A New Analysis of the AVL Tree Insertion Algorithm
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Abstract: The mathematical analysis of the AVL tree insertion algorithm has never been
done successfully. As an important step to this analysis, based on the assumption that each
AVL tree with a given number of nodes and height is constructed equally likely, we propose
the approaches to count the number of constructed AVL trees and the average number of
the patterns associated with imbalance due to an AVL tree insertion, then derive formulae
to compute the rebalancing probability. The numerical test results are presented finally.
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1 Introduction

AVL tree is one of the best known balanced bi-
nary search tree algorithms([2],[3]). In this paper
the height of a tree is defined to be the length of
the longest path from its root to one of its leaf
nodes. A binary search tree is called an AVL tree
if the heights of the left and the right subtree of
every node never differ by more than one. Fig.1 il-
lustrates the interesting structure of an AVL tree.
If the left subtree is a binary search tree with L
nodes and height A — 1,the right subtree must be
a binary search tree with R (R = n— L —1) nodes
and height h — 1 or A — 2,and vice versa.

The above rule ensures that the tree never be-
comes substantially imbalance and the expected
height of AVL trees is O(lgn). However, after an
insertion we must review the height of the tree and
rebalance it with single rotation or double rota-
tion if an imbalance has been introduced.Hence,it
is necessary to know the rebalancing probability
before the algorithm is actually employed.
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Fig.1 The Structure of the AVL tree with n
nodes(n = L+ R+ 1) and height h



In order to mathematically analyze the prob-
ability,we first present approaches to count the
number of AVL trees with a given number of nodes
and height and the average number of the patterns
related to the imbalance, then derive the formulae
to compute the rebalancing probability. Finally
numerical test results of the rebalancing probabil-
ity are provided.

1.1 The Analysis to Count the Number
of AVL Trees

Adel’son-Vel’skii and Landis have proved that
the height of an AVL tree with n internal
nodes,h,, ,is guaranteed to lie between the heights
of the perfectly balanced tree and the Fibonacci
tree([4]),i.e.,

Mg(n+1)] — 1 < hy, < 1.44041g(n + 1) — 1.328,

where the lower bound is the height of perfectly
balanced tree and the upper bound is the Fi-

bonacci tree.

Given a height,h,the Fibonacci tree has the min-
imum number of nodes.Let f, be the number of
nodes of the Fibonacci tree with height of h,

fn=Frps—1=[¢"T3/V6 - 1], (1)

for h >0 .

Here Fj43 means the Fibonacci number of or-
der h + 3,whose closed form approximates to
"3 /\/5,¢ = (1 + v/5)/2. On the other hand,the
perfectly balanced tree has the maximum number
of nodes, 2"+t — 1,

First,we examine the number of trees of these
two special AVL trees. The structure of a Fi-
bonacci tree is shown in Fig.1 (b), the number of
trees can be expressed by the following recurrence,

Fib, = 2Fiby_1Fiby_»

(2)

for h > 2 with Fibg =1, Fiby = 2.

We get
Fibg = 1=2°
Fiby = 2 =221
Fib, 4 = 209191,
Fibs 16 = 20212192,
Fiby 128 = 2021919293
Fibs 4096 = 202121929395
Fibg = 1048576 = 20212192939598

Thus,the number of the Fibonacci trees with
height of h becomes

Fib, = 2fof. .. oFk
= H oFi
0<i<h
_ght1
= QL%'ll—qs ! (3)

for h > 0.

The perfectly balanced trees have the structure
of Fig.1(a), the number of trees can be obtained

by

Pbt, = Pbty_1Pbty_; (4)

for A > 1 with Pbty = 1.

Obviously,given any height,the number of the
perfectly balanced trees is always 1.

To count the number of AVL trees with a given
number of nodes and height, we first consider the
range of L,the number of nodes of the left subtree.
Because a Fibonacci tree is the AVL tree with the
minimum number of nodes for a given height, the
lower bound of L will be f;,_{. Meanwhile, the left
subtree of height h — 1 must have no more than
2" — 1 nodes, and the height of the right subtree
is no less than h — 2, i.e.,the minimum number of
nodes of the right subtree is f,_5. Therefore,the
upper bound of L should be min{2* — 1,n — 1 —

fh—?}' ThllS,
frot S L <min{2" —1,n — 1= fi_5},

we denote this range of L as r(L,_q).

Secondly,we consider the range of R,the number
of nodes of the right subtree,R = n— L — 1. In the
structure of Fig.1 (a), the range of R is the same
as the range of L therefore r(Ry_1) is denoted for

foct <R <min{2" —1,n —1— f_5}.

On the other hand,in the structure of
Fig.1(b),the height of right subtree is h — 2,the
lower bound of R is fj_s,the upper bound is
min{2"=' — 1,n — 1 — f_1}, 7(R_2) stands for

froe <R <min{2"'—1,n—1- fi_4}



Under our presumption that each AVL tree with
a given number of nodes and height is equally
likely,from above arguments, the number of the
AVL trees with n nodes and height h,denoted by
Awl,, 3, can be expressed as

Avl, = ZAvlL,h_lAleVh_l
r(La—1) [ r(Rn-1)
+22AUIL,h—1AUlR,h—2

r(Ln_1)[)r(Raz2)
forn > 3 and h > 1 with Avly o = 1,Avly 1 = 2.

For example,

Avl5’2 = Avlg’lAUlg’l + 2A’Ul3’1AUll’0
2X24+2x1x1

= 6,

for the following AVL trees with 5 nodes and
height 2.
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Eq.(5) is an essential formula in our analysis.
Some results from Eq.(5) are shown in Table 1
and Fig.2.

From our results, given a height of tree, n starts
from f5 and ends at 2! — 1, the most left val-
ues of Avl, j, in Fig.2 are the number of Fibonacci
tree, and the most right ones are the number of
perfectly balanced tree.When n is increasing and
approaching to the middle point of between f;, and
241 _ 1 the number of trees increases,the max-
imum value of Awl, ) is around at this middle
point. Separated from this middle point,the larger
the n, the smaller the number of AVL trees. The
values of Avl, ) approximate bilateral symmetry
to this middle point.

2 The Analysis of Rebalancing
Probability Due to an Inser-
tion
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Fig.2 The number of the AVL trees with n node
and height h
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Fig.3 Imbalance resulting from the insertion and
restoring the balance

Fig.3(a) and (c) illustrates the two essentially
imbalance cases due to an insertion. The other two
essentially identical cases will occur if we inter-
change the left and the right subtrees in Fig.3(a)
and (c). In these diagrams the rectangles a, 3,7,6
represent the subtrees with the respective heights,
and the nodes added by the insertions are indi-
cated by crosses.In case 1, using a single rotation
we simply rotate the tree to the right, attaching /3
to B instead of A. While in case 2,we use a dou-
ble rotation, first rotating (A, B) left then (B, C)
right. These simple transformations restore the
desired balance and are shown in Fig.3(b) and (d)
respectively.

It is extremely difficult to find the rebalancing
probability only based on those two cases shown
in Fig.3. We have revealed that there are only
two patterns in AVL trees,pattern-1 and pattern-
2,associated with the imbalance([1]). They are
shown in Fig.4 (a) where the nodes added by the
insertions are indicated by crosses. Based on these
two proposed patterns, single and double rotations
are indicated by two essentially different types of
subtrees in Fig.4(b),where S stands for a single
rotation and D for a double rotation.
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Fig.4 Two essential patterns in an AVL tree

Obviously,an insertion at the external nodes of

the leaf of pattern-1 should cause imbalance as
shown in Fig.5(a). Differently, inserting a new key
into the external nodes of pattern-2 could cause
imbalance or not. Only the pattern-2’s in the sub-
trees which are taller than their adjacent subtrees
are associated with imbalance,such as those drawn
within the dotted square in Fig.5(b).
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Fig.5 The instances of 1mbalance related to
pattern-1 and pattern-2

Under the presumption that each different AVL
tree with a given number of nodes and height is
constructed equally likely, we only need to count
the average number of all pattern-1 and pattern-
2 which causes imbalance. The average number
of pattern-1 is denoted as p;,, and the average
number of the pattern-2 that will cause imbalance
is denoted as py, .

S
Avln,h

> Avlp 1 Avlg {1y s+ Pras_, }
r(La=1) [ r(Rn-1)
+2)  Avlp 1 Avlgaoo{pry s + Praas )],
r(Ln-1) [ r(Ba=z)
forn>2and h > 1 with py, , = 1.

Pian

(6)

And,
|
A’l)ln’h

Z:AvlL,h-1Avlﬁz,h—1{PzL,h_1 +P2ppy}
r(Ln—1) [ r(Raz1)

+2) " Avly po1 Avig p—o{ps, oy + Do),
r(Ln-1) [ 7(Ra—2)

for n > 5 and h > 2 with p,, , = %

P2, s

(7)



Here, ps_, is the indirectly recursive function
of p2,, s where for every node, if the heights of its
two subtrees are the same, all pattern-2 in both
of the subtrees are counted, which is shown as the
dotted square in the following figure (a).However,
if the heights of its two subtrees are different, all
pattern-2 in the taller subtree are counted,but in
the lower subtree, only the pattern-2 that will
cause imbalance are counted,which is exampled in
the following figure (b) as well.
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ps3,, , is derived as follows,

L
Avln’h

ZAUIL,h—lAUZR,h—l {p3L,h—1 + P3r -1 }
r(Ln_1) [\ r(Bno1)

P35

+22AvlL,h—lAUIR,h—Q{p3L,h—1 + pQR,h—z}])
r(Lp—1)[)r(Rr-2)

(8)

forn >3 and h > 1 with p3, , = 1.

As shown in Fig.4(b), a single rotation and a
double rotation will happen with the equal prob-
ability. For a rotation, pattern-1 and 2 has one
and two inserting positions respectively. We use

R(n,h) to express the probability that a single
or a double rotation should be used to restore the

desired balance when a new node is inserted into
the AVL tree with n nodes and height h.

1 2
9
Moreover,let P(n) be the probability that a
single or a double rotation will occur when the

(n 4 1)th node is inserted into the AVL tree with
n nodes.

PR(nvh) — b, + P2

1
P(n) = - > Avl, , PR(n,h)  (10)
Avl, o

where Avl,, = ZAUln,h and [lg(n+1)]-1<h <

h
1.441g(n + 1) — 1.328.

3 Numerical Tests

We now provide some test results from above anal-
ysis. Table 1 shows some simple results.

Table 1: Some results of the above analysis

n h Avly p pln,h p2n,h PR(n,h) P(n)
1 0 1 0 0 0 4]

2 1 1 0 0.3333 0.3333
3 1 1 0 0 0 0

4 2 4 1 0 0.2 0.2
5 2 6 1.3333 0.3333 0.3333 0.3333
6 2 4 1 0 0.1429 0.1429
7 2 1 0 0 0

7 3 16 2 0 0.25 0.16

From Table 1,we see that the pattern-1’s play a
larger role than pattern-2’s since only some of the
latter could cause imbalance.

Fig.6 shows the results of the probability that
an insertion requires rebalancing when a new key
is inserted into the AVL tree with a given number
of nodes and height,obtained from Eq.(9).

In the results of Fig.6, for a given height of
tree,h, n starts from f, and ends at 2/t! — 1.
When n is almost equal to f;, PR(n,h) increases.
With the increasing of number of nodes, the num-
ber of pattern-1 decreases and the value of py ,
increases,PR(n,h) becomes gradually smoother
and steadier. When the shape of trees turns
to the perfectly balanced tree,in which there are
neither pattern-1 nor pattern-2,PR(n,h) gets to
zero. Moreover,we can see the maximum value of
PR(n,h) approximates 0.27 for any given height
of tree when h > 3.

Fig.7 gives the probability that rebalance rota-
tions occur during AVL tree insertion operations.
As expected,the value of P(n) will be between 0.26
and 0.27 when n > 20. Because each configuration
of AVL tree has a mirror-image variant in which
the out-of-balance subtree is on the other side of
the tree, the necessary rebalancing could occur on
average within about 0.54 probabilities for a large
n. This result says that one rebalance is needed
for two insertions on average.
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Fig.6 The test results of PR(n,h)
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Fig.7 The test results of P(n)

4 Conclusions

In above analysis,we have presented an important
approach to analyze the AVL tree insertion algo-
rithm. A key to our analysis is the description of
the structures of AVL tree shown Fig.1. The other
key is the discovery of the two patterns related to
imbalance.

The proposed formulae can evaluate the average
performance of the AVL tree insertion algorithm
exactly. Our future work is to obtain the asymp-
totic expression of these open recurrence formulae.
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