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Abstract: Stripes and other forms of activity are created during early onthogenesis of the visual cortex by

patterns of periodic standing waves probably based on the self-organizing dissipative ordered structures. Con-

sidering neural network theoretical principles based on an integrate-and-�re two point neurons, the N-shaped

current-voltage relation was included in the model and its inuence on the stability conditions were analyzed.

Using theory of group and doubly-periodic kernel functions we pay main attention in search to a hexagonal

lattice as the main formation for the presentation of a copying mechanism of patterns in the cortex of the

brain. On the basis of reduced bifurcation equations the double and triple periodicity solutions at invariant

transformations allow us to observe either repeating mosaics or global tunnels, funnels, and spiral form con-

stants. Computation experiments were carried out as illustrative ones under di�erent biophysical conditions of

parameters, indexes of stability , angles between basic vectors of orientations, and roughly compared with the

experimentally registered form constants of beings as self-organized topological structures.
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1 Introduction

The most of the cortical areas of the brain pos-

sess the expressed layered organization with ordered

topological structures. This fundamental feature of the

topological structures in the primate neostriatum have

oriented properties [9] and form cell islands and ma-

trix [7] which, as it has been recently established, are

present in a less visible form in all mammals. The

cortical areas possess the matrix rather than the is-

land neuronal organization. The visible clustering of

the neurons indicates some boundaries of the mosaic

con�gurations. The human and some primate neuros-

triatum neurons, in contrast to most other animals,

are laid out by clustered formations with a higher and

lower cell density [21].

Another aspect of an ordered self-organized neu-

ronal structures is bound up with the peristimulus in-

hibition which is well observed in the somatosensory

and visual pathways [16]. This inhibition is a result of

the interaction e�ect of an excitatory stimulus caused

by the surrounding inhibitory action and often being

referred to as a "Mexican-hat" pattern [17, 18]. Al-

though in the neocortex and small areas of the cortex,

the peristimulus inhibition also takes place [6, 10], this

fact was successfuly used to explain the origin of island

formation [13]. However the authors of the issue [18]

used the lateral inhibitory connections in their inhibi-

tion model to induce the peristimulus inhibition and to

"control", as they told, the competitive model which

was designated to model the peristimulus inhibition

through a competition mechanism. In this way they

use small hexagon patches for simulation in the cortex.

Kl�uver's [12] classi�cation of "form constants" into

four categories covers almost completely the set of sim-

pli�ed visual irregularities. We are more interested in

repetitive forms such as hexagonal lattices, fretworks,

honeycombs which are rather respondent to the spatio-

temporal pattern copying mechanism to implement a

cerebral code [1]. In concomitance we only partially at-

tach importance to the tunnel, tunnel and spiral form

constants.

The paper ends with the discussion on the experi-

mental results of iso-orientation structures in the visual

cortex of beings and arti�cial self-organizing dissipa-

tive ordered structures - form constants - obtained by

means of the formal methodology.

2 Theoretical Principles and Models

2.1 Presentation of Neuron in Model

A neuron as the main individual element in the cor-

tex of the brain can be represented by much di�ered

forms of an abstraction. As usuall a neuron in arti�-

cial neural network (ANN) is presented as a single iso-

potential compartment - point neuron, though in real-

ity it is spatially extended with extensively branched

dendrite trees and axon arbors. We will use both cases:



�rst, when we go over to the modeling of massive pop-

ulations of neurons, and second, when we try to eval-

uate conditions of stability and degeneracy in ANN.

Further, the potential activation of the neuron is pre-

ferred, though a �ring rate as a conversion of activation

could be automatically set up, if it would be necessary.

Thus, we represent the general structure of ANN

based on a complex neuron as a soma-axon-synapse-

dendrite-soma chain. It is important to emphasize a

strong nonlinearity phenomenon of this chain consider-

ing the main facts of nonlinearity in the complex neu-

ron. Since, the investigations by Koike et al. [14],

Lux et al. [15], Schwindt & Crill [20] on a dendritic

membrane and neuron behavior theoretically and ex-

perimentally con�rmed that the steady inward current

related to voltage reected a nonlinear process of acti-

vation; the mapping relation had slopes of positive and

negative conductance arising from the supposed exis-

tence of the N-shaped current-voltage characteristic.

The idealized characteristic measured experimentally

by Schwindt and Crill [20] was presented. The re-

spective current-voltage characteristic approximation

is presented by Yoshizawa & Nagumo [22] for neuron,

Gutman [8], and Garliauskas [4] for dendrite synapse

as a polynomial one. We have to note that a threshold

voltage as a �xed value, in the case with an excitation

and inhibition, takes place in analysis bellow. It will

be found in the range between excitation equilibrium

potential and the resting one, and after neuron spike it

places between the threshold potential and inhibition

equilibrium one. This follows from a general model of

an integrate-and-�re neuron.

2.2 Assumptions on the Neuron Model

A neuron as an enzymatic molecular "factory" with

the surrounded infrastructure to be modelled raises

problems of its super-complexity. Since this we re-

stricted only on an electrical paradigm as the main

assumption in a mathematical description of neuronal

properties. Principal assumptions and the functional

formal representation we formulate as follows:

(i) the evolution of u in the case of excitatory and in-

hibitory ionic channels of a neuron activation consid-

ered at time t is speci�ed by the equation

cn
@u

@t
= �

�
u� ur

�
�ge(t)

�
u� ue

�
+gi(t)

�
u� ui

�
; (1)

where cn is the neuron transmembrane capacitance,

ur; ue; ui are the respective resting, excitatory, and in-

hibitory equilibrium potentials ( ui < ur < ue), ge(t),

gi(t) are excitatory and inhibitory conductances depen-

dent on time t, respectively;

(ii) the representation of an axonal activation (zero

equilibrium potentials) propagation by a simpli�ed lin-

ear one-compartment description is based on the Hodg-

kin-Huxley [11] partial di�erential equation

1

ra
uxx = c(a)

m
ut +

1
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u; (2)

where ra is the axonal intramembrane resistance per

unit of length, ca and r
(a)
m are the capacitance and re-

sistance of the axonal membrane, respectively.

(iii) the postsynaptic current, in the general case, can

be presented as a multiplication

ukj = �kjwkjIkj (uj); (3)

where uj is the voltage in the input of neuron, �kj is

the absolute synaptic strength, wkj is the weight be-

tween the kth and jth neurons.

(iv) the representation of a dendritic activation propa-

gation by a nonlinear one-compartment description by

the similar as (2) expression 1
rd
uxx� c

(d)
m ut� I(u) = 0;

where rd is the dendritic intramembrane resistance per

unit of dendrite length, c
(d)
m is the capacitance of the

membrane, and I(u) is the current through the mem-

brane resistance dependent on the potential at the in-

put of a membrane;

(v) neuronal soma activation functions are presented as

an integrated sodium and potassium current-voltage

relation described by a simple Nagumo's approxima-

tion

I(u) = u(u2 � 1); (4)

where u is the transmembrane voltage.

We intend to examine a neural network formed by

two basic populations of visual cortex: excitatory (E)

and inhibitory (I) populations distributed on the plane

space surface (x; y) represented in Fig.1.

Each neuron at the surface point (x; y) may be both

excitatory and inhibitory at the same time and is con-

nected through the connectivity matrix W with the

respective neurons at the points by the alternate cou-

plings among the excitatory and inhibitory neurons.

The system of equations in discretized form of the sur-

face space (x, y) can be presented

@uk

@t
= ��kuk +

nP
j=1

(�1)j�1�kjwkjIkj(uj)+


(d)

k

@2uk

@X2
; j = 1; 2; : : : ; n; k = 1; 2; : : : ;m; (5)

where �k is the current decay rate toward the resting

state, 
(a)

k
and 

(d)

k
are the respective axonal and den-

drite conductances, n is the number of neurons in the

column, and m is the number of neurons in the row

of the lattice. By (�1)j�1 the second righthand mem-

ber reects the sign that correspods to an alternation

of the excitatory sign (plus), and inhibitory sign (mi-

nus), of the neuronal column. The distance fact in (3)

was included in weights wkj without probability sense.

The last righthand-side member expresses only current

along one-dimensional line X .
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Fig. 1. Neural network with excitatory (E) and in-

hibitory (I) populations: dashed rectangular denotes

dendrite, Ikj ; ukj ;wkj - currents, potentials,and weights

in kth and jth couplings, respectively.

3 Analysis of Stability and Instability
in ANN

The analysis of stability and possible degeneracy of

a network system with two populations of neurons can

be made basing on the standard linearization proce-

dure of the evolutionary equations (5). In order not to

complicate considerations, let us analyze a simpli�ed

case of equations (5) with only one excitatory and one

inhibitory neuronal population are presented (Fig.1).

Besides, we include a small parameter � for changes of

excitability, i.e., instead of �11 ��
0

11, and instead of �21
��

0

21 Two equations are presented as follows
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where �
0

kj
= �kjwkj as k; j = 1; 2 and return to pre-

vious �11, �21 without the mark " ' ", uk =
2P

j=0

ukj

for initial conditions, u01 = u02 = 0; Ikj(uj) are the

approximations of type (4). The free boundary condi-

tions of system (6) at the origin X = 0, and the end of

dendrites X = S are given

@uk

@X
j
X=0 = 0

@uk

@X
j
X=S = 0:

�
(7)

The system of partial di�erential equations (6) is

similar to di�usion ones and the coe�cients 
(d)

1 and


(d)

2 are set up as di�usion coe�cients for excitation

and inhibition potentials whose changes are insigni�-

cant and su�ciently smooth.

The system at �xed points and taking into account

a steady state condition becomes as follows

��kuk+��k1Ik1(u1)��k2Ik2(u2) = 0; k = 1; 2: (8)

After replacing Ikj(uj) by polynomial approximations

(4), it is not di�cult to get convinced that the rest

point of neurons will be the equilibrium point of the

system (1). Let us denote it as the point (u�1; u
�
2) =

(0; 0): Let , uk = u�
k
+ vk, where vk is the perturbation

of the equilibrium state u�
k
. Then, after the lineariza-

tion of (6) and substituting uk, we obtain a system of

linearized equations regarding the variable vk as follows

@v1

@t
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(d)

1
@
2
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2
@
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)
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where akj =
[@Wk(u1;u2)

@uj
]juj=u�j , and Wk(v1; v2) are left

hand sides of the system (8).

Let us seek a solution under the wave superposition

vk = exp fpkt+ i!Xg; (10)

where pk are roots of the charakteristic equation, ! =
2�
�

is the wave number and � is a respective wave

length.

The system of equations (9) was transformed to one

second order di�erential equation. After substituting

solution (10) into ordinary equation, the characteristic

equation follows of the form

Det(p) =

 (a11 � p� 
(d)

1 w2) a12

a21 (a12 � p� 
(d)

2 w2)


= 0 (11)

or after opening (11), we get the following second order

characteristic equation

p2 + [w2(
(d)
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(d)
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w2(a11
(d)

2 + a22
(d)

1 ) + !4(d)1
(d)

2 = 0; (12)

where det(aij) = a11a22 � a12a21.

The roots of the polynomial equation (12) are
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B

2
�
1

2

p
B2 � 4C; (13)

where B = w2(
(d)

1 + 
(d)

2 ) + (a11+ a22) +!
4(d)1

(d)

2 ,

C = det(ajk)� w2(a11
(d)

2 + a22
(d)

1 ) and after substi-

tuting of the linearized values of (4) we obtain

det(aij) =

 ��1 � ��11 �12
���21 ��2 + �22


:

(14)

The rest state uk(0; 0) , in some area of the bifurcation

parameter �, is stable if and only if : (i) absolute sta-

bility if Repk(w
2; �) < 0; (ii) reciprocally dissipative

structures if Rep1(w
2; �) = 0, Rep2(w

2; �) < 0; (iii)

periodic solutions if Rep1(w
2; �) = Rep2(w

2; �) = 0.



Stability may be lost at some values �. The limit

values of p1(w
2; �) will be at points p�1 (w

2; �) = 0 and

p+1 (w
2�) = 0

and states will be unstable in the range

w2
� < w2 < w2

+:

w2
� is found from the following conditions:

Rep1(w
2; �) = 0

and it may happen when C = 0 in (13). Then

w2
� = 1

2
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1
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2
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(d)
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and for respective �0 the range [w2
+; w

2
�] ! w2

0 or it

follows from the condition that (a11
(d)

2 + a22
(d)

1 )
2

=

4
(d)

1 
(d)

2 det(aij). This case corresponds to so called

Turing's bifurcation. For our computation example, we

have got with a decrease of �'s curves shift to the left

and the real eigen values become almost all negative.

Among all � one is the critical value denoted �0 to

which respective w2
0 corresponds.

4 Hexagonal Lattice Group Action

4.1 Hexagonal Lattice Representation

We concentrate our attention on the hexagonal lat-

tice as the main formation for the presentation of a

copying mechanism of patterns in the cortex of the

brain. As to other form constants (square, rhombic)

one should refer to [2, 3, 19, 21]. We assume that

the basis vectors ~!1 and ~!2 satisfy to the condition

j ~!1 j=j ~!2 j= !0. The angle between two basis vectors

is denoted as  for the symmetry lattice. The hexago-

nal symmetry group scheme is presented in Fig.2 and

the listing of elements is given in Table 1.
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Fig. 2. The basic hexagonal symmetry group.

Table.1. Elements of the hexagonal symmetry group.

Rotation Reection

Listing of el. Angle Listing of elem. Axis

� = (123

4 5 6) 60� l = (26)(35) l

�2 = (135)

(246) 120� m = (21)(36)(45) m

�3 = (14)(25)

(36) 180� n = (31)(46) n

�4 = (153)

(642) �120� p = (32)(41)(56) p

�5 = (654321) �60� q = (42)(51) q

�6 = e(iden:) 0� s = (43)(52)(61) s

The symmetry group of a hexagon is represented

as a holohedry G(�) = G6 with the principal angle

between the two basis vectors equal to 60�. From Table

1 we can see other angle values iterating 60� and the

listing of reection elements around six possible axes.

The representation of the kernels at the basis functions

'1; '2; : : : ; '6 is as follows:

(i) for the translation

Ta'j = ei<~!j ;~a>'j ; (16)

(ii) for the rotation-reection

Tr'j = ei<~r~!j ;~x>'j : (17)

We omitted the proof of a irreducibility of the �nite di-

mensional invariant subspace of the operator L because

it occurs in nature mostly irreducible. The kernels for

six elements of the symmetry group D6 consist of:

'1(~x) = D(�0; !
2
0)e

i!0~x; (18:1)

'2(~x) = �'5(~x); (18:2)

'3(~x) = �'6(~x); (18:3)

'4(~x) = �'1(~x); (18:4)

'5(~x) = T�2'1 = p0e
1
2
i!0(�x+

p
3y); (18:5)

'6(~x) = T�'1 = p0e
1
2
i!0(�x+

p
3y): (18:6)

The grades of exponents (18.1), (18.5), (18.6) are

set up according to concrete rotation angles and coor-

dinates of the vector ~x as a scalar product.

4.2. Solutions of Bifurcation Equa-
tions

The double and triple periodicity, di�erent variants

of bifurcation solutions, various possibilities of given

angles, conditions of invariant transformations allow us

to observe either repeating mosaics or global tunnels,

funnels, and spiral form constants.

We present bellow the possible solutions built on

the basis of a hexagonal lattice.



Case (a): 1 =  2 = 0;  2 =
p
��=b�

v1
v2

�
a

= D(�0; !
2
0)~v
p
��=bcos[2+!01=2x+

p
3=2y)];

(19)

where the vector

~!2 =

�
!0cos

!0sin

�
;

 = 60�, and ~x =

�
x

y

�
:

Case (b):  2 =  3 = 0;  1 =
p
��=b�

v1
v2

�
b

= D(�0; !
2
0)~v
p
��=bcos[1 + !0x]; (20)

where ~!1 =

�
!0
0

�
:

If to take = 90� (square lattice) for (19), we obtain

the solution with coordinate y.

Case (c):�
v1
v2

�
c

= D(�0; !
2
0)~v
p
��=bcos[2 + !0y): (21)

Case (d):  1 =  2 =  3 =
p
��=b�

v1
v2

�
d

= D(�0; !
2
0)~v
p
��=2a+ bfcos[1 + !0x]

+cos[2+(1=2x+
p
3=2y)]+cos[3+!0(�1=2x+

p
3=2y)]g;
(22)

where ~!3 =

�
!0cos!

!0sin!

�
is taken for  = 120�:

Case (e):  1 =  2 = 0;  3 =
p
��=a+ b is not

considered as absolutely unstable. The conditions of

solutions (19)-(22) were briey characterized above.

The computational examples were taken as illus-

trative ones under di�erent biophysical conditions of

parameters, parameters of stability of reduced bifurca-

tion equations, and angles between basic vectors of ori-

entations. Cases (a), (b), and (c), solutions (18)-(20)

form the mosaics of the global type called spirals (19),

funnels (20), and tunnels (21). Based on equation (21)

at zero angles among the basic vectors of orientations,

the complex honeycomb type of mosaics were modelled

on the hexagonal lattice (Fig. 9a). The peaked pyra-

midal mosaic with contoured lines as v(x; y) = const

is shown in Fig. 3b, and one element structure with

rather a true form - the central positive peak and six

small negative peaks around the positive one - is pre-

sented in Fig.3c.

Fig.3. Honeycomb type mosaics on the hexagonal lat-

tice. a. The honeycomb pattern in the plane (x; y),

!0 = 60; 1 = 2 = 3 = 0. b. Spatial pattern (a)

with peaks of excitation. c. One element structure

with equipotential lines (v(x; y) = const, the maximal

peak in the center, minimal ones around central one).

Thus, based on the various parameter combinations

and on the coupled map lattice, the di�erent mosaic

con�gurations as form constants have been simulated.

5 Conclusion
1. A macroscopic theoretical approach to the brain

functionality corroborates that many of cells are aggre-

gated in macrogroups which may form iso-orientation

domains as stripes or blobs;

2. Stripes of activity are created during early onthogen-

esis of the visual cortex by patterns of periodic standing

waves probably based on the self-organizing dissipative

ordered structures;

3. Considering neural network theoretical principles

based on an integrate-and-�re two point neurons, the

N-shaped current-voltage relation was included in the

model and its inuence on the stability/instability con-

ditions were analyzed , and dissipative structures es-

tablished;

4. Using theory of group and doubly-periodic kernel

functions we pay main attention in search to a hexag-

onal lattice as the main formation for the presentation

of a copying mechanism of patterns in the cortex of the

brain;

5.On the basis of reduced bifurcation equations the

double and triple periodicity solutions at invariant trans-

formations allow us to observe either repeating mosaics

or global tunnels, funnels, and spiral form constants;



6. Computation experiments were carried out as illus-

trative ones under di�erent biophysical conditions of

parameters, indexes of stability , angles between basic

vectors of orientations, and roughly compared with the

experimentally registered form constants of beings as

self-organized topological structures.

References:

[1] Calvin, W.H. (1994) The emergance of intelli-

gence. Sci. Am. 271, 89{96.

[2] Cowan, J.D. (1982) Spontaneous symmetry break-

ing in large scale nervous activity. International Jour-

nal of Quantum Chemistry. Vol. XXII, 1059{1082.

[3] Ermentrout, G.B. & Cowan, J.D. (1979) A math-

ematical theory of visual hallucination patterns. Biol.

Cybernetics, 34, 137{150.

[4] Garliauskas, A. (1998) Numeric simulation of dy-

namic synapse-dendrite-soma neuronal processes. In-

formatica,Vol. 9, 2, 141{160.

[5] Garliauskas, A. (2001) The visual cortex medel-

ing by the hexagonal topology. Neurocomputing, Vol.

38-40, 1229{1238.

[6] Gilbert, C. (1985) Horizontal integration in the

neocortex. Trends in Neuroscience, 8, 160{165.

[7] Goldman-Rakic, P.S. (1996) The prefrontal land-

scape: implementations of functional architecture for

understanding human mentation and the central exec-

utive. Philosophical Transactions of a Royal Society of

London, Series B, 351,1445{1453.

[8] Gutman, A. (1991) Bistabiliy of dendrites. In-

ternational Journal of Neural Systems, Vol. 1, 4, 291{

304.

[9] Henry, G.H., Dreher, B. & Bishop, P.O. (1974)

Orientation speci�city of cells in cat striate cortex. J.

Neurophysiol. 37, 1394{1409.

[10] Hess, R., Negishi, K. & Creutzfeldt, O. (1975)

The horizontal spread of intracortical inhibition in the

visual cortex. Exp. Brain Res. 22,415{419.

[11] Hogkin, A.L. & Huxley, A. F. (1939) Action

potentials recorded from inside a nerve �bre. Nature,

144, 710{711.

[12] Kl�uver, H. (1967) Mescal and the mechanisms

of hallucination. Chicago: University of Chicago Press.

[13] Kohonen, T. (1984) Self-Organization and As-

sociative Memory. Berlin: Springer-Verlag, Berlin.

[14] Koike, H., Okada, Y., Oshima, T. & Takahashi,

K. (1968) Accommodative behavior of cat pyramidal

tract cells investigated with intracellular injection of

currents. Exp. Brain Res. 5, 173{188.

[15] Lux, H.D., Schubert, P. & Kreutzberg, G. W.

(1970) Direct matching of morphological and electro-

physiological data in cat spinal motoneurons. In Ex-

citatory synaptic mechanisms ( Anderson, P. & J.K.S.

Jansen, J.K.S., eds), Universitets forlaget, Oslo, 189{

198.

[16] Mountcastle, V. (1990) An organizing principle

for cerebral Function. In The Mindful Brain.( Edel-

man, G. & Mountcastle, V. eds). Cambridge: MIT

Press, 1{50.

[17] Reggia, J.A., D'Autrechy, C., Sutton, C. G. &

Weinrich, M.A. (1992) Competitive distribution theory

of neocortical dynamics. Neural Computation, 4, 287{

317.

[18] Reggia, J.A., Sutton, G.G., D'Autrechy, C.l.,

Cho, S. & Armentrout, S.L. (2000) Cortical inhibition

as explained by competitive distribution hypothesis.

In Network Models for Control and Processing( Fraser,

M.D., ed). Portland: IntellectTM, 31{62.

[19] Sattinger, D.H. (1978) Group representation

theory, bifurcation theory and pattern formation. Jour-

nal of Functional Analysis, 28, 58{101.

[20] Schwindt, P. & Crill, W. E. (1977) A persistent

negative resistance in cat lumber motoneurons. Brain

Res. 120, 173{178.

[21] Shepherd, G.M. (1990) The Synaptic Organi-

zation of the Brain. Oxford: Oxford Universiry Press.

[22] Yoshizawa, S., Usada, M. & Nagumo, J. (1982)

Pulse generated by a degenerate analog neuron model.

Biol. Cybern. 45, 23{33.


