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Abstract: - In this paper we give a suÆcient condition on the exact controllability of the Klein-Gordon

system with a time-varying parameter. We show that under some regularity conditions on the time-

varying parameter, the system is exact controllable. We prove its exact controllability by applying

the Hilbert Uniqueness Method.
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1 Introduction

Suppose 
 be an open and bounded domain in Rd ,

where d � 2. Next, we let a distributed parameter

system M be

wtt ��w + �(t)w = 0 in 
� (0; T ); (1)

w(x; t) = u(x; t)�!�(0;T ) on @
� (0; T ); (2)

w(x; 0) = w0(x) 2 L2(
); and (3)

wt(x; 0) = w1(x) 2 H�1(
); (4)

where ! is a relatively open subset of the bound-

ary @
. Here, H�1 denotes the dual of the space

H1
0 and � is a smooth function of time t. The

function u is called control, and the whole sys-

tem is called Klein-Gordon system. To shorten

the notaion, we denote the left hand side of (1)

by L(w).

Our problem is to �nd a suÆcient condition

for the existence of a control u 2 L2(! � (0; T ))

such that w(:; T ) = wt(:; T ) = 0. A control satis-

fying this property is called exact control.

Positive analytical results on the existence of

the exact control u have been stated for several

mathematical models. For example, see [1], [5],

[6], [7], and [8]. The control's relation with the

damping of the systems is presented in [10].

The most recent study on wave-like equation

is done by Avalos and Lasiecka in [2].

2 Exact Controllability

Before stating the exact controllability of the sys-

tem above, we de�ne the dual system M0 of the

above system as

vtt ��v + �(t)v = 0 in 
� (0; T ); (5)

v(x; t) = 0 on @
� (0; T ); (6)

v(x; 0) = v0(x) 2 H1
0 (
); and (7)

vt(x; 0) = v1(x) 2 L2(
): (8)

The dual system above is equipped with an out-

put map

z(x; t) = �@�v(x; t) on ! � (0; T ): (9)

Here, � denotes the unit normal vector �eld on

the boundary @
, pointing outward, and @� is the

directional derivative on the direction of �.

Let S = H1
0 �L2 and j � j be the L2-norm. We

then de�ne a norm

k(v; vt)kS =
p
jrvj2 + jvtj2 (10)
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for every (v; vt) 2 S. With this norm, we de�ne

energy E of the state (v(�; t); vt(�; t)) as

E(t) =
1

2

�
k(v; vt)k

2
S + �(t)jvj2

�
: (11)

Next, let r be a point in Rd n �
. Then we can

de�ne a set

�(r) = fx 2 @
j(x� r) � �(x) > 0g: (12)

Every element of �(r) is called an exit point of 


relative to r.

Corresponding to the geometry of 
, one can

�nd a constant �0 > 0, such that jr'j2 � �0j'j
2

for all ' 2 H1
0 . This constant in fact is the �rst

eigenvalue for the negative Laplacian �� with

Dirichlet boundary condition.

Relating to the dual systemM0, we obtain the

following a kind of observability property.

Lemma 1 If r = (r1; r2; � � � ; rd) 2 R
d n �
, and

there is an � 2 (0; 1), such that

(A1) (1� �)�0 � j�(t)j for all t � 0;

(A2) var(�) <1;

(A3) �(r) � !,

then there exists a T > 0 and constants kT ;KT >

0 such that

kT k(v0; v1)k
2
S � jzj2L2(!�(0;T ))

� KT k(v0; v1)k
2
S (13)

for every (v0; v1) 2 S.

Here, var(�) denotes the total variation of �

on [0;1). It is de�ned as

var(�) = sup
p2P

NpX
i=1

j�(ti)� �(ti�1)j; (14)

where P is the family of all �nite partition p =

f[ti�1; ti)ji = 1; 2; � � � ; Npg of [0;1).

Proof. By (A1), one can prove that the energy

E is always non negative. Moreover, if we di�er-

entiate it along the trajectory of M0, we obtain

E0(t) =
�0(t)

2
jvj2: (15)

Since jvj2 � 2
��0

E(t), then

E(0)

M(T )
� E(t) �M(T ) E(0); (16)

for every t > 0. Here, M(T ) =

C exp
�
C0

R T
0 j�0(t)jdt

�
, C0 = 1=(��0), and C is

some positive number.

Next, we de�ne a vector �eld

q(x) = (q1(x); � � � ; qd(x))

= ((x1 � r1); � � � ; (xd � rd)): (17)

It is clear that q 2
�
C1(Rd)

�d
.

We now consider the following equationZ

�(0;T )

L(v) Q dx dt = 0; (18)

where Q =
dP

i=1
qi @xiv. This Q is called the multi-

plier. This is the reason why this method is called

multiplier technique [4]. On the left hand side, we

have three terms. Integrating the �rst term, we

obtainZ

�(0;T )

vtt Q dx dt

= �(T )� �(0) +
d

2

Z

�(0;T )

jvtj
2 dx dt; (19)

where �(t) =
R

 vt(x; t)

dP
i=1

qi @xiv(x; t) dx. Inte-

grating the second term, we obtain

�

Z

�(0;T )

�v Q dx dt = �

Z
@
�(0;T )

@�v Q ds dt

+

Z

�(0;T )

dX
i;j=1

@xjv @xj (q
i v) dx dt (20)

The boundary condition vj@
 = 0 implies that

@xiv = �i(@�v): Hence, the right hand side of (20)

becomes

�

Z
@
�(0;T )

dX
i=1

�
qi�i

2
j@�vj

2

�
ds dt

�
d� 2

2

Z

�(0;T )

jrvj2dx dt: (21)



And, by the boundary condition, the third term

becomes

�
d

2

Z

�(0;T )

�(t)(v)2 dx dt: (22)

Thus, (18) becomes

0 = �(T )� �(0)

+
d� 1

2

TZ
0

�
jvtj

2
� jrvj2 � �(t)jvj2

�
dt

1

2

TZ
0

�
jvtj

2 + jrvj2 � �(t)jvj2
�
dt

�
1

2

Z
@
�(0;T )

dX
i=1

qi�i(@�v)
2ds dt: (23)

If W = max
i

sup
x2


fjqi(x)jg, then

j�(t)j �W jvtjjrvj �W D E(t); (24)

where D = 1=�. By this estimate on �, (23) be-

comes

1

2

Z
@
�(0;T )

dX
i=1

�
qi�i

2
j@�vj

2

�
ds dt

�
d� 1

2

TZ
0

�
jvtj

2
� jrvj2 � �(t)jvj2

�
dt

+
1

2

TZ
0

�
jvtj

2 + jrvj2 � �(t)jvj2
�
dt

�2 W D E(t): (25)

If we let Æ = �2, then there is a positive constant

N , such that

1

2

Z
@
�(0;T )

dX
i=1

�
qi�i

2
j@�vj

2

�
ds dt

� �2 W D E(T )�N (E(T ) +E(0))

+Æ

TZ
0

E(t) dt: (26)

Then, by the estimate of growth and decrease of

the energy in (16), the inequality (26) becomes

1

2

Z
@
�(0;T )

dX
i=1

�
qi�i

2
j@�vj

2

�
ds dt

�

�
�2 (W D +N)M(T ) + Æ

T

M(T )

�
E(0): (27)

By (A3), the left hand side of (27) is dominated

by the integral of the same integrand but over

! � (0; T ). In other words, we obtain

1

2

Z
!�(0;T )

dX
i=1

�
qi�i

2
j@�vj

2

�
ds dt

�

�
�2 (W D +N)M(T ) + Æ

T

M(T )

�
E(0): (28)

Thus, if F = 2=(sup
x2!

fq(x) � �(x)g), we obtain

jzj2 � F

 
� 2 (W D +N)M(T )

+Æ
T

M(T )

!
E(0): (29)

By (A2), we can �nd T suÆciently large such that�
�2 (W D +N)M(T ) + Æ

T

M(T )

�
> 0; (30)

because T
M(T ) grows relatively faster than M(T ).

In addition, because E(0) can be estimated by

k(v0; v1)kS , then there exists a kT > 0, such that

jzj2 � kT k(v0; v1)kS : (31)

Similarly, if we replace qi in (17) by some

qi 2 C1(�
), such that qi(x)�i(x) � �=d > 0 for

some � > 0 and for every i, then

jzj2 � KT k(v0; v1)kS (32)

for some constant KT > 0. This last inequality

also implies that the output z of the dual system

belongs to L2. �

Now, we use the above lemma to prove the

following proposition.



Proposition 1 If (A1) to (A3) in Lemma 1 are

satis�ed, then the system M is exact controllable.

Proof. To prove the exact controllability of M,

we apply the Hilbert Uniqueness Method, intro-

duced by Lions in [5]. First, we de�ne a linear map

�T : H1
0�L

2 ! L2�H�1. Let (v0; v1) 2 H1
0�L

2,

then one can compute the output z = z(x; t)

from the system M described in (5) - (9). Using

this output z, one can �nd the initial condition

(w(x; 0); wt(x; 0)) by solving the following back-

ward value problem

wtt ��w + �(t)w = 0 in 
� (0; T ); (33)

w(x; t) = z(x; t)�!�(0;T ) on @
� (0; T ); (34)

w(x; T ) = 0 and wt(x; T ) = 0: (35)

We de�ne �T (v0; v1) = (�wt(x; 0); w(x; 0)).

This relation says that the initial condition

(w(x; 0); wt(x; 0)) can be driven to the equilib-

rium position in time T by the control z computed

from the dual system M0 whose initial condition

is given by (v0; v1). Hence, we can prove the ex-

act controllability of M, if we can show that �T
is surjective.

After integrating
R


�(0;T )

L(w)v dx dt by parts,

we obtain

0 =

Z

�(0;T )

(L(w)v � L(v)w) dx dt

= hh(�wt(x; 0); w(x; 0)); (v0 ; v1)ii

�

Z
!�(0;T )

jz(x; t)j2ds dt: (36)

Here, hh�; �ii is a nondegenerate bilinear form

hh(�wt(x; 0); w(x; 0)); (v0 ; v1)ii = h�wt(x; 0); v0i

+(w(x; 0); v1) : (37)

The �rst term on the right hand side denotes the

duality pairing of H�1 and H1
0 . The second term

denotes the L2-inner product. Hence, (36) be-

comes

hh�T (v0; v1); (v0; v1)ii =

Z
!�(0;T )

jzj2ds dt: (38)

By the continuity of the bilinear form and the

map �T , one may use (13) and the Lax-Milgram

Lemma to conclude that �T is surjective. In other

words, the system M described by (1) to (4) is

exact controllable. �

If � is zero, the equation becomes a wave equa-

tion. The results on this type of equation have

been quite complete. Some results can be found

in [5] and [11]. Some sharper results are found

through microlocal analysis. See [3] for detailed

results. And, if � is constant, we are able to make

a numerical scheme to compute the exact control

numerically, see [9].
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