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Abstract: - This work develops efficient algorithms for numerically solving the nuclide migration 
through geosphere of performance assessment for the high level radioactive waste (HLW) using 
Wavelet Galerkin Method (WGM). From mathematical point of view the problem of convection 
diffusion type but the parameters are highly varying. Another particularity is the very concentrated 
nature of the spatio-temporal source. 
The model which is a very coarsely wavelet-based discretization model, devised to be very fast due to 
the compactly support nature of the Daubechies’ wavelet. We tested our WGM algorithms with 
different cases include single isotope calculations and decay chain calculations. The results show that 
WGM calculations are very accurate compared to other conventional methods.   
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1. Introduction 
The host rock under consideration is crystalline 
overlaid by a series of sedimentary rocks [1]. In-site 
investigations show that the crystalline is 
inhomogeneous and water-conducting zones can be 
found. Water flow can take place in the fractures 
embedded in these zones. Flow does not occur 
uniformly in the fractures, but rather is concentrated 
in channels that arise, from variation in aperture and 
the presence of infill material. There are many 
potential transport paths through the host rock, each 
comprised of one or a series of channels. The 
variability in the length, transmissivity and other 
transport-relevant properties of the transport paths, as 
well as interconnections between paths, gives rise to 
mechanical dispersion. Transport along these paths is 
retarded by diffusion into segment water in the pores 

of the rock matrix surrounding the channels and by 
sorption on infill and rock matrix pores.  
This problem is of convection diffusion type with 
highly varying parameters from one medium to other. 
Another particularity is the very concentrated nature 
of the spatio-temporal source. The complexity of this 
situation makes it difficult to obtain analytical 
solution for the radionuclides transport. Standard 
numerical methods require a detailed discretization. 
Therefore, nuclide transport calculations would be 
very time consuming if they were made using 
standard numerical methods. To circumvent these 
problems, a technique has been developed that uses 
the advantages of the compactly supported wavelet. 
Compactly supported wavelets have recently been 
applied to the numerical solution of ordinary and 
partial differential equations with encourage results 
[2,3]. The most frequently used technique is the 



Wavelet Galerkin Method (WGM) [4]. It has shown 
to be powerful tool especially for the non-linear 
differential operators due to the fact that it possesses 
several useful properties such as orthogonality and 
compactly support [5].  
 
This work presents a useful tool to calculate the 
transport of the radionuclides in the geospheric, 
accounting for all possible paths by which the 
nuclides are transported to the faults and subsequently 
to the biosphere. An attempt to verify the model is 
made. Calculating the nuclide transport for simple test 
cases carries out this verification. The comparison is 
carried using analytical or accurate numerical code. 
 
 
2. Problem Formulation 
 
2.1 Daubechies’ Wavelet 
Among many wavelets can be used as a complete 
coordinate function, the Daubechies’ wavelet has 
been chosen because it is defined a class of compactly 
supported wavelet. Briefly, let )(xφ be a solution of 
the scaling relation: 
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where )(xφ is the scaling function. The associated 
wavelet function )(xψ is: 
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Where N is the wavelet order and it is positive even 
integer, and ka is the collection of coefficients that 
satisfy the following conditions.  From the 
normalization of the scaling function ∫ = 1)( dxxφ , 
the first condition can be written as: 
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 The translations of )(xφ are required to be 
orthonormal, 
∫ =−− mkdxmxkx ,)()( δφφ    (4) 
This formula implies the second condition: 
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In all the formulas above δ represents the Kronecker 
delta function. Smooth wavelet function requires the 
moment of the wavelet to be zero, 

 ∫ = 0)( dxxxmψ     (6) 
Formula (6) implies the third condition: 
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For the coefficients are satisfying with the above 
conditions, the functions, which consist of 
translations and dilations of the scaling function 
( )2( kxj −ψ ), form a complete and orthonormal 
basis. The relation between two functions is 
expressed as: 
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where ⊕ denotes the orthonormal sum, and  
)2(2 2/ kxV jj

j −= φ     (9.a) 

)2(2 2/ kxW jj
j −= ψ ,   (9.b) 

for the integer k. And j is the dilation parameter, 
which is used as a scale. In the approximation of the 
differential equation, j is also the approximation level. 
For a certain value of j and N, the support of the 
scaling function )2( kxj −φ is given as follows: 
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As the scaling function yields a complete coordinate 
function basis, it can be used to expand general 
function as follows: 
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Here it is worth emphasizing that there are two-
convergence properties, used in the expansion (11). 
One is the uniform convergence for the level of 
approximation in relation to the dilation order j, and 
the other is the rapid convergence for smoother 
scaling function, which relates to the wavelet order N. 
These properties are not shared at the same time by 
the conventional classical orthogonal functions. The 
balance between N and j plays very important role for 
getting an accurate solution in an adequate time. 
 
2.2 Governing Equations 
The transport paths are modeled as parallel walled 
openings in which transport occurs by advection and 
dispersion and at a given time, nuclide concentration 
varies only in the flow direction. Figure 1., shows 
transport processes in a path comprising a single 
channel within a fracture, advection and dispersion 
are modeled in one spatial dimension only in the flow 
direction. Matrix diffusion is also modeled in one 



spatial dimension normal to the plane of the fracture. 
In reality, fractures and channels can vary widely in 
their properties. In order to take into account the 
heterogeneity of real fractures and channels with 
respect to transmissivity, the present work considers 
transport along set of representative channels, each 
assigned different transmissivity. The multi-pathway 
model represents a step toward realism. In order to set 
the transmissivity of the model pathways, a 
probability distribution function (pdf) for the 
transmissivities in the host rock is descretized into 48 
segments, with the channels in each segment being 
represented by a single, representative model pathway 
[1].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Illustration of the processes considered in the 
parallel plate model. 
 
 
Based on the above model, the weighted nuclide 
release rate from the EBS to the model pathways 

),( tTf in , is defined as: 

)().(),( tfTPtTf hostrockbuffer
niin
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where iT is the median value of the transmissivity in 

segment i  m2s-1, )( iTP is the probability of segment 
i , which is assigned according to the probability that 
the transmissivity of a randomly sampled channel in 
the host rock lies in the range of transmissivity in the 
segment i , )(tf hostrockbuffer

n
→ is the nuclide release 

rate per vitrified waste package sec/mol  calculated 
from the EBS model [6], n is the nuclide ID, and t is 
the time. The governing equations expressing nuclide 
transport in one-dimensional parallel-plate fractures 

and in the matrix under steady state groundwater flow 
conditions are as follows: 
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Where, b  half of the fracture aperture m ,ν  flow 
velocity in the fractures sec/m , LD  dispersion 

coefficient in the fractures sec/2m  ( 0DL += να ), 

Lα  longitudinal dispersion length m , 0D  diffusion 

coefficient in free water sec/2m , nλ decay constant 
1sec− , F proportion of fracture surface from which 

nuclides can diffuse into the matrix , m
eD  effective 

diffusion coefficient sec/2m ( mm Dθ= ), mθ matrix  
porosity, mD diffusion coefficient in the matrix pores 

sec/2m , m
n

f
n CC ,  nuclide concentrations in the 

fracture and in the matrix 3/ mmol , x transport 
distance m , ω  perpendicular distance into the matrix 
from the fracture surface m , and t  the time. The 
suffices n , f and m are represented a nuclide, 
fracture and matrix respectively. In addition, nR  and 

m
nR represent the retardation coefficients for nuclide n 

in fracture and in the matrix respectively, and are 
expressed by the following formulas with the 
assumption of linear, reversible and instantaneous 
sorption: 
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where, nKa is the distribution coefficient for the 

fracture surface m , m
nKd  is the distribution 

coefficient for the rock minerals in the matrix 
kgm /3  and mρ is the dry density of the matrix 

3/ mkg .  
The initial concentration in the fracture and matrix 
assumed to be zero 



0)0,,()0,( == ωxCxC m
n

f
n    (16) 

The weighted nuclide release from the EBS is taken 
as the boundary condition for the nuclide transport in 
the model pathway with tramsmissivity iT , 
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where fA is the fracture cross section (= aperture x 
fracture unit width) m2. The boundary condition at the 
fracture surface and at the maximum depth for matrix 
diffusion, d m, are expressed as follows: 
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The nuclide release rate from the host rock per 
vitrified waste package is calculated from: 
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where, ),( tTh in is the nuclide release rate from the 

model pathway with transmissivity iT , iT is the 
median value of the transmissivity in segment i  m2s-1, 
and J is the total number of the segment.  
Due to the boundary condition (16), which couples 
the functions ),( txC f

n with ),,( txC m
n ω , the 

problem is two-dimensional in space in the sense that 
equation (13) has to be solved for every x -value. Let 
us consider the function ),( ωxc defined in a closed 
rectangle domain, then it can be approximated as 
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Let lk
j

lk cC ,, 2= , xX j2= , and ωjW 2= , and 
substitute equation (21) into equations (13), and (14), 
and take the inner products with 

)()( mWpX −− φφ , we get 
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Where Ω  it the connection coefficient on 
unbounded domain as defined by the expression 
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The superscripts 1d and 2d  refer to the 
differentiation. The most expedient strategy 
available for the evaluation of these connection 
coefficients is given in [7]. The connection 
coefficients should be precomputed. The resulting 
tables are then read in the time marching procedure. 
Using this approximation and defining according to 
the mesh numbering shown in Fig. 2: 
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 Following the approach of using wavelet Galerkin 
discretization approach, we obtain a system of 
nonlinear ordinary differential equations of the form: 
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In order for the algorithm to resolve all the structures, 
the basis of active wavelet and, consequently the 
computational grid should be adapted dynamically in 
the time to reflect local changes in the solution. The 
system is solved using the fifth-order gear implicit 
integration algorithm [9].  
                                            
 3. Problem Solution 
Verification is addressed by comparing the results 
given by the model with analytical solutions and by 
comparison with a verified numerical code. The 
accuracy of the solution is investigated by defining 
test cases.  
 In the first test case, the values of the source term 

),( tTf in  in the repository is read from a separated 
data file obtained from the calculation of radionuclide 
migration in the engineered barrier system [6]. The 
analytical solution can be obtained by simplify the 



problem to such an extent that simple solution 
emerge. Neglecting the dispersion in the fracture, 

0=LD , take an infinite medium, a simple upstream 

boundary condition, teCtC λ−= 00 )( , and consider a 
single decaying species only. Furthermore, we 
assume that the width of altered zone (and the 
fractures’ distance) is very large and the fracture half-
width very small compared to the penetration depth 
into the matrix. The solution in the fracture is given 
by 
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Results obtaining for the test case are shown in Fig.3 
for various wavelet-dilation orders pair. At long time 
a good accuracy is obtained regardless of the wavelet 
discretization. The choice of wavelet-dilation order is 
only important at the early time. Better accuracy is 
obtained by increasing the wavelet-dilation order pair. 
 In the second test case, a transport of Np-237 is 
calculated as a single species. The obtained 
normalized flux using WGM is compared with the 
RANCHMD codes, a well verified computer 
program, as shown in Fig. 4. The comparison shows 
that, WGM with wavelet order of 10 and dilation 
order of 6 is accurate compared to the RANCHMD 
[8] code with relatively small discretization steps. The 
running time requires for WGM is less than that 
required for RANCHMD. Using higher dilation order 
increases the accuracy of the WGM. RANCHMD 
uses a very detailed discretization and high Lagrange 
interpolation order to achieve such accuracy. WGM 
approach is requiring less memory size than the one 
requires for RANCHMD.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Mesh Space System  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Relative fluxes for different wavelet-dilation 
orders pair and their comparison to analytical 
solution.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Relative fluxes for different wavelet-dilation 
orders pair and their comparison to RANCHMD 
code. 
 
4. Conclusion 
The approach of using wavelet theory is a useful tool 
to model the transport of single nuclides or 
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radionuclides chains in the far field of a repository. 
The model, which is coarsely discretized wavelet 
Galerkin, is devised to be very fast and efficient 
proper selection of the wavelet order and dilation 
order at sensitive points such as the interface between 
the fracture and the matrix, and at the entrance of the 
fracture where other models require detailed 
discretization. In general, the verification analysis 
showed that the accuracy of wavelet based model is 
good when it compared with models that use a very 
detailed discretization. The accuracy is sufficient in 
many cases for wavelet order of 10, which insure the 
smoothness and dilation order of 6, which gives finer 
solution at the fracture matrix interfaces considering 
that uncertainties in the parameter values, such as the 
transmissivity and distribution coefficient, are 
considerably more significant.   
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