,p), with p > 1 presents sub-
stantial additional features. Some results for this
case are given in [Lash] and [JL].

2. General Matrix Operators

For a sequence x = (x,), we define |z| and
the relation z < y in the obvious pointwise way.
We denote the e; the sequence having 1 in place
j and O elsewhere. Let w = (wy,) be a decreas-
ing, non-negative sequence with 1}1_)120 wy, = 0 and

o0

Z wy, divergent. Write W,, = wi+wa+. ..+ wy.
n=1

The Lorentz sequence space d(w, 1) is the space
of sequence x with

)

_ *

w,l = Wn T,
n=1

||



finite, where (z}) is the decreasing rearrange-

ment of |x,|. For such x, one has W,z} — 0
as n — 0o, and hence by Abel summation

oo
l]lw1 = Z Wi (2, — x;kwl)-
n=1

By Abel summation, this equals

00
Z wn+1 X*

where X' =z} + 25 + ...+ z}, (this is where we
need the condition w, — 0). Hence if X} < Y*
for all n, then ||z|lw1 < ||yllw,1. (By Ky fan’s
Lemma [GK, III.3.1], the same is actually true
for symmetric Banach sequence spaces gener-
ally.)

Now consider the operator B defined by Bx =

oo

y, where y; = Zbi,jxj.
j=1

the norm of B as an operator from d(w, 1) into
itself. We assume throughout that
(1) bi,j >0 for all Z,j
This implies that |B(z)| < B(|z|) for all z,
and hence the non-negative sequence x are suf-
ficient to determine ||B||y,1. A much more del-
icate problem is to find conditions under which
the norm is determined by decreasing sequence
x. The next result gives a theoretical answer to
this question. However, for the particular oper-
ators considered below, the required property is
very easily seen directly, whithout this result.
Proposition 1: Suppose that (1) holds, and
that
(2) for all subsets M, N of N having m,n ele-

ments respectively, we have

) me‘éi zn:bm’

ieEM  jEN i=1 j=1

Then ||B(z)||w1 < [|B(z*)|lwa for all non-
negative elements x of d(w, 1). Hence decreasing,
non-negative elements are sufficient to detemine
1 Bllus.

Proof. Let y = Bz, z = Bz*. We show that
Y.ty <zi+...4+ zm. (Vm)

As remarked above, it follows (in any symmetric
Banach sequence space) that |y|]| < ||z]|. (For
this, we do not need to know that z; are in de-
creasing order, though we shall see that this is

in fact implied by (2)). Let y; = y,(;) and let
M = {o(i) : 1 <i<m}. Also, let 27 = z(
Then

m
Doy =
=1

By Abel summation (since z} — 0), this equals

5 (z 5 b) (s — )

i€m jEN (n)

3

IVED ) SURIEES 9l po{H

1€Em €m j=1 7j=1 \iem

where N(n) = {7(j) : 1 < j < n}. Meanwhile,

Zzi:izbﬁ —i(ii%) Ty —Tpt1)s

i=17=1

the required inequality follows from (2).

Note that condition (2) implies, in particu-
lar, that b; ; < by for all ¢,5. However, ma-
trices satisfying condition (2) are by no means
instantly recognisable. The next result provides
sufficient conditions that are transparently sat-
isfied in many cases of interest, including those
considered below. Write

n m
rin = bij ., cmg =) bij,
j=1 i=1

the partial sums along row ¢ and column j re-
spectively. Consider the following conditions:
(3) 7in decreases with i for each n.
(3*) b;,; decreases with ¢ for each j.
(4) ¢, decreases with j for each m.
(4%) b; ; decreases with j for each i.
Clearly, (3*) is stronger than (3), and (4%) is
stronger than (4).

Proposition 2: Condition (2) implies (3) and
(4). Conversely (3) and (4*), or (4) and (3*),

imply (2)

Proof. Suppose that (3) is false, so that
Tmn < Tm+ln for some m,n. Let M =
{1,2,...,m—1,m+1}, N={1,2,...,n}. Then

2D bij= Znn>2nn—22bm

€M jeN ieM i=1j=1

so (2) fails. Similarly for (4).

Now assume that (3) and (4*) hold, and con-
sider M, N as in (2). For fixed i, the largest n
terms b; ; are the first n terms, so

Zb2]<zb23—rln

JEN



In the same way, by (3),

m n
Zﬁnﬁzrm—zzb,]
1€M i=1j=1

Note. A diagonal matrix, decreasing along
the diagonal, satisfies (2) but not (3*) or (4¥). A
matrix that satisfies (3) and (4), but not (2), is

1 1 0
1 1 0 .
0 0 2

For this matrix, if x = ez, then 2* = ey, and
(with the above notation) yj = 2 while z; = 1.
Condition (3*) clearly implies that B(x) is de-
creasing for any non-negative z, while (3) im-
plies that B(x) is decreasing for decreasing, non-
negative x, since by Abel summation again,

E :Tw

— Tj41)-

(Hence the z; in Proposition 1 are decreasing.)
We need one more condition ensuring that at
least finite sequences are mapped into d(w,1).
Now b; 1 = y;, where y = B(e;). Assuming (3),
this decreases with ¢, so the following condition
is equivalent to B(e;) being in the space d(w, 1):
[e.e]

5) Z w;b; 1 is convergent.
i=1
By Abel summation, this series can be rewrit-
o

ten Z Em1 (W — Wt1). Given (4), the same

m=1
[e'S)

is true with ¢,, ; replacing ¢y, 1, so that Z w;b;
i=1
is convergent for each j. We define

sz i,

u]—uJBw

Formally, (u;) is the sequence B*(w). Condi-
tion (4) implies that it is decreasing. Note that
ur = ||B(e1)|lw, but for j > 1, u; need not
equal ||B(e;j)||w, unless (3*) holds. The correct
interpretation of u; (or rather U;) emerges in the
proof of the next result, our basic theorem on
general matrix operators.

Theorem 3. Suppose that B satisfies con-

oo

ditions (1), (2), (5). Let u; = Zwibm and
i=1

U, =u1 4+ ...+ u,. Then B is a bounded op-
erator on d(w, 1) if and only if (%) is bounded

n
above, and

Un
=sup —.
n>1 W,

1Bfw,1

This norm can be evaluated by considering only
elements of the form e; + ... + e,.

Proof: Let (x;) be a decreasing, non-negative
sequence. Then (y;) is also decreasing, so

[ee)
IBzllwg = Y wiys

[o.¢] o.)
= D_wi) bijz;
22

while

[ ]lw,1 = ZW

— Tjt1).

U,
Let M = sup —. Then, clearly,
n>1 w,

1B[lw,1 < M[|u,1-

Further, if x = e; + ... + €y, then |[z|w1 = W),
and ||Bx||w,1 = Uy, so such elements suffice to
show that || B||w1 = M.

In certain cases, it is enough to consider the

sequence (ﬁ) instead of (=), because of the
w

well-known facts listed in the followmg lemma.
Lemma 1. (i) If m < Un < M for all n, then
U n
mgﬁngforalln.
.. Un,
If (—
() 1 (2"
. Un
so is ( Wn)

U
(iii)IfﬁeMaanoo,then—nHMas
w n

) is increasing (or decreasing), then

n
n — oo (also with L = o0).
Proof: Elementary.
u
Hence, for example, if (—-) is increasing and

tends to the limit M, thennHBHw,l = M. The



same conclusion holds provided that we can show

u U

that — < - < M for all n. We shall see that
wy T wy

is some cases, this is much easier than showing

that the sequence is increasing.

1
3. Partial Sums and Tails of » —
n

The following mostly well-known facts will be
used repeatedly in evaluating the suprema and
infima arising in our chosen particular cases. Let
p > 0, and write

=

noq
= —a
Yn /n it

and as usual X,, =21 +...+ z,, etc. For p <1,
the usual integral comparison gives

Y2+ ...+ yn < X <Y,

or

1 nl—P

1—p

(P -1)< X, <

Y

-Pp

—

X
hence =2 — 1 as n — oo. We need to know also
n

X
that ?n is increasing. The following is the key
lemma.

Lemma 2: With y, as above (for any p > 0),
nPy, decreases with n and nPy, 1 increases with
n.

Proof: Write s,, = nPy,. Then

n+1 n dt

Snt1 = (n—i—l)p/ tlpdt — (n—i—l)p/

n

1 t+1
Forn—lgtgn,wehave(n+)S(—I)v
n

1)P p
(t+ 1) tp
larly for the second statement.
Proposition 4. Let 0 < p < 1 and let X, =
"1 X,
Z —. Then
p nl-»p

=17

Hence sp41 < s,. Simi-

increases and tends to

Proof: By Lemma 2, I increases. Hence, by
Yn
Lemma 1 (ii), =" increases. The limit follows

n
from the inequalities above.

n—1 (t + 1)1)'

We now consider the tail of the series for £(1+
p). For the tail of a series, the analogous result
to Lemma 1 (ii) is the following.

Lemma 3: Suppose that x, > 0, y, > 0 for

oo o0

all n and that Z Ty and Z Yn are convergent.

n=1 n=1
o0
Let Xy = 3 a;, similarly V). Tf (*%) is in-
= Yn
. . . X
creasing (or decreasing), then so is (—>).
Yin)

Proof: Elementary.
Proposition 5. Let p > 0 and let X(,) =
o
1
Z T Then nPX(, is decreasing, (n —

k=n
1
1)? X, increasing. Both tend to — as n — oo.

Proof: Let z,, = py and

n 1
Yn = A_l 7t1+pdt.

1
Then Y(,,11) = ——. By the usual integral com-
pnP
parison,
1 1
— <X < 7,
pnP p(n—1)P

which implies the stated limits. By Lemma 2,
( In X(n)

) is decreasing, so by Lemma 3, =
Yn+1 Y(n+1)

@ is in-
Y(n)
creasing.

Remark. This is stated without proof in
[Benn 2], Remark 4.10.

pn? Xy, is decreasing. Similarly, <

4. The Cesaro Operator and Its
Transpose (Copson Operator)

The Cesaro operator A is dedined by y = Az,
where

1
Yn = ﬁ(:cl—i—a:g%—...—i—xn).
It is given by the Cesaro matrix:

1
a; 5 = /)
0

for 7 <4
for j>1



This is a lower triangular matrix. In our terms,
it satisfies conditions (3) and (4*). When A is
regarded as an operator on ¢, (where p > 1),
Hardy’s inequality (see e.g. [HLP], [Benn 1] and

[LD]) states that ||A||, = Ll (The element e
p

is enough to show that A does not map ¢; into

0.)

o0
. . w
Condition (50 requires convergence of Z ?n,
. . k:1
and u, is given by
oo
Wk
Uy = —.
k=n k
For the weighting sequence w,, = —, our ear-
n

lier results provid an immediate solution to our
problem.
Theorem 6: Let A be the Cesaro operator,

1
and let w, = — where 0 < p < 1. Then
n

[Allw,1 = &(1 + p).

Wi - 1
Proof: We now have % B

X () in the notation of Proposition 5, which tells

SO Uy =

u
us that nPu, (= —) is decreasing and tends to
Wn,

1
—. By Lemma 1, it follows that
p

Ul
Allw1 = — =£(1 .
[Alho1 = 2% = €1 +p)

The Capson operator C' is defined by y = Cz,
where
[e.e]
Lk
.

k=n

Yn =

It is given by the transpose of the matrix of the
Cesaro operator:

cimj = {

This is an upper triangular matrix satisfying (4)
and (3*). The classical inequality of Copson
[Cop| states that ||C||, = p as an operator on
tp

for 1 <j

OS] =

for i > j

A pleasantly simple statements can be made
about the norm of C' for general (w,). With the
notation of section 2,

Wn

Up = — (w1 + ... +wy) = —.
n n

Following [R], we define the 1-regularity constant
of (wy,) to be

W,
r1(w) = sup
n>1 NWn

and say that w = (w,,) is 1-regular if this is finite.
Proposition 7. If w = (wy,) is 1-regular, then
C maps d(w, 1) into itself. Also, we have

[Cllw,x < 71(w).

Proof. Since

Uy, = Tn < ry(w)wy, (Vn),

then by Theorem 3 and Lemma 1 (i), it follows
that [|Clly1 < 71 (w).
Proposition 8. If

1 W
Sup —— e
YW, =k

< 00

then the Capson operator C is a bounded oper-
ator from d(w,1) into itself. Also, we have

1€

1 &KWy
1 = Sup — —.
v n>1 Wn kzz:l k
Proof: Since

s 1 W,
Up = chmwj = (wi+...+wy) = —,
= n n

then, by hypothesis and Theorem 3, it follows

that
1 & W
w,l = SUpP —— e

Wn i

1€

Theorem 9. Let C' be the Capson operator,
1
and let w, = > where 0 < p < 1. Then
1
C = —
€l = 1=

Proof: With our standing notation,

w, nw, niP’

Our W, is the X,, of Proposition 4, which tells
us that . The

n .
increases and tends to
nl-p —-p



statement follows by (ii) and (iii) of Lemma 1.
1
- ).
p
1
Remark. When p = 1, so that w, = —, we
n

(Of course, this also shows that r(w)

have

Un
— =W, — o0 as
Wn,

n — 00,

so C is not a bounded operator on d(w,1), al-
though of course it satisfies condition (5).

5. The Hilbert Operator

Two versions of the Hilbert operator, which we
denote by H; and Hy respectively, are given by
the matrices

1 1

These are Hankel matrices satisfying (3*) and
(4*). Hilbert’s inequality (see e.g. [HLP]) gives
the norm of both operators on ¢, (for p > 1) as

T
7/ sin(—).
P 1
We start by considering H;, with w,, = vt In
our usual notation, we have

> 1

w =Y Fr

=1

Theorem 10. With u, defined in this way,
1

we have sup nPu, = — . Hence if w,, = —,
n>1 sin prw np

where 0 < p < 1, then

™

[H w1 = ——
sin pm

Proof: By Comparison with the well-known
integral

oo dt
/ S — 0<p<1),
o tP(t+c¢) Psinpr

we have u,, < , hence

~ nPsinpr

nPu, <

sin pr’

Also, we have

. _/oo dt
" Jo t(t+n)

and

/1 dt_oftdt 1
o tPt+n) ~ Jo nt?  (1—p)n’
Hence

™ 1

Py > _
i = sinpr (1 —p)nl-p’

which proves the stated supremum. Then by
Lemma 1, we have

™

[H s =
sin pr

Remark 1. When p = 1, we have

> 1 1 1 1
L R A
tn gz(z—i—n) n( tat —|_7”L)7

hence nu,, — oo as n — oo, and H; is not a
bounded operator on d(w, 1).
Remark 2. The operator Hy (with w, =

1
—p) is much harder to deal with. Clearly,
n

un(Ho,w) = up—1(Hy,w) for n > 2, and
ui(Hp,w) = £(1 4+ p). The limit of nPu,, is still
,L, but this less than £(1 + p) when p is
sin pr
less than approximately 0.32. It is quite easy
to show that nPu, < T

for large enough n.
npm

Computation indicate that nPu, either increase

throughout, or decreases for a certain number of

terms and then increases. This, if proved, would

imply that ||Ho||w,1 is the greater of £(1+p) and
7

sinpm’
We turn to the case where w, is defined by
W, =n'"P (where 0 < p < 1, so that

n o 1_
wp=n'"P—(n-1)1"" = / L.
n—1 tP

Note first that, with the notation of section 2,
oo o0
Un=> rigwi =Y Wi(rin — ris1n)-
i=1 i=1

This time, we consider H| first, since it turns out
(in the same way as in Theorem 9) that we have
solved the problem for this operator already! For
Hjy, we have:
Theorem 11.
n'~P, we have

With w,, defined by W,, =

s

[Hollw,1 = Z——.
sin pm



Proof: We have

1 1
Tin=—-4+...+ ——
o i+n—1
hence
1 1 n
Tin — 15 = - — =
©,n i+1n i itn (Z T n)
and by the above
& - 1 i 1-p i
W, nl=p & k(k +n) = k +n)
This is previsly the Un of Theorem 10, so we
Wn,
have
T
[Hollw1 = ———.
sin pm

For Hy, we have instead

1 1 _ n

I R

so that
W, Zl (i+1)(i+n+1)
Theorem 12. With w, defined by W, =
n'~P, we have
T
[Hollwy = —-
sin pr

Proof: The norm estimation only requires
slight adaptations to the proof of Theorem 10.
Clearly,

Un w1
W, = iP(i+n)

As seen in Theorem 10, this is not greater that

,ﬂ- . Foran N > 2,
sin pr
[e'S) 1— [e'S)
2 () Y
i=N—-1 I+ 1)@ +n+1) i=N— 1
(o)
>
- ZZ iP(i+n)
As in Theorem 10, we see that
0 1
np/ dt — -W as n — oo,
N tP(t+n) sin pm
s

from which it follows that || H|lw1 = — :
sin pr

G+1)(i+n+1)
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