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Abstract: The process of collision between particles is a subject of interest in many fields of physics,
astronomy, polymer physics, atmospheric physics and colloid chemistry. The time evolution of the

cluster distribution has been described by an infinite system of ordinary differential equations. In this
paper, for the two component model,truncated and two reduced models are defined and the numerical

results show that the reduced models have a good accuracy and can be applied for studying the behavior
of a bigger systems.

1 Introduction

Consider a system of identical particles that can col-
lect into clusters, whose size is then an integer mul-
tiple of the base particle size. The cluster size distri-
bution function cr(t) is a discrete function of cluster
size r and represents the number of clusters of size
r at time t per unit volume. The time evolution of
the cluster distribution cr(t) has been described by
the following infinite system of ordinary differential
equations (ODEs) [1]

ċr =
1
2

r−1∑

k=1

Jr−k,k −
∞∑

k=1

Jr,k r = 1, 2, · · · , (1)

where Jr,k = ar,kcrck − br,kcr+k = Jk,r, and for
r = 1 the first sum is omitted and called the dis-
crete coagulation-fragmentation equations. Jr,k is the
net rate of converting the clusters with r-particles (r-
clusters) to (r + k)-clusters, with non-negative sym-
metric constants ar,k and br,k which determine the
coagulation and fragmentation rates respectively.

Penrose, Carr and Hall [6] have generalized of the
Becker-Döring model, using the kinetics of mixed
micelle formation and defined the two component
Becker-Döring model. In section 3, first, the two com-
ponent Becker-Döring equations are derived and their
main properties are described. Then for numerical
approximation, the truncated model and two other
reduced models are defined. The numerical results
and discussion which are presented in the last sec-
tions, show that under some possible conditions on
the kinetic coefficients and the densities, there is a
metastable solution of the equations.

2 Two component Becker-
Döring system

If two different types of particles are allowed to par-
ticipate in the cluster coalescence, then the two com-
ponent Becker-Döring dynamics is defined on the fol-
lowing hypothesis:

a) The number of particles of each type over all
clusters is constant. (conserved quantities)

b) The clusters are distributed uniformly in space,
therefore the expected number of particle clusters
doesn’t depend on the space variable and is only a
function of time.

c) The cluster size distribution changes when clus-
ters coagulate or fragment by gaining or losing
monomers. (There are two types of monomers in the
system.)

Let an (r, s)-particle cluster be a cluster with r
particles of type I and s particles of type II, and
let cr,s(t) ≥ 0 denote the expected number of (r, s)-
particle clusters per unit volume at time t. There
are two net rates for converting the clusters. Jr,s is
the rate at which (r, s)-clusters change to (r + 1, s)-
clusters, and J ′r,s is the rate at which (r, s)-clusters
alter to (r, s + 1)-clusters. They are defined by

Jr,s = ar,scr,sc1,0 − br+1,scr+1,s,

J ′r,s = a′r,scr,sc0,1 − b′r,s+1cr,s+1, (2)

where ar,s, br,s are the kinetic coefficients (coagula-
tion, fragmentation rates) for the particle of type I
and a′r,s, b

′
r,s are the coagulation, fragmentation rates

of particles of type II. All coefficients are non-negative
constants with b1,0 = 0 , b′0,1 = 0. The two compo-
nent Becker-Döring dynamics can be formulated as

ċr,s = Jr−1,s + J ′r,s−1 − Jr,s − J ′r,s r ≥ 1, s ≥ 1,

ċr,0 = Jr−1,0 − Jr,0 − J ′r,0 r ≥ 2, (3)

ċ0,s = J ′0,s−1 − J0,s − J ′0,s s ≥ 2.
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Figure 1: The schematic process of the two compo-
nent Becker-Döring system.

Conservation of the total number of particles of each
species in the system leads to the following equations
for the monomer concentration:

ċ1,0 = −J1,0 − J ′1,0 −
∑

(r,s)∈If

Jr,s

ċ0,1 = −J0,1 − J ′0,1 −
∑

(r,s)∈If

J ′r,s (4)

where

If = {(r, s), r = 0, 1, 2, · · · , s = 0, 1, 2, · · ·} − {(0, 0)}.
Figure 1 shows a schematic diagram of the (r, s)-

clusters gaining and losing monomers at the specified
rates. The monomers appear at the location (0, 1)
and (1, 0) on the diagram.

There is not much known about this system.
Our references for the theory of the two component
Becker-Döring system are [6] and [8]. Its behavior is
more complex than the one component system. In
this paper, as a first numerical experiment on this
system, the truncated model and two reduced mod-
els will be described and the numerical results will be
presented. The last section includes a discussion and
some remarkable points of our experience.

2.1 Truncated Model

The two component Becker-Döring system is formu-
lated as an infinite system of differential equations,
and so for numerical approximation, the system has
to be truncated. If nr , ns are the largest number
of particles of types I and II which can be collected

in one cluster, then the size of the finite dimensional
model is (nr + 1)(ns + 1)− 1. With this assumption
the conversion rates

Jr,s = 0 , J ′r,s = 0, if r ≥ nr or s ≥ ns. (5)

In the truncated model, all indices of cr,s can be
considered as a point (r, s) on the rectangle with ver-
tices (nr, 0), (0, ns), (nr, ns) and (0, 0), i.e. (r, s) ∈ It

where

It = {(r, s), r = 0, 1, · · · , nr , s = 0, 1, · · · , ns} − {(0, 0)}.
All points inside the rectangle can gain or lose each
type of monomer but there are restrictions on how the
clusters on its boundary coagulate and fragment. For
example (0, ns)-clusters can not coagulate with (0, 1)-
clusters, since J ′0,ns

= 0. With the above description,
the truncated model can be formulated as follows :

a) For (r, s)-clusters with (r, s) inside the rectangle

ċr,s = Jr−1,s + J ′r,s−1 − Jr,s − J ′r,s (6)
r = 1, 2, · · · , nr − 1 , s = 1, 2, · · · , ns − 1

b) (r, s) on the rectangle sides

ċr,0 = Jr−1,0 − Jr,0 − J ′r,0

r = 2, 3, · · · , nr − 1
ċ0,s = J ′0,s−1 − J0,s − J ′0,s (7)

s = 2, 3, · · · , ns − 1
ċnr,s = Jnr−1,s + J ′nr,s−1 − J ′nr,s

s = 1, 2, · · · , ns − 1
ċr,ns = Jr−1,ns + J ′r,ns−1− Jr,ns

r = 1, 2, · · · , nr − 1

c) For the rectangle vertices

ċnr,0 = Jnr−1,0 − J ′nr,0

ċ0,ns = J ′0,ns−1 − J0,ns (8)

ċnr,ns = Jnr−1,ns + J ′nr,ns−1

d) For the monomers

ċ1,0 = −J1,0 − J ′1,0 −
∑

(r,s)∈It

Jr,s (9)

ċ0,1 = −J0,1 − J ′0,1 −
∑

(r,s)∈It

J ′r,s.

The densities of this truncated system are defined
by

ρI =
∑

(r,s)∈It

rcr,s , ρII =
∑

(r,s)∈It

scr,s (10)

with the sum reduced from If to It. It can easily be
proved that ρI and ρII are independent of time in the
full and truncated model.

It is not difficult to prove that the equations (9) and
(10) are equivalent. We can then apply the density
conservation formulae instead of the monomer rate
equations (9) in our numerical algorithm.

We will present results with two different kinetic
sets of coefficients as follows:
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a)

ar,s = 1 , a′r,s = 1

Qr,s = exp[−a(r − 1)2/3 − b(s− 1)2/3](11)

b)

ar,s = 1 , a′r,s = 1

Qr,s = exp[−a(r + s− 2)2/3]. (12)

In the both cases the fragmentation coefficients are

br,s =
ar−1,sQr−1,s

Qr,s
, b′r,s =

a′r,s−1Qr,s−1

Qr,s
.

and the system is initialized with monomers,that
means

c0,1(0) = ρII

c1,0(0) = ρI (13)
cr,s(0) = 0 if r + s > 1.

The system we consider is the truncated version
with ODEs (6), (7), (8) and the density conservation
equations (10). This is a differential algebraic equa-
tion (DAE) with two algebraic equations. For the nu-
merical solution, we write the two dimensional array
cr,s as a vector using the formula:

yr(ns+1)+s = cr,s where (r, s) ∈ It.

The variables are ordered from y1 = c0,1 to
y(nr+1)(ns+1)−1 = cnr,ns .

The DAE system can then be written as
{

ẏ = f(y),
0 = g(y). (14)

It is a stiff system and is integrated with the backward
difference formula

{
yk+1 − yk − hk+1 f(yk+1) = 0,

g(yk+1) = 0.
(15)

To solve the above nonlinear algebraic system for
yk+1 by the Newton method, we need to calculate
the Jacobian. The Jacobian is a very big matrix, but
it is sparse and has a regular structure [7, 3].

2.2 Reduced Models

For the two component model, the system size is even
more of a problem than for the one component sys-
tem. For example even if we choose nr = ns = 100
for the largest particle numbers of each type in one
cluster, then the truncated model is formulated with
10200 equations and the Jacobian is a 10200× 10200
matrix with 71000 non-zero elements. This shows
that running the truncated model even for a small
size of each component needs a lot of memory and
work. In this section, using our experience with the
one component Becker-Döring , two reduced models
are defined.

2.2.1 Constant Fluxes

assume the fluxes for each type of particle are con-
stant, i.e.

Jr,s = Ĵs s = 1, 2, · · · , ns − 1

J ′r,s = Ĵ ′r r = 1, 2, · · · , nr − 1. (16)

Now using the definition of Jr,s and Qr,s we have

Jk,s

ak,sQk,sc
k+1
1,0

=
ck,s

Qk,sck
1,0

− bk+1,sck+1,s

ak,sQk,sc
k+1
1,0

=
ck,s

Qk,sck
1,0

− ck+1,s

Qk+1,sc
k+1
1,0

,

and similarly

J ′r,k

a′r,kQr,kck+1
0,1

=
cr,k

Qr,kck
0,1

− cr,k+1

Qr,k+1c
k+1
0,1

.

The right hand side terms are two successive expres-
sions with respect to k, therefore the following iden-
tities can be obtained

m∑

k=`

Jk,s

ak,sQk,sc
k+1
1,0

=
c`,s

Q`,sc`
1,0

− cm+1,s

Qm+1,sc
m+1
1,0

,(17)

m∑

k=`

J ′r,k

a′r,kQr,kck+1
0,1

=
cr,`

Qr,`c`
0,1

− cr,m+1

Qr,m+1c
m+1
0,1

.(18)

From (16) and (17) with ` = 0 and m = r − 1 for
fixed s,

cr,s = Qr,sc
r
1,0

(
c0,s

Q0,s
− Ĵs

r−1∑

k=0

1/(ak,sQk,sc
k+1
1,0 )

)
(19)

r = 1, 2, · · · , nr − 1

where Ĵs is obtained from (17) with l = 0 and m =
nr − 1, i.e.

Ĵs =

c0,s

Q0,s
− cnr,s

Qnr,scnr
1,0∑nr−1

k=0 1/(ak,sQk,sc
k+1
1,0 )

.

Similarly for all values of s and fixed r , from (18)

cr,s = Qr,sc
s
0,1

(
cr,0

Qr,0
− Ĵ ′r

s−1∑

k=0

1/(a′r,kQr,kck+1
0,1 )

)
(20)

s = 1, 2, · · · , ns − 1

where

Ĵ ′r =

cr,0
Qr,0

− cr,ns

Qr,nscns
0,1∑ns−1

k=0 1/(a′r,kQr,kck+1
0,1 )

.

With the above procedure (19) and (20) give two dif-
ferent values for cr,s , and so we define cr,s to be the
weighted average

cr,s =
rc

(19)
r,s + sc

(20)
r,s

r + s
, (21)
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where c
(19)
r,s is the cr,s in (19).

Therefore using assumption (16), (nr+1)(ns+1)−1
equations in the truncated model can be reduced to
2(nr + ns) − 1 equations depending on the variables
on the boundary area, as follows :

ρI =
∑

(r,s)∈It

rcr,s , ρII =
∑

(r,s)∈It

scr,s

ċr,0 = Jr−1,0 − Jr,0 − Ĵ ′r r = 2, 3, · · · , nr − 1

ċ0,s = J ′0,s−1 − J ′0,s − Ĵs s = 2, 3, · · · , ns − 1

ċnr,s = J ′nr,s−1 − J ′nr,s + Ĵs s = 1, 2, · · · , ns − 1

ċr,ns
= Jr−1,ns

− Jr,ns
+ Ĵ ′r r = 1, 2, · · · , nr − 1

ċ0,ns
= J ′0,ns−1 − J0,ns

ċnr,0 = Jnr−1,0 − J ′nr,0

ċnr,ns
= Jnr−1,ns

+ J ′nr,ns−1

where It is the index set for the truncated model.
The balances of the converting rates for all cr,s not

on the boundary are zero and so the solution of the
following in the interior algebraic equations gives the
values of cr,s

Jr−1,s − Jr,s + J ′r,s−1 − J ′r,s = 0 (22)
r = 1, 2, · · · , nr − 1 , s = 1, 2, · · · , ns − 1

The above system can be written in matrix form,
AG = B, where A is a block penta-diagonal matrix.

A =




A1 U1

L1 A2 U2

L3 A3 U3

. . . Unr−1

Lnr−2 Anr−1




,

G = [ G1 G2 · · · Gnr−1 ]T

B = [ B1 B2 · · · Bnr−1 ]T

where Ai, Li and Ui are (ns − 1)× (ns − 1) matrices,

Ai =




−∆i,1 b′i,2
a′i,1c0,1 −∆i,2 b′i,3

. . . b′i,ns−1

a′i,ns−2c0,1 −∆i,ns−1




Li = c1,0




ai,1

ai,2

. . .
ai,ns−1


 ,

Ui =




bi+1,1

bi+1,2

. . .
bi+1,ns−1




with

∆i,j = bi,j + ai,jc1,0 + b′i,j + a′i,jc0,1,

and Gi, Bi are (ns − 1)× 1 vectors

Gi = [ ci,1 ci,2 ci,3 · · · ci,ns−1 ]T

Bi =
[ −a′i,0c0,1ci,0 0 0 · · · 0 b′i,ns

ci,ns

]T
,

i = 1, 2, · · · , nr − 1
B1 = B1 + c1,0[−a0,1c0,1,−a0,2c0,2, · · · ,

−a0,ns−1c0,ns−1]T

Bnr−1 = Bnr−1 + [−bnr,1cnr,1,−bnr,2cnr,2,

· · · ,−bnr,ns−1cnr,ns−1]T

We have solved this large system using direct block
LU factorization.

2.2.2 Piecewise Constant Fluxes

Let us select a subset of the nodes in the r and s
components

{nri}k
i=0 ⊆ {0, 1, 2, · · · , nr}

{nsj}`
j=0 ⊆ {0, 1, 2, · · · , ns}

then the index set of nodes is

Ir = {(nri , nsj ) , i = 0, 1, 2, · · · , k ,

j = 0, 1, 2, · · · , `} − {(0, 0)} ⊆ It

with the following restrictions :

nr0 = ns0 = 0, nrk
= nr

nr1 = ns1 = 1, ns`
= ns.

Now assume that the converting rates are piecewise
constant as follows:

Jr,s = Ĵi,s if nri < r < nri+1 ,

J ′r,s = Ĵ ′r,j if nsj < s < nsj+1 .

Thus the domain (r, s) ∈ It in the truncated model
( rectangular region ) is divided into ` × k blocks or
sub-rectangles and both fluxes are constant over each
sub-rectangle. The (nr +1)×(ns +1)−1 equations in
the truncated model reduce to nr(`+1)+ns(k+1)−`k
equations in this model.

For formulating this piecewise constant fluxes
model, we need to define the following sets:

Ir1 = {nri , i = 1, 2, · · · , k − 1}
Ir2 = {1, 2, · · · , nr − 1} − Ir1

Is1 = {nsj , j = 1, 2, · · · , `− 1}
Is2 = {1, 2, · · · , ns − 1} − Is1

then the piecewise constant fluxes version of the two
component Becker-Döring model is :

ċr,s = Jr−1,s − Jr,s + J ′r,s−1 − J ′r,s (r, s) ∈ Ir1 × Is1
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ċnri
,s = Ĵi−1,s − Ĵi,s + J ′nri

,s−1 − J ′nri
,s

i = 1, 2, · · · , k − 1, s ∈ Is2

ċr,nsj
= Ĵ ′r,j−1 − Ĵ ′r,j + Jr−1,nsj

− Jr,nsj

j = 1, 2, · · · , `− 1, r ∈ Ir2

ċ0,s = J ′0,s−1 − J ′0,s − J0,s s ∈ Is1 − {1}
ċ0,s = J ′0,s−1 − J ′0,s − Ĵ0,s s ∈ Is2

ċr,0 = Jr−1,0 − Jr,0 − J ′r,0 r ∈ Ir1 − {1}
ċr,0 = Jr−1,0 − Jr,0 − Ĵ ′r,0 r ∈ Ir2

ċr,ns
= Jr−1,ns

− Jr,ns
+ J ′r,ns−1 r ∈ Ir1

ċr,ns
= Jr−1,ns

− Jr,ns
+ Ĵ ′r,`−1 r ∈ Ir2

ċnr,s = J ′nr,s−1 − J ′nr,s + Jnr−1,s s ∈ Is1

ċnr,s = J ′nr,s−1 − J ′nr,s + Ĵk−1,s s ∈ Is2

ċ0,ns = J ′0,ns−1 − J0,ns

ċnr,0 = Jnr−1,0 − J ′nr,0

ċnr,ns
= Jnr−1,ns

+ J ′nr,ns−1

with the monomer rate equations

ċ1,0 = −J1,0 − J ′1,0 −
∑

(r,s)∈It

Jr,s,

ċ0,1 = −J0,1 − J ′0,1 −
∑

(r,s)∈It

J ′r,s.

The equivalent densities conservation formulae are

ρI =
∑

(r,s)∈It

rcr,s , ρII =
∑

(r,s)∈It

scr,s.

We are forced to calculate all cr,s at each time step
no matter which formulae we use for the monomers.
Following (19) and (20) , we solve the following alge-
braic system over each sub-rectangle.

Jr−1,s − Jr,s = 0 , J ′r,s−1 − J ′r,s = 0 (r, s) ∈ It − Ir (23)

Equations in rows or columns form tridiagonal alge-
braic sub-systems.

Figure 2 shows the monomer concentrations for the
three models of two component Becker-Döring system
with the kinetic coefficients in (11) and a = b = 10.
The system size is 30× 30 and the densities are ρI =
ρII = 350.

For our models, nr = ns so the system solutions
can be considered as a square matrix and the system
is symmetric because of the definition of the kinetic
coefficients and equal system densities. Therefore the
1-norm and ∞-norm are the same. The accuracy of
the reduced models can be computed by comparing
with the truncated model. Two errors will be consid-
ered :

||cf(t)− cr(t)||∞ = max
0≤r≤nr

except(0,0)

ns∑
s=0

|cf
r,s(t)− cr

r,s(t)|

10
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Figure 2: The monomer concentrations of the two
component Becker-Döring system against time. Den-
sities ρI(0) = ρII(0) = 350 and kinetic coefficients
(11).

and

||cf(t)− cr(t)||E =


 ∑

(r,s)∈It

(cf
r,s(t)− cr

r,s(t))
2




1/2

Figure 3 plots these errors in two different norms.
For all models, the system size is 30× 30, the kinetic
coefficients (11 and a = b = 10 ), the initial values
(13) and the densities ρI = ρII = 350 . Both reduced
models have excellent accuracy. The errors in both
norms is less than 10−10 in the equilibrium phase.
The accuracy of the piecewise constant models is less
than 10−15 in the equilibrium state. We should point
out that the absolute and relative local error tolerance
in our ODE code for all models is 10−10.
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Figure 3: The errors of the constant fluxes and piece-
wise constant fluxes models with the truncated model
in the infinite- and Euclidean-norms.

3 Discussion

The two component Becker-Döring system is formu-
lated as in (3) and (4) and Figure 1 shows the clus-
ters formation in this model that the cluster size can
change in steps of ±1 at each time. For numerical
work, the system has to be considered as a finite
dimensional model. Here we restrict the converting
rates to the finite domain (5). Another way for trun-
cating the system is, the (r, s)-cluster concentration

cr,s = 0 if r ≥ nr or s ≥ ns. (24)

Finally we note that other reduced models of the
one component Becker-Döring system may be ex-
tended for the two component system. Assume
c(r, s), converting rates J(r, s), J ′(r, s) and the kinetic
coefficients are continuous functions of r, s, then the
system can be approximated by the partial differen-

tial equation

∂c

∂t
=

∂J

∂r
− ∂J ′

∂s
(25)

where

J = −a(r, s) c(1, 0) c̄
∂

∂r

(c

c̄

)
,

J ′ = −a′(r, s) c(0, 1) c̄
∂

∂s

(c

c̄

)

and

c̄ = Q(r, s) cr(1, 0) cs(0, 1).

The boundary conditions for this PDE are very com-
plicated and we recommend the use of the discrete
form of the boundary conditions for the truncated
model (7, 8), after discretizing the equation (25) by
the chosen method.
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