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Abstract:-In many stochastic models, the assumption of independent among the random variables (henceforth 
r.v.s) is not plausible. In fact, increase in some r.v.s are often related to decrease in other r.v.s  and the assumption 
of pairwise negative dependent is more appropriate than independent assumption. In this paper strong laws of large 

numbers (SLLN) are obtained for sum ∑ nX under certain condition where }1,{ ≥nX n is a sequence of pairwise 

negatively dependent r.v.s. 
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1 Introduction  
Let }1,{ ≥nXn  be a sequence of integrable r.v.s 

defined on the same probability space and put 

∑
=

=
n

i
in XS

1

, 
n

S
X n

n = . Chandra (1992), under 

certain conditions, modified the SLLN of Kolmogrov 
(Th.5.4.2 of Chung (1974)) and the SLLN of Lander 
and Rogge (1986) for pairwise independent r.v.s 
which are not necessarily identically distributed and 
satisfy certain moment conditions. Bozorgnia, 
Patterson and Taylor (1996) obtained the SLLN for 
sums of an array rowwise negatively dependent r.v.s 
under certain conditions. Amini (2000) has proved the 
SLLN for special negatively dependent r.v.s (Theorem 
5.5) and for weighted sums of uniformly bounded 
negatively dependent r.v.s (Theorem 3.7). He has also 
proved the WLLN for special pairwise negatively 
dependent r.v.s (Theorems 5.6,5.7,5.8). In this paper, 
we modified the theorems of SLLN Chandra (1992) 
for pairwise negatively dependent  r.v.s that satisfy 
certain moment conditions. 
 
Definition 1 The random variables nXX ,,1 L  

)2( ≥n are said to be pairwise negatively dependent 
(henceforth pairwise ND) if the following inequality 
holds,   

)()(),( jjiijjii xXPxXPxXxXP >>≤>>   (1) 

for all ix , jix j ≠ℜ∈ ,1 . It can be shown that 

(1) is equivalent to   
 )()(),( jjiijjii xXPxXPxXxXP ≤≤≤≤≤     (2)  

for all ix , jix j ≠ℜ∈ ,1 . 

 

 Definition 2 The random variables nXX ,,1 L  

)2( ≥n are said to be negatively associated (NA for 
short) if for every pair of disjoint nonempty subsets 

21 , AA of },...,1{ n ,                                                      

  0)),(,),(( 2211 ≤∈∈ AiXfAiXfCov ii             (3) 

whenever 1f and 2f  are monotone in the same 

direction in each coordinate, the remaining 1−n  kept 

fixed and such that ∞<∈ )),(( 1
2

1 AiXfE i  and 

∞<∈ )),(( 2
2

2 AiXfE i .   

 

 Theorem 1 (Amini (2000)) Random variables 

21 , XX are ND if and only if for every function f and 
g that are monotone in the same direction, 

                 0))(,)(( 21 ≤XgXfCov . 

 

Corollary 1 If )2(,,1 ≥nXX nL  are NA r.v.s then 

they are  pairwise negatively dependent r.v.s. 
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Definition 3 A sequence }1,{ ≥nX n of r.v.s is said to 

be Cesaro uniformly integrable if 

      ∑
=

−

∞→
=>

n

i
ii

nN
NXIXEn

1

1 0)](([suplim            (4) 

 
Definition 4 A sequence }1,{ ≥nan of non-negative 

reals is said to be Cesaro bounded if the sequence 

)}({ 1
1

naan ++− L is bounded. 

 

2  Strong Convergence 
 In this paper C stand for a generic constant not 
necessarily the same at appearance. Also )}({ nf  will 
stand for an increasing sequence such that 

0)( >nf for each n  and ∞→)(nf . The next 
theorem can be obtained from the argument of Csorgo 
et al (1983). 
 
Theorem 2 Let }1,{ ≥nX n be a sequence of non-

negative r.v.s with finite )( nXVar . Assume that 

    (i)   ∞<=






∑
=≥

)()(/)(sup
11

sayAnfXE
n

k
k

n

; 

   (ii) there is a double sequence }{ ijρ of non-negative 

real such that 

            ∑∑
= =

≤
n

i

n

j
ijnSVar

1 1

)( ρ  for each 1≥n ; 

   (iii) ∑∑
∞

=

∞

=

∞<∨
1 1

2))(/(
i j

ij jifρ , ),max( jiji =∨ . 

Then 0)(/))](()([ →− nfnSEnS almost surely as 
∞→n . 

 
The proof of Theorem 2 can be found in Chandra 
(1992). 
 

Proposition 1 Let }1,{ ≥nXn  be a sequence of  

pairwise ND random variables. If }1,{ ≥nf n  be a 

sequence of Borel functions all of which are monotone 
increasing (or all monotone decreasing) then 

}1,)({ ≥nXf nn  is a sequence of pirwise ND random 

variables. 
 
The proof of Proposition 1 can be found in Amini 
(2000). 
 

Corollary 2 Let }1,{ ≥nXn  be a sequence of 

pairwise ND random variables. Then { }1, ≥+ nX n and 

}1,{ ≥− nX n are two sequences of pairwise ND random 

variables where +
nX and −

nX are positive and negative 

parts of  random variable nX  respectively. 

 
Theorem 3 Let }1,{ ≥nXn  be a sequence of pairwise 

ND r.v.s with finite )( nXVar . Assume that  

   (i)   ∞<







−∑

=≥

n

k
kk

n

nfXEXE
11

)(/)((sup ,                                                                                         

      and 

   (ii)   ∑
∞

=

− ∞<
1

2 )())((
n

nXVarnf , 

Then [ ] 0)(/))(()( →− nfnSEnS almost surely as 
∞→n . 

 

Proof Put +−= ))(( nnn XEXY and −−= ))(( nnn XEXZ   

( 1≥n ). It is sufficient to show that as ∞→n , 

              ∑
=

− →−
n

i
ii YEYnf

1

1 0))(())(( a.s., 

 and  

          ∑
=

− →−
n

i
ii ZEZnf

1

1 0))(())(( a.s.                (5) 

Since )()()( 2
nnn XVarYEYVar ≤≤ and ≤)( nYE

)( nn XEXE −  ( 1≥n ), it follows that condition (i) of 

Theorem 2 is valid for }{ nY . Similarly, it is valid for 

}{ nZ . Under pairwise ND condition we have  

 ∑ ∑∑∑∑
= = ===

=≤≤
n

i

n

i

n

j
ijn

n

i
i

n

i
i XVarYVarYVar

1 1 111

)()()( ρ                 

1≥∀ n , where )( iii XVar=ρ and 0=ijρ for each 

ji ≠ . It follows from Theorem 2 that 

     ∑
=

→−
n

i
ii YEY

nf 1

0))((
)(

1
      almost surely. 

Replacing nX by nn XW −= and −−= ))(( nnn XEXZ  

by +−= ))(( nnn WEWZ one gets the second part of 

(5). Since  

 
)(

)(

nf

SES nn −
)(

))(())((
1 1

nf

ZEZYEY
n

i

n

i
iiii∑ ∑

= =

−−−
= +          

                       
)(

))()((
1 1

nf

ZEYE
n

i

n

i
ii∑ ∑

= =

−
 

 we have 
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                     0
)(

)(
→

−
nf

SES nn   a.s. 

 

Proposition 2 Let }1,{ ≥nX n be pairwise ND r.v.s. 

Suppose }1,{ ≥nBn is a sequence of semi intervals 

],( nx−∞  ( ),( nx−∞ , ),[ ∞nx or ),( ∞nx ),  then 

}1,)({ ≥∈ nBXIX nnn is a sequence of  pairwise ND 

r.v.s. 

 

Theorem 4 Let }1,{ ≥nX n be a sequence of 

pairwise ND integrable random variables such that 
there is a sequence }1,{ ≥nBn of Borel subsets of 

1ℜ that are semi intervals as ],( nx−∞ , ( ),( nx−∞ , 

),[ ∞nx or ),( ∞nx ) satisfying the following 

conditions (a)-(d): 

    (a)   ∑
∞

=

∞<∈
1

;)(
n

c
nn BXP   

    (b)   ;))(())((
1

nfoBXIXE c
ii

n

i
i =∈∑

=

 

    (c)   ;))(())((
1

2 ∞<∈∑
∞

=

−

n
nnn BXIXVarnf  

and                         

    (d)   ))(([sup
11

kk

n

k
k

n

BXIXE ∈∑
=≥

;)](/ ∞<nf  

here c
nB is the complement of nB . Then 

[ ] 0)(/))(()( →− nfnSEnS almost surely as ∞→n . 

 

Proof Let )( nnnn BXIXY ∈= , 1≥n . By (c) and (d), 

Theorem 3 applied to }{ nY  yields ∑
=

→−
n

i
ii YEY

nf 1

0))((
)(

1
 

almost surely as ∞→n . By (b), we get 

∑
=

− →−
n

i
ii XEYnf

1

1 0))(())((  almost surely as ∞→n .  

Since r.v.s }1,{ ≥nX n  and }1,{ ≥nYn are equivalent  

then by (a) and the first Borel-Cantelli lemma, the 
desired results follows. 

 

The next theorem, our first main result, is an extension 
of classical Kolmogorov SLLN for pairwise dependent 
r.v.s (Chandra 1992).  

Theorem 5 Let }1,{ ≥nX n  be a sequence of 

pairwise ND r.v.s, put )(sup)(
1

xXPxG n
n

≥=
≥

and 

)(sup)(
1

xXPxh n
n

−≤=
≥

for 0≥x . If ∫
∞

∞<
0

)( dxxG  

and 0)(1 →+ xhx r as ∞→x  for some 1>r , then 

∑
=

→−
n

i
iii XEXc

n 1

0))((
1

 almost surely as ∞→n  

for each bounded sequence }{ nc . 

 

Proof It is suffices to prove the result for 1=nc . To 

this end, we use Theorem 4 with ],( nBn −∞=  for all 

1≥n . Condition (a) follows since  

∑
∞

=

∈
1

)(
n

c
nn BXP ∑

∞

=

>≤
1

)(
n

n nXP ∑
∞

=

∞<≤
1

)(
n

nG . 

To verify condition (b), note that for any non-negative 
random variables Z and 0≥α  

  ))(( α≥ZZIE +≥= )( αα ZP ∫
∞

>
α

dxxZP )( . 

Hence  

)())(( nXPnnXIXE nnn ≥≤> ∫
∞

+
n

dxxG )( 0→ , 

so that condition (b) holds. Obviously, condition (d) 
holds. Thus, it remains to verify condition (c). 

∑
∞

=

− ≤
1

22 ))((
n

nn nXIXEn ∑ ∫
∞

=

∞
− >≤=

1 0

22 ))((
n

nn dxxnXIXPn  

∑ ∫
∞

=

− ≤<+−<=
1

0

2
2

))()(([
n

n

nn dxnXxPxXPn  

                            ∫
∞

−<+
2

])(
n

n dxxXP                 

we have 

∑ ∫
∞

=

∞− −<
1

2
2

)(
n

n n dxxXPn ∑∑ ∫
∞

= =

+
−≤

1 1

1
2 )(2

i

i

n

i

i

dyyyhn , 

since 0)(1 →+ yhy r , for every 0>ε there exist 

0>M such that if My > then ε<+ )(1 yhy r . Hence 

∑∑ ∫
∞

= =

+
−

1 1

1
2 )(

i

i

n

i

i

dyyyhn ∑∑ ∫
= =

+
−≤

M

i

i

n

i

i

dyyyhn
1 1

1
2 )(  



 4

                                   ∑ ∑ ∫
∞

+= =

+ +
−+

1 1

1 1
2 )(

Mi

i

n

i

i

r

dyyh
y

y
n                 

∑∑ ∫
= =

+
− +≤

M

i

i

n

i

i

dyyyhn
1 1

1
2 )( ∑ ∫

∑∞

+=

+
=

−

+

1

1
1

2

1 )(
Mi

i

i
r

i

nr

i

n
dyyhy  

∑∑ ∫
= =

+
−≤

M

i

i

n

i

i

dyyyhn
1 1

1
2 )( ))

1
1(1(

1
(

1 ii r
Mi

−++ ∑
∞

+=

ε ∞< , 

moreover we have 

∑ ∫
∞

=

− ≤<+−<
1 0

2 ))()((

2

n

n

nn dxnXxPxXPn

∑ +−≤
∞

=

−
n

n
n

dyXPXPn
1

2 )))(2  

∫∑
∞

=

−≤
n

n

dyyyGn
01

2 )(4 ∑∑ ∫
∞

=

∞

= −

−=
1 1

2 )(4
i in

i

i

dyyyGn  

 ∫ ∫ ∫∑
−

∞

−

∞

=

∞<+≤
1

0 1 1
2

2

2

))((4)(
3

2 i

i ii

dy
x

dx
yGidyyyG

π
. 

 

Theorem  6  Let }1,{ ≥nX n be pairwise  ND r.v.s 

and ng ),0(),0(: ∞→∞ be such that for each 1≥n as 

x   increase    

                            ↑=
x

xg
xh n

n

)(
)(                         (6) 

and 0)(liminf
01

>=
+→≥

xhC n
xn

. Assume ∞<∑
∞

=1

2 ))((
n

nn XgE . 

Then [ ] 0)(/))(()( →− nfnSEnS  almost surely as 
∞→n . 

 

Proof We use Theorem 4 with =nB ,],( na−∞  

0>na . To verify condition (a) note that       

∑ ∑
∞

=

∞

=

∞<≥≤>
1 1

))()(()(
n n

nnnnnn agXgPaXP . 

Next, note that 

 ∑
∞

=

>
1

))(/)((
n

nnn nfaXIXE   

    ∑
∞

=

>≤
1

))()(
)(

(
)1(

1

n
nnnn

nn

n aXIXg
Xg

X
E

f
 

     ∞<>≤ ∑
∞

=1

))()((
)1(

1

n
nnnn aXIXgE

Cf
, 

so that condition (b) follows by the Kronecker 
lemma. Condition (c) follows, since        

∑
∞

=

≤
1

2
2

))()((
))((

1

n
nnn aXIXE

nf
                

     ∞<≤ ∑
∞

=1

2
22

))((
)1(

1

n
nn XgE

fC
. 

And finally condition ”d” follows, since  

∑
=≥

≤
n

k
kkk

n

nfaXIXE
11

))(/))(((sup             

∑
∞

=

≤
1

))(
)(

(
)1(

1

k
kk

kk

k Xg
Xg

X
E

f
 

 ∞<≤ ∑
∞

=1

))((
)1(

1

k
kk XgE

Cf
. 

 
Theorem 7 Let }1,{ ≥nX n  be pairwise  ND  r.v.s  

and ng ),0(),0(: ∞→∞  be such that for each 

1≥n as x   increase    

                ↓=
x

xg
xh n

n

)(
)(                         (7) 

0)(liminf
1

0 >=
∞→≥

xhC n
xn

. Then the conclusion of 

Theorem 6 holds. 
 
Proof The proof of Theorem 6 goes through 
except that we have to use the upper bound 

0

1

C
 for 

)( nn

n

Xg

X
. Then 

∑
∞

=

>
1

))(/)((
n

nnn nfaXIXE  

     ∞<>≤ ∑
∞

=10

))()((
)1(

1

n
nnnn aXIXgE

fC
 

so that condition (b) follows by Kronecker 
lemma. Condition (c) follows, since 

∑
∞

=

≤
1

2
2

))()((
))((

1

n
nnn aXIXE

nf
 

      ∞<≤ ∑
∞

=1

2
22

0

))((
)1(

1

n
nn XgE

fC
 

And finally condition ”d” follows, since 

∑
=≥

≤
n

k
kkk

n

nfaXIXE
11

))(/))(((sup  

        ∞<≤ ∑
∞

=10

))((
)1(

1

n
nn XgE

fC
. 
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The next theorem is an analogue of the SLLN of 
Chung (1947). 
 
Theorem 8 Let }1,{ ≥nX n  be pairwise ND r.v.s 

and ng ),0(),0(: ∞→∞  be such that for each 

1≥n as x  increase    

  ↑=
x

xg
xh n

n

)(
)( ,    )(xkn ↓=

2

)(

x

xg n        (8) 

0)(liminf
1

>=
∞→≥

xkn
xn

β and 0)(liminf
01

>=
+→≥

xhC n
xn

. 

Assume ∞<∑
∞

=1

))((
n

nn XgE . Then 

[ ] 0)(/))(()( →− nfnSEnS  almost surely as ∞→n . 
 
Proof The proof of Theorem 6 goes through 
except that we have to verify condition(c).  

         ∑
∞

=

≤
1

2
2

))()((
))((

1

n
nnn aXIXE

nf
 

      ∑
∞

=

≤
1

2

2
))(

)(
(

)1(

1

n
nn

nn

n Xg
Xg

X
E

f
 

       ∞<≤ ∑
∞

=1
2

))((
)1(

1

n
nn XgE

fβ
. 

Corollary 3 Let }1,{ ≥nX n  be as in Theorem 

8  if ∞<∑
∞

=1

2 )(
n

nXE , then 

[ ] 0)(/))(()( →− nfnSEnS  almost surely as 
∞→n . 

 
We first provide a lemma, which can be proved 
using the formula of summation by parts 
(Chandra (1992)). 
 

Lemma 1 If ∞<∑
∞

=1n
nb  and nb is decreasing, then 

for any bounded }1,{ ≥nan such that }1,{ ≥nnan  

is increasing, ∑
∞

=
− ∞<−−

1
1 ])1([

n
nnn banna . 

 
Theorem 9 Let }1,{ ≥nX n  be pairwise ND 

random variables. Assume that there is a 
positive even and continuous function Φ  on 

1ℜ  such that 
     (i)    )(1 tt Φ− is increasing to ∞ as ∞→t ; 

     (ii)   ∑
=

−

≥
∞<=Φ

n

i
i

n

saycXEn
1

1

1

)())](([sup ; 

     (iii)   ∞<Φ∑
∞

=

−

1

1))((
n

n . 

Then ∑
=

− →−
n

i
ii XEXn

1

1 0))((  almost surely 

as ∞→n . 
 
Proof We use Theorem 4 with ],( nBn −∞= for 

1≥n . Put ))((
1

1∑
∞

=

− Φ=
n

in XEna  for 1≥n . 

We first verify condition (a); 

∑ ∑
∞

=

∞

=

Φ≥Φ≤>
1 1

))((()(
n n

nn nXPnXP  

∑ ∑
∞

=

∞

=
− ∞<Φ−−=ΦΦ≤

1 1
1 )(/])1([)(/)(

n n
nnn nannanXE

by lemma 1 and (iii). To prove condition (b), 
let 0>ε . There is an integer 11 >N such that 
for each 1≥n , 

           ∑
=

− <>
n

i
ii NXIXEn

1
1

1 2/))(( ε ;    

this is possible since }1,{ ≥nX n is Cesaro 

uniformly integrable (See remark 5 of Chandra 
(1992)). Next There is an integer 1NN >  such 

that for each Nn ≥  2/)(
1

1

1 ∑
=

− <
N

i
iXEn ε . 

Then for Nn ≥ , 

   ∑ ∑
= =

>≤>
n

i

n

i
iiii iXIXEiXIXE

1 1

))(())((  

     ∑ ∑
= =

>+≤
1

1 1
1 ))(()(

N

i

n

i
iii NXIXEXE εn< . 

It is clear that nB nnn EDC ∪∪=  where 

),( nCn −−∞= , ],[],[ 4/14/1 nnnnDn ∪−−= , 

and ),( 4/14/1 nnEn −= . To prove condition (c), 

it suffices to show that 

∑
∞

=

− ∞<
1

22 ))((
n

nn CIXEn ,

∑
∞

=

− ∞<
1

22 ))((
n

nn DIXEn  and   

∑
∞

=

− ∞<
1

22 ))((
n

nn EIXEn .                       (9) 
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We first show that∑
∞

=

− ∞<
1

22 ))((
n

nn CIXEn . For 

each 1≥n , there is a nz in the interval 

)1,( −−∞ such that 

   2/)( nn zzΦ },/)(:inf{2 2 nxxxyy −<Φ=≤ . 

Put =nF },/)(:{ 2 nxxxyy −<Φ= and n
y

n Finf=α . 

It is obvious that nn FF ⊆+1 and ↑nα . Hence it 

is possible to let }1,{ ≥nzn be increasing 

sequence. Then we have 
    2/)( nn zzΦ 2/)(2 xxΦ≤                  nx −<∀  

and 

1
22 )(

)(
2

)(

)(
2 zx

z

z

z

x
zx

n

n

n
n Φ

Φ
≤

Φ
Φ

≤               

                     1
1

1 )(
)(

2 zx
z

z
Φ

Φ
≤ . 

Hence  

   ∑
∞

=

− −<
1

22 ))((
n

nn nXIXEn  

                     ∞<Φ
Φ

≤ ∑
∞

=

− ))((
)(

2
1

2

1

2

1
n

n

XEn
z

z
. 

To complete proving of condition (c), it 
suffices to show that  

          ∑
∞

=

− ∞<
1

22 ))((
n

nn DIXEn .                   (10) 

For each 1≥n , there is a nz in the interval 

],[ 4/1 nn such that 
2/)( nn zzΦ }:/)(:inf{2 4/12 nxnxxyy ≤≤Φ=≤ , 

note that the right side of the above inequality 
is positive. Then for ∈x ],[ 4/1 nn , we have  

         
)(

)(
22

n
n z

x
nzx

Φ
Φ

≤                   (as nzn ≤ ) 

               ntxn /)(2 2Φ≤    (by ))(4/1 iandnzn ≥  

where )( 4/14/3 nntn Φ=  for 1≥n . Observe that 

    ∑ ∑
∞

=

∞

=

− Φ≤
1 1

22 /))((2))((
n n

nnnn tXEDIXEn        

                         ∑
∞

=
−−−=

1
1 /])1([

n
nnn tanna . 

So (10) will follow if we show that 

∞<∑
∞

=1

/1
n

nt (using lemma 1). For this purpose, 

we use Lemma 15 of Petrov (1975, 277-278) 
with 4/14/1 )1( −−= nnan for 1≥n , 

XXx /)()( Φ=ψ ; here we are following the 

notation of Petrov (1975) and using 
assumptions (i) and (iii). As )4/(1 4/3nan ≥  for 

each n and )( 4/1nntn ψ= , we get ∞<∑
∞

=1

/1
n

nt . 

We finally prove condition (d). There is a 
00 >t such that 1)( ≥Φ t for each 0tt ≥ , and so 

)(0 xtx Φ+≤ which implies that for each 

1≥n , ∑
=

− +≤
n

i
i ctXEn

1
0

1 )( . 
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