
Periodic Sequences Derived from Self-Orthogonal Finite-Length 
Sequences 

 
Yoshihiro TANADA  

Department of Computer Science and Systems Engineering 
Faculty of Engineering, Yamaguchi University 

2-16-1 Tokiwadai, Ube, 755-8611 Japan 
Tel : +81-836-85-9506 Fax : +81-836-85-9501 

 
 

Abstract: - Self-orthogonal finite-length sequence has impulsive autocorrelation function with no sidelobes except 
at left and right shift-ends. In this paper, some types of periodic sequences are derived from the self-orthogonal 
finite-length sequence. Periodic sequence with successive zero values, self-orthogonal periodic sequence and 
near-self-orthogonal periodic sequence have good properties of periodic even and odd autocorrelation functions. 
Derived sequences are expressed by DFT together with convolution of element sequences and applicable to fast 
convolution or correlation processing. 
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1 Introduction 
In the direct sequence spread spectrum systems of 
radar and communication, pseudonoise sequences are 
desired to have good properties of sequence values, 
auto-and crosscorrelation values. In a cellular CDMA 
communication system, finite-length sequences with 
good properties could suppress intersymbol, intracell 
and intercell interferences. In a pulse compression 
radar system, periodic sequence with good properties 
might suppress intersymbol interference. Self-ortho- 
gonal finite-length sequences which have impulsive 
aperiodic autocorrelation function with zero sidelobes 
except at left and right shift-ends are effective to 
suppress the above interferences in the CDMA system 
[1]-[3]. In this paper, some types of periodic  se- 
quences are derived from the self-orthogonal fi- 
nite-length sequences. The derived sequences have the 
expressions of the DFT together with the convolution 
of element sequences and have the good properties of 
even and odd autocorrelation functions. 
 
2 Self-Orthogonal Finite-Length 

Sequence 
A finite-length sequence whose aperiodic autocor- 
relation function has no sidelobes except at left and 
right shift-ends, can be called self-orthogonal or 
shift-orthogonal finite-length sequence, because its 
shifted sequences are orthogonal within a limited shift 
range. This finite-length sequence has generally 
complex or real values. An aperiodic autocorrelation 

function 








',,, iM llρ of a complex-valued self-ortho- 

gonal finite-length sequence { }iMa ,,l  of length M  
and distinct number l  is represented by 
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where 0,, =iMa l  for 0<i  and 1−> Mi , and 'i  is 
shift, and ∗  stands for complex conjugate, and 1−Mε  
is shift-end value as 
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Fig. 1 (a)Self-orthogonal finite-length sequence and  
          (b) its autocorrelation function .                       



Fig. 1 illustrates the self-orthgonal finite-length se- 
quence and its autocorrelation function. From Eq. (1) 
the shifted sequences { }niMa −,,l  satisfy the ortho- 
gonality as follows:  
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The self-orthogonal finite-length sequence is re- 
placed by an impulse train 
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and its Fourier transform 
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where t  is time, f  is frequency, )( tit ∆−δ  is the 
impulse at every time interval t∆ , and tfjeZ ∆= π2 , 

1−=j . The energy spectrum of )(, taM l  becomes 
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which is factorized to 
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From Eq. (6), the sequence spectrum )(, fAM l  is 
constructed by combining the either prime element 
polynomial with Mα  and Mβ  for each m , because 

the prime element polynomials with Mα  and Mβ  of 
the same m  correspond to the reverse prime element 
sequences of length 2 with the same autocorrelation 
function. The sequence spectrum is given by                            
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Eq. (9) explains that the sequence { }iMa ,,l  is con- 
structed by the ( )1−M -multiple convolution of prime 
element sequences of length 2. If the sequence has real 
values, then 0=Mϕ  or π and the first order prime 
element polynomials with complex conjugate co- 
efficients are combined to the second order compound 
element polynomial with real coefficient in Eq. (9). 
Since combing element sequences can make the 
longer compound element sequences zero-valued, the 
self-orthogonal finite-length sequence is effective to 
make digital convolution or correlation processing 
fast[2]. 
 
3   A Derived Finite-Length Sequence 
We introduce another finite-length sequence derived 
from self-orthogonal finite-length sequence. Let the 
sequence { }iMa ,',' l  have the shift-end value 1' −Mε . 
Convolution between { }iMa ,,l  and { }iMa ,',' l  makes the 
sequence { }.,,' iMb λ  of length 12' −= MM . The auto- 
correlation function of { }.,,' iMb λ , which is derived from 
convolution between the autocorrelation functions of 
{ }iMa ,,l  and { }iMa ,',' l  or derived from ⋅

2
, )( fAM l  

2
', )(' fA M l , is given by 
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The spectrum of { }.,,' iMb λ  is given by 
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where )(', fAM l  is expressed by replacing l , Mϕ , 

l,MK  and mM ,γ  of )(, fAM l  by 'l , M'ϕ , ',' lMK  and  

mM ,'γ , respectively. If the absolute values of 1−Mδ  
and )1(2 −Mδ  are small, the sequence { }iMb ,,' λ  is useful. 
When 1−Mε  0,' 11 =−= −− MM then δε : the sequence 
{ }iMb ,,' λ  becomes a self-orthogonal finite-length 
sequence of length 12' −= MM . The sequence 
{ }iMb ,,' λ  is applied to the synthesis of some types of 
periodic sequences, afterward. 
 
4 Periodic Sequences from      

Self-Orthogonal Finite-Length 
Sequence 

We can derive periodic sequences from the above 
finite-length sequences. The derived periodic se- 
quences have fine periodic autocorrelation functions, 
are effective to fast signal processing, and may have 
other properties of sequence values and correlation 
functions, etc. 
 
4.1   Periodic Sequence with successive zero 

values 
We introduce a periodic sequence { }iNa ,,l  of period 
N , having zero values in half a period, as 
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where MN 2= . The autocorrelation function of this 
periodic sequence is given by  
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Fig. 2 (a) Periodic sequence { }iNa ,,l  and 
          (b) autocorrelation function { }',,, iN llρ . 
 
The periodic autocorrelation function { }',,, iN llρ  takes 
the same values as those of the aperiodic auto- 
correlation function { }',,, iM llρ . This periodic sequence 
keeps the property of the self-orthogonal finite-length 
sequence. Fig. 2 shows the periodic sequence { }iNa ,,l  
and the autocorrelation function { }',,, iN llρ .  
    The periodic sequence { }iNa ,,l  is also represented 
by the discrete Fourier transform (DFT) as  
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where { }kNA ,,l  is the DFT spectrum of { }iNa ,,l . 

Introducing the impulse train )(, taN l  of period T  
and divided interval NTt =∆  similar to Eq. (4) and 
the discrete frequency ,Tkf = 1,,1,0 −= Nk L , 
we can obtain the DFT spectrum 
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This spectrum is the expression based on convolution. 
From Eq. (6) and Eq. (18) the absolute value of this 
spectrum is given by  
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and from Eq. (18) the phase angle of this spectrum is 
obtained. We can calculate the sequence values by the 
DFT of { }kNA ,,l  with the absolute value and the phase 
angle, in addition to the convolution. We can derive 
the other sequences by varying the continuing zero 
values together with period N. In a particular case 
without zero value, we can use Eqs. (17),(18) and (19) 
for MN = . 
 
4.2  Self-Orthogonal periodic Sequence 
We   introduce   a   periodic   sequence   { }iNa ,,

~
l    of 

period N , with overlapping the first value and the last 
value in a self-orthogonal finite-length sequence 
{ }iMa ,,l  , as 
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where 1−= MN  and 
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The autocorrelation function of the periodic sequence 
{ }iNa ,,
~

l  is given by  
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Fig. 3  shows  the  periodic  sequence  { }iNa ,,

~
l   and  the  

autocorrelation function { }',,,
~

iN llρ . Therefore, this 
sequence is a self-orthogonal periodic sequence, since 
the shifted sequences { }niNa −,,l , 1,,2,1,0 −= Nn L  
are orthogonal from Eq. (22). 
    The periodic sequence { }iNa ,,

~
l  is also represented 

by the DFT as 
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where { }kNA ,,

~
l  is the DFT spectrum of { }iNa ,,

~
l , given 

by  

N
T

t
T
k

fM
N

kN fA
N

K
A

=∆=
=

,,,, )(
~

~
ll                            

l,
1

1

cos21
M

Mj

MM

M Ke ϕ
ϕε

ε

−

−

+
=               

 

.

2

0

1
)12(

1
,

2

∏
−

=

−
+

−
−−













−×
M

m

M
mj

M
M

mM
N

j
e

j
e

k
e

ππ ϕ
γ (24) 

 
The absolute value of the spectrum { }kNA ,,l  is 
apparently  

1~
,, =kNA l                               (25) 

 
and the phase angle of the spectrum { }kNA ,,l  is 
obtained from Eq. (24). 
 

 
 

Fig. 3 (a) Periodic sequence { }iNa ,,
~

l  and 
                   (b) autocorrelation function { }',,,

~
iN llρ . 

 



A self-orthogonal periodic sequence is effective to 
the application to radar. If we apply the sequence to 
data transmission, the sequence of one period must be 
treated as a finite-length sequence. The aperiodic 
autocorrelation function of the finitized sequence from 
the self-orthogonal periodic sequence { }iNa ,,

~
l  is 

obtained as follows : 
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Fig. 4 shows the repeated sequence of this finitized 
sequence and its decomposed sequences. The 
autocorrelation functions of the decomposed even and 
odd sequences correspond to even and odd auto- 
correlation functions, respectively.  
 

 
 
Fig. 4 (a) Repeated sequences of finitized sequence, 

(b) even sequence and (c) odd sequence. 
 
From Eqs. (20),(26) and Fig. 4 ,we can obtain the 
following : the normalized even autocorrelation 
function is the same as the periodic autocorrelation 
function  { }',,,

~
iN llρ , and the normalized odd 

autocorrelation function takes 1 at Ni 2mod0'= , -1 at 
NNi 2mod'= , and that of { }',,,'~

iN llρ  at other 
Ni 2mod' . For the longer N , the absolute values of 

odd autocorrelation function out of phase decrease. 
 

4.3  Near-Self-Orthogonal Periodic Sequence 
We introduce a periodic sequence { }iNb ,,

ˆ
λ  of period 

N , with overlapping the first value and the last value 
in a derived finite-length sequence { }iMb ,,λ , as 
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The autocorrelation function of the periodic sequence 
{ }iNb ,,
ˆ

λ  is given by 
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Fig. 5 shows the periodic sequence { }iNb ,,

ˆ
λ  and the 

autocorrelation function { }',,,ˆ iN λλρ . 
 

 
 
Fig. 5 (a) Periodic sequence { }iNb ,,

ˆ
λ  and 

          (b) autocorrelation function { }',,,ˆ iN λλρ . 
 
This autocorrelation function { }',,,ˆ iN λλρ  is alike to the 
autocorrelation function { }',,, iN llρ  of the periodic 
sequence { }iNa ,,l . A sequence which is rejected a zero 
value from { }iNa ,,l  has just the same type of the 
autocorrelation function as the type of { }',,,ˆ iN λλρ . This 



is a notice that the different-type sequences can have 
the same-type autocorrelation function. 
    The periodic sequence { }iNb ,,

ˆ
λ  is represented by the 

DFT as 
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where { }kNB ,,

ˆ
λ  is the DFT spectrum of { }iNb ,,

ˆ
λ , given 

by 
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From  Eqs. (15),(30) and (32) the absolute value of this 
spectrum is given by 

k
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and from Eq. (32) the phase angle of this spectrum is 
obtained. If 11 ' −− = MM εε  and πϕϕ =+ MM ' , then 

0ˆ
2

=Nδ : the periodic sequence { }iNb ,,
ˆ

λ  becomes a 

self-orthogonal periodic sequence of length =N  
)1(2 −M . 

    The absolute values of even and odd autocorrelation 
functions from the sequence { }iNb ,,

ˆ
λ  are estimated to 

decrease for the longer N . 
 
5 Conclusion 
Periodic sequences are derived from self-orthogonal 
finite-length sequences. These sequences have good 
properties of periodic even and odd autocorrelation 
functions, because the self-orthogonal finite-length 
sequence has an aperiodic autocorrelation function 
with no sidelobes except at both shift-ends. The 
derived self-orthogonal periodic sequence is effective 
to the application to radar as well as spread spectrum 

data transmission. All the derived sequences have the 
expressions of the DFT together with the convolution 
of element sequences, and are applicable to fast 
convolution or correlation processing. Sequence val- 
ues and crosscorrelation values of these sequences are 
to be considered for the good properties hereafter. 
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