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Abstract:-In many stochastic moddls, the assumption of independent among the random variables (henceforth
r.v.s) is not plausible. In fact, increase in somer.v.s are often related to decrease in other r.v.s and the assumption
of pairwise negative dependent is more appropriate than independent assumption. In this paper strong laws of large

numbers (SLLN) are obtained for sum é X, under certain condition where { X, ,n 3 1} isasequence of pairwise

negatively dependent r.v.s.
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1 Introduction
Let {X,,n®% be a sequence of integrable r.v.s
defined on the same probability space and put

n
S, =a X, X _=
i=1 n
certain conditions, modified the SLLN of Kolmogrov
(Th.5.4.2 of Chung (1974)) and the SLLN of Lander
and Rogge (1986) for pairwise independent r.v.s
which are not necessarily identicaly distributed and
satisfy certain - moment conditions. Bozorgnia,
Patterson and Taylor (1996) obtained the SLLN for
sums of an array rowwise negatively dependent r.v.s
under certain conditions. Amini (2000) has proved the
SLLN for specia negatively dependent r.v.s (Theorem
5.5) and for weighted sums of uniformly bounded
negatively dependent r.v.s (Theorem 3.7). He has also
proved the WLLN for special pairwise negatively
dependent r.v.s (Theorems 5.6,5.7,5.8). In this paper,
we modified the theorems of SLLN Chandra (1992)
for pairwise negatively dependent r.v.s that satisfy
certain moment conditions.

Chandra (1992), under

Definition 1 The random variables X,,---, X
(n3 2) are said to be pairwise negatively dependent
(henceforth pairwise ND) if the following inequality
holds,

P(X; >x,X; >%;) £ P(X; >x)P(X; >x;) (2)

n

foral x,x, T A*,it j.Itcanbeshown that

(1) isequivaent to

P(Xi £x, X, £x,) EP(X; £X)P(X; £%;) (2
forall x,x; T A* i1 j.

Definition 2 The random variablesX -, X,
(n3 2) are said to be negatively associated (NA for
short) if for every pair of digoint nonempty subsets
A, Aof {1,..,n,

Cov(f,(XiT A). (X iT A)ED (3
whenever f and f, are monotone in the same

direction in each coordinate, the remaining n- 1 kept
fixed and such that E(f7(X,,il A))<¥ and

E(f2(X, 0T A))<¥.

Theorem 1 (Amini (2000)) Random variables
X,, X,are ND if and only if for every function f and
g that are monotone in the same direction,

Cov(f(X,),9(X,)£0.

Corollary 1 1f X,--+, X, (n3 2) are NA r.v.s then
they are pairwise negatively dependent r.v.s.



Definition 3 A sequence{ X, ,n® B of r.v.sissaid to
be Cesaro uniformly integrable if

lim supin* 4 E(X,J1(X[>N)T=0 (@

Definition 4 A sequence {a,,n 3 1} of non-negative
reals is said to be Cesaro bounded if the sequence
{n"*(a, +---+a,)}isbounded.

2 Strong Convergence
In this paper Cstand for a generic constant not
necessarily the same at appearance. Also { f (n)} will

stand for an increasing sequence such that
f(n)>0for each n andf(nN)® ¥ . The next

theorem can be obtained from the argument of Csorgo
et al (1983).

Theorem 2 Let {X,,,
negative r.v.swith finite Var (X ,) . Assume that

n3 1} be a sequence of non-

(i) SUpea E(X,)/ f(n)u— Asay) <¥;

w1 k=1

(ii) there is a double sequence {r ; } of non-negative
real such that

Var(s,) £ a

i=1l j
(iii) g g ry /(f( UjZ<¥,iUj=max(,j).
i=1 j=1
Then [S(n) - E(S(n))]/ f(n) ® Oamost surely as
n® ¥.

ry foreach n3 1;

Qo

1

The proof of Theorem 2 can be found in Chandra
(1992).

Proposition 1 Let {X, ,n®3} be a sequence of
pairwise ND random variables. If {f ,n3 1} be a

sequence of Borel functions all of which are monotone
increasing (or all monotone decreasing) then

{f,(X,),n3 1 isasequence of pirwise ND random
variables.

The proof of Proposition 1 can be found in Amini
(2000).

Corollary 2 Let {X,,n3%} be a sequence of

pairwise ND random variables. Then { X ,n3 1} and

{X, ,n3 I} are two sequences of pairwise ND random
variables where X and X, are positive and negative

partsof random variable X respectively.
Theorem 3 Let {X,,n% 1 be asequence of pairwise
ND r.v.swith finiteVar (X ,) . Assume that

(i) SUpea E(X, - E(X, )|/f(n)u<¥

w1l ex=1
and
(i) é(f(n))'ZVar(x )<¥,
Then [S(n) E(S(n))]/ f(n) ® Oamost surely as
n® ¥.

Proof Put Y, =(X, - E(X,)) andZ, =(X, - E(X,))
(n3 1). Itissufficienttoshowthatas n® ¥ ,
(f(M)*& (Y, - E(Y)) ® Oas,

i=1
and

(f()*4 (Z - E@) @ Oas )

i=1
SinceVar (Y,) £ E(Y,?) £ Var (X,)andE(Y,) £
EX,- E(X,) (n3 1), it follows that condition (i) of
Theorem 2 isvalid for {Y,} . Similarly, it is valid for
{Z,.} . Under pairwise ND condition we have

n

Var(Q Y)EAVar(Y)EQ Var(X,) =4 A r,

i=1 i=1 i=1 i=1 j=1
" n31, where r; =Var(X;)and r; =0for each
it j.Itfollowsfrom Theorem 2 that

—a (Y, - E(Y,)) ® O  amost surely.

f(n) =
Replacing X, by W, =- X, and Z, =(X,, - E(X,))
by Z, =(W, - E(W,))" one gets the second part of
(5). Since

0( E(Y)) - a(Z E(Z)

S, E(S,) _ 1
1Q )
(é} E(Y)- & E2)
1Q
we have



S, - E(S)
f(n)

® 0 as

Proposition 2 Let { X,,,n 3 1} be pairwise ND r.v.s.
Suppose {B,,n3 1} is a sequence of semi intervals
-¥,x,] ( (-¥,x)), [X,,¥)or (X,,¥)), then
{X (X, 1 B,),n3 Jisasequenceof pairwise ND
I.V.s.

Theorem 4 Let {X,,n3 1 be a sequence of
pairwise ND integrable random variables such that
there is a sequence {B,,n 2% 1} of Borel subsets of
A'that are semi intervals as (-¥,X,], ((-¥,X,),
[X,,¥)or (X,,¥)) satisfying the
conditions (a)-(d):

following

@ gP(an BY) <¥;

n=1

) & E(X1(X,1 B%) =o(f(n);

© A (Fm)2Var(X,1(X,1 B)<¥;
and

@ supl& E(X, ) (X, T B) / f(n)] <¥:

n31 =

here B;is the complement of B,. Then
[S(n) - E(S(n))]/ f(n) ® Oalmost surely as n® ¥ .

Proof Let Y, = X_I(X,T B.), n3 1. By (c) and (d),

Theorem 3 applied to{Y,} yields 2’) g(\( - KY))®0

f() iz

By (b),
(FN)*Q (Y - E(X,))® 0 almost surely as N® ¥ .

i=1

Sincerv.s{X,,n% L and {Y,,n3 1} areequivalent

amost surely as n® ¥. we get

then by (@) and the first Borel-Cantelli lemma, the
desired results follows.

The next theorem, our first main result, is an extension
of classical Kolmogorov SLLN for pairwise dependent
r.v.s (Chandra 1992).

Theorem 5 Let {X,,n3 1 be a sequence of
pairwise ND rv.s, put G(X) =supP(X |3 x)and
ndl

¥
h(x) =supP(X, £ - x)for x3 0.1f (3(X)dx <¥
0

n3l
and X""h(x) ® Oasx® ¥ for some r >1, then
lé c (X, - E(X,))® 0 amost surely asn® ¥
n

i=1

for each bounded sequence{c,} .

Proof It is suffices to prove the result for ¢, =1. To
this end, we use Theorem 4 with B, = (- ¥ ,n] for all
n3 1. Condition (a) follows since

¥ ¥ ¥

a P(X,1 B £3 P(X,|>n) £ G(n) <¥.
n=1 n=1 n=1

To verify condition (b), note that for any non-negative
random variables Zand a 2 0

E(ZI(Z3a))=aP(Z%a)+ z‘)o(z > x)dx.
Hence
E(X,1(X, >n))£nP(X,|2 n) +i‘53(x)dx® 0,

so that condition (b) holds. Obviously, condition (d)
holds. Thus, it remainsto verify condition (c).

¥ ¥ ¥
a e (X, £n) = 2 POCI(X, £r)>Xdx
=1

n=1 0

- ¥ 2§ (P(X, <-Vx)+ P(x < X, £ )k

+ z‘f(xn <-x)dx]

we have
i i+l

5 n'zé P(X, <-VX)dX £ 28 § n? Avh(y)dy,

n=1 i=1 n=1 i

sincey""'h(y)® 0, for every e >Othere exist
M > Osuchthatif y> M then y*"h(y) <e.Hence

¥ i+1 M i i+1

aan?yhydy £a an? yhly)dy

i=1 n=1 i i=1 n=1 i



i |+l ¥ i+1 an-
N2 yh(y)dy+ a ovl”h(y)dy i

1 i =M+

th
s
Qo-

I
1N

n

|+l

n @/h(y)dy + a e( @a+@a- —)) <¥,

i i=M +1

£

.moz
Qo-

1
=

1
iy

n

moreover we have

a n dP(X <-x)+PH/x < X, £ n))dx

n=1

gé n? 2 P(X,

n=1

- )+P X ))dy

E&n? oayG(y)dy San” o4yG(y)dy

n=1 i=1 n=i i-1

2p oyG(y)dy+a 4 ds(y>(o—>dy<¥

i=2 i-1

Theorem 6 Let {X,,n3 1} be pairwise ND r.v.s
and g, :(0,%¥) ® (0,¥)besuch that for each n3 las
X increase

(X)

h,(x) =2 (6)

¥
andC =inf limh, (x) >0. Assumeé E(g2( X)) <¥.
Ml x@0" n=1

Then [S(n)- EESN)/ f(N®0 amost surely as
n® ¥.

Proof We use Theorem 4 with B =(-¥,a,],
a,>0. To verify condition (a) note that

a P(X, >a)£a P(g,(X.) 2 g.(a,) <¥.
n=1
Next, note that

5 E(X, 1 (X, >a,)/ ()
1 & |X.,|

-~ 3E

*To G )
1 &

Cf(l)na_‘lE(g X DH(X,| > ay)) <¥,

gn (X 1(X,[>a,)

so that condition (b) follows by the Kronecker
lemma. Condition (c) follows, since

s 1 )
E((X2)I (X, £
na:.l(f())2 (XX, £a,))
Errg (1)% E(g, (X, ]))* <¥.

And finally condition ”d” follows, since

P (E(X, I (X, £a))/ ()

ml k=1
1
f(l)

X g %)
9 (X))

T(l)?_l E(gk(|xk|)) <¥.

3
a E(
k=1

Theorem 7 Let {X,,n3 1 be pairwise ND r.v.s
and ¢,:(0,¥)® (0,¥) be such that for each
n3 las X increase

h (x) = 30X “)EX) - (7)

C, = iry; I|®rg h,(x) > 0. Then the conclusion of

Theorem 6 holds.

Proof The proof of Theorem 6 goes through
except that we have to use the upper bound
X,

i for . Then
CO gn(|Xn|)

8 E(X,1(X, >a,)/ f()

n=1
c 1
Co f(l) =1
so that condition (b) follows by Kronecker
lemma. Condition (c) follows, since

s 1 2
E(X)I(X, £
A F )2 (XX, £a,))

1
£ E X <¥
cr (1)na-‘1 (9.(X,)*
And finaly condition ”d” follows, since
upQ (E(|><k|| (X, £)/ f(n)

m1l k=1

E(g (X PH(X,| > a,)) <¥

c, f(1) na_.lE(g (X)) <¥.




The next theorem is an analogue of the SLLN of
Chung (1947).

Theorem 8 Let{ X,,n3 1} be pairwise ND r.v.s
and g,:(0,¥)® (0,¥) be such that for each
n3 las X increase

n =210 =8 g

X2

b =inf limk,(x) >0and C=inf limh,(x)>0.
ndl x@ ¥ Nl x®0*
¥
Assume g E(g,(X.p)<¥.  Then
n=1

[S0)- HSN)/ f(H®0 dmost surely as n® ¥ .
Proof The proof of Theorem 6 goes through
except that we have to verify condition(c).

$ 1
E(XA)I(X, £
& ECDI X £a)

1 & X2
£ E n
2 & 50 %)

g, (X,

1 4
£ E(g, (X)) <¥.
bfz(l)rfa:l (9, (X)) <

Corollary 3 Let{X,,n® 1} be as in Theorem
8 if

¥
aQ E(X3)<¥, then

[S)- ESN)/ f(n® no:l dmost surely as
n® ¥.

We first provide alemma, which can be proved
using the formula of summation by parts
(Chandra (1992)).

¥
Lemmallf§ b <¥ and b, isdecreasing, then
n=1

for any bounded{a,,n?® §such that {na, ,n% L

¥
isincreasing, é [na, - (n- Da,_,]b, <¥.
n=1

Theorem 9 Let {X,,n® 1 be pairwise ND
random variables. Assume that there is a
positive even and continuous function F on
A*' such that

(i) t'F(t)isincreasingto ¥ ast® ¥ ;

(i) supin™* 8 EF (X, )] = c(sy) <¥

n3l

(iii) 5 (F(n) ™t <¥.

n=1

Then n*§ (X - E(X,))® 0 amost surely
i=1

asn® ¥.

Proof We use Theorem 4 with B, =(-¥,n|for

¥
ndl. Put a,=n'Q E(F(X,[) for n21.
We first verify conditiz)n (a);
¥ ¥
a P(X, >n £33 P(F(X,|* Fm)

n=1 n=1

£QEF|X)/FM=aIna, - (n- Da,,]/F(n) <¥

n=1
by lemma 1 and (iii). To prove condition (b),
let e >0. There is an integer N, >1such that
foreach n3 1,
nta E(X|1(X;]|>N)) <e/2;

this is possible since {X,,n3 3 is Cesaro
uniformly integrable (See remark 5 of Chandra
(1992)). Next Thereis an integer N > N, such

Ny
that for each n3 N n'§ E(X ) <e/2.
i=1

Thenfor n3 N,
;?_1 E(X,1(X, >i))£;‘}_1 E(X|1(X|>)

N, 61
£Q E(X)+a E(X|1(X|>N,) <ne.
i=1 i=1

It is clear that B, =C ED, EE, where
C. =(-¥,-n),D, =[-n,- ""*1E[n"*, n],
and E, =(-n"*,n"*). To prove condition (c),
it suffices to show that

& mPE(CIC) <¥

n=1
¥

a n2E(X21(D,)) < ¥ and

n=1

g N ?E(XZI(E,)) <¥. 9)

n=1



¥
We first show that § n"2E(X2I(C,)) < ¥ . For

n=1
each n31, there is a z,in the interva
(- ¥ ,- 1) such that
F(z,)!z? £2inf{y:y=F(X)/x*,x<-n}.
Put F ={y:y=F(X/X,x<-rjand anzirylf F.

Itisobviousthat F.,, | F anda, - .Henceit
is possible to let {z ,n3 1} be increasing
sequence. Then we have

F(z,)! 22 £2F (x)/ x* "X<-n
and

2 g 0p2 FO) £ 5 |2
x* £ 277 F () £2F(zn) F (X)|2]

A
£E2—F (X )
Fy " W
Hence
8 nPE(X2I(X, <-n)

n=1

£2ﬁ§ n2E(F (X,))<¥.
F(z) =

To complete proving of condition (c), it
suffices to show that

¥
a n2E(X2I(D,)) <¥. (10)
n=1

For each n3 1, there is a z,in the interval

[n**, n] such that
F(z,)/Z2 £2inf{y:y=F(X)/x*:n"* £x£n},
note that the right side of the above inequality

ispositive. Thenfor xI [n**, n], we have
x* £ 2nz, F () (as z, £n)
F(z,)

£2n°F (x)/t, (by z, 3 n"*and (i))
where t. =n**F (n"*) for n3 1. Observe that

5 n*E(X (D)) £ 25 E(F (X )/t

n=1 n=1

¥
=4 na, - (n- Da,,]/t,.
n=1

So (10) will follow if we show that

¥
é 1/t <¥ (using lemma 1). For this purpose,
n=1

we use Lemma 15 of Petrov (1975, 277-278)
with a, =n"*- (n- )"*for n3 i,
y (x) =F(X))/|X|; here we are following the
notation of Petrov (1975) and using
assumptions (i) and (iii). As a, 3 1/(4n**) for

¥
eachnand t, =ny (n"*), weget § 1/t, <¥.
n=1
We finally prove condition (d). There is a
t, > Osuch that F(t) 2 1for each t 3 t,, and so

X £t, +F (X) which implies that for each

ns 1, n'lén E(X) £ty +c.

i=1
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