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Abstract: - In this paper, we propose a new method for constructing polyphase ZCZ sequences. The proposed 
sequences are composed of polyphase perfect sequences and polyphase unitary matrices. By this method, we can 
obtain polyphase ZCZ sequences which are not known yet. For example, as compared with the conventional method, 
quadriphase ZCZ sequences with wide zero correlation zones can be obtained by the proposed method. 
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1 Introduction 
The set of sequences having low out-of-phase 
autocorrelation values and low cross-correlation values 
plays an important part in typical DS-CDMA systems. 
A periodic sequence with zero out-of-phase 
autocorrelation values is called a perfect sequence or an 
orthogonal sequence. That is, a perfect sequence is a 
periodic sequence with an ideal autocorrelation property. 
Similarly, a set of periodic sequences with zero 
cross-correlation values is called a set of uncorrelated 
sequences. That is, a set of uncorrelated sequences is a 
set of sequences with an ideal cross-correlation property. 
However, it is impossible to find a set of sequences with 
both the ideal autocorrelation and cross-correlation 
properties. 

If periodic sequences have zero out-of-phase 
autocorrelation and cross-correlation values within the 
limits of T≤τ , the sequences are called zero 
correlation zone (ZCZ) sequences, where τ  is a time 
shift variable and T  is an integer. ZCZ sequences were 
first studied by Suehiro. In [1], he proposed a signal 
design method for approximately synchronized CDMA 
(AS-CDMA) systems by using a kind of polyphase ZCZ 
sequence set. Later, the concept of zero correlation zone 
was definitely proposed by Fan et al., and then several 
classes of binary and nonbinary ZCZ sequences derived 
from complementary pairs or sets were proposed [2]-[3]. 
Moreover, Matsufuji et al. [5] proposed several classes 

of polyphase ZCZ sequences of period 21NN , where 
1N  and 2N  are relatively prime. 
In this paper, we propose a new method for 

constructing polyphase ZCZ sequences. By this method, 
we can obtain polyphase ZCZ sequences which are not 
known yet. For example, in comparison with the 
conventional method, the quadriphase ZCZ sequences 
obtained from the proposed method have wide zero 
correlation zones. To give an example, a quadriphase 
ZCZ sequence set with ( ) ( )8,4,64,, =TUL  can be 
generated by the method based on quadriphase 
complementary pairs, where L  is a period of 
sequences, U  is the number of sequences, and T  is a 
width of zero correlation zone. On the other hand, a 
quadriphase ZCZ sequence set with ( ) ( )14,4,64,, =TUL  
can be generated by the proposed method. 

In section 2, the method for constructing polyphase 
ZCZ sequences is described in detail. In section 3, we 
give a proof that the proposed sequences are ZCZ 
sequences. 
 
 
2 Polyphase ZCZ Sequences 
In this section, we propose a new method for 
constructing polyphase ZCZ sequences. The polyphase 
ZCZ sequences are derived from polyphase perfect 
sequences and polyphase unitary matrices. 

Let ( )0
1

0
1

0
00 ,,, −= laaaA L  be a polyphase perfect 



sequence of period l , that is, 0A  is a perfect sequence 
whose elements are complex numbers of absolute value 
1. Two integers 0l  and 1l  are defined as: 
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A perfect sequence iA  is defined as: 
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that is, iA  is a perfect sequence obtained from shifting 
0A  cyclically to the left by 0li ⋅  places. 

Let nB  be an 11 ll ×  polyphase unitary matrix, that 
is, 
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where * denotes a complex conjugate. Note that the 
elements in nB  are complex numbers of absolute value 
1. 

A sequence set 0C  is defined as: 
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A sequence set nC  is also defined as: 
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where in
jc ,  is defined by the following recursive 

procedure. 

( ) [ ]
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mod,1
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j cbc −⋅=  

where [ ]1/ lj  denotes a maximum integer which is not 
larger than 1/ lj . 

Then, we can obtain the following theorem. 
Theorem 1: The set nC  derived from the above 
formulas (1)-(6) is a polyphase ZCZ sequence set with 
( ) ( )( )1

111 2,,,, −⋅−⋅= nn lllllTUL . 

For example, suppose that 16=l , 40 =l , 41 =l , and 
( )02032100000123020 =A , then four quadriphase perfect 

sequences are derived from the formula (2). Those 
perfect sequences are represented as: 
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where 0, 1, 2, 3 represents 1 , j , 1− , j−  respectively, 
and 1−=j . Moreover, let 1B  be 
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then we can generate the following quadriphase ZCZ 
sequence set with ( ) ( )14,4,64,, =TUL  by using the 
above-mentioned method. 

(
)

(
)

(
)

(
).13333323011323202003210321222201
 31111123013123020203210321000001

,30321022221200230102020202210300
12103222223000012302020202032100

,11313121031121222201230123202003
33131321033321000001230123020203

,32301220201002210300000000230102
10123020203202032100000000012302

1
3

1
2

1
1

1
0

=

=

=

=

C

C

C

C

 

The autocorrelation function of 1
0C  is given by 

( ) (

).0,00,0,0,0,0,0,0,0,0,0,,0,48,0,0,0,0,16,0,0               
0,0,0,0,0,0,0,,0,0,32,0,0,0,0,32,00,0,0,0,0,

6,0,0,48,0,0,0,1,,0,0,0,0,0,0,0,0,0,064,0,0,0,00 =τR
 

The cross-correlation function between 1
0C  and 1

2C is 
also given by 
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

,0, 616,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0 =τR

 

Note that quadriphase perfect sequences of period 2, 4, 
8, and 16 have been found. If you want to generate a 
quadriphase ZCZ sequence set with zero correlation 
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zones wider than the conventional method, you have to 
select a quadriphase perfect sequence of period 16 or 8 
as 0A . 

We now give another example. Suppose that 9=l , 
30 =l , 31 =l , and ( )0000120210 =A , then three perfect 

sequences are derived from the formula (2). Those 
perfect sequences are represented as: 
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where 0, 1, 2 represents 1 , ( )32exp jπ , ( )34exp jπ  
respectively. Furthermore, let 1B  and 2B  be 
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then we can generate the following ZCZ sequence set 
with ( ) ( )21,3,81,, =TUL  by using the above-mentioned 
method. 
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The autocorrelation function of 2
0C  is given by 

( ) (

)0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
9,0,9,9,0,0,0,0,9,9,9,0,9,9,0,0,0,0,0,
0,0,0,0,9,0,9,9,0,0,0,0,0,9,9,9,0,9,9,

,0,0,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,081,0,0,0,00 =τR

 

The cross-correlation function between 2
0C  and 2

1C  is 
also given by 
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 =τR

 

 
 
3 Proof of Theorem 1 
In this section, we give a proof of Theorem 1, that is, 

we prove that the proposed sequences are ZCZ 
sequences with ( ) ( )( )1

111 2,,,, −⋅−⋅= nn lllllTUL . 

Let ( )τA
iiR
10 , , ( )10 −≤≤ lτ  be the correlation function 

between 
0iA and 

1i
A . If 10 ii = , ( )τA

iiR
10 ,  denotes the 

autocorrelation function, and if 10 ii ≠ , ( )τA
iiR
10 ,  denotes 

the cross-correlation function. Since iA  is derived from 
shifting the perfect sequence 0A  cyclically, the 
correlation function ( )τA

iiR
10 ,  is represented as: 
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Similarly, let ( )τn
iiR
10 , , ( )10 1 −⋅≤≤ nllτ  be the correlation 

function between n
iC
0

 and n
iC
1

. The correlation 

function ( )τn
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10 ,  is also represented as: 
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Now we prove Theorem 1 by means of mathematical 
induction. 

When 1=n , the correlation function ( )τ1
, 10 iiR  is 

calculated as: 
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The variables k  and τ  can be described as: 
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From the formulas (7) and (11), if 001 == ττ , 
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Similarly, if 01 =τ  and 00 ≠τ , 
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From the formulas (12) and (13), if 01 =τ , 
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On the other hand, suppose that 01 ≠τ , we can obtain 
the following formula. 

( ) ( ) .mod 00110 llllll −≤⋅−≤ τ  

If 20 00 −≤≤ lτ , 
( )[ ] ,1/0 01110 −≤++≤ llk ττ  

since ( )[ ] 1/0 111 ≤+≤ lk τ .  From the formulas (7), (11), 
(15), and (16), if 01 ≠τ  and 20 00 −≤≤ lτ , 

( ) .01
, 10

=τiiR  

Similarly, if 11 00 −≤≤+− lll τ , 
( )[ ] ./1 11100 llkll ≤++≤+− ττ  

From the formulas (7), (11), (15), and (18), if 01 ≠τ  
and 11 00 −≤≤+− lll τ , 

( ) .01
, 10

=τiiR  

Furthermore, suppose that 100 −= lτ , then 
( )[ ] ./1 011100 llkl ≤++≤− ττ  

Therefore, if and only if 111 −= lτ  and 11 ≥k , the 
following equation is satisfied. 

( )[ ] ( ) ( ) .mod/ 00111110 lllllk =⋅−=++ τττ  

From the formulas (7) (11), and (21), if 01 ≠τ  and 
100 −= lτ , 

( ) ( ).
otherwise0

111

1

1k

*1
1,

1
,1

,

1

1

1110
10







−=⋅= ∑
−

=
− lbblR

l

kiki
ii

ττ  

Similarly, suppose that 00 ll −=τ , then 
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following equation is satisfied. 
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From the formulas (14), (17), (19), (22), and (25), if 
20 −≤≤ lτ  or 12 11 −⋅≤≤+−⋅ lllll τ , 
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Note that 110 τττ +⋅= l . The formula (26) shows that the 
set 1C  is a ZCZ sequence set with 
( ) ( )2,,,, 11 −⋅= llllTUL . 
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From the formulas (28) and (29), 
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From the formulas (27) and (30), if 001 == ττ , 
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since ( )[ ] ( ) 2
11110 2/0 −⋅−≤++≤ nlllk ττ . Note that 
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Note that 110 τττ +⋅= l . The formula (34) shows that the 
set nC  is a ZCZ sequence set with 
( ) ( )( )1

111 2,,,, −⋅−⋅= nn lllllTUL , therefore Theorem 1 has 
been proved by mathematical induction. 

Note that this proof can be applied even when 0A  is 
any perfect sequence and nB  is any unitary matrix. 
 
 
4 Conclusion 
In this paper, we have proposed a new method for 
constructing polyphase ZCZ sequences. Also we have 

given a proof that the proposed sequences are ZCZ 
sequences. By the proposed method, we can obtain 
polyphase ZCZ sequences which are not known yet. 
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