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Abstract: - In this paper we give a sufficient condition on the exact controllability of the Klein-Gordon
system with a time-varying parameter. We show that under some regularity conditions on the time-
varying parameter, the system is exact controllable. We prove its exact controllability by applying

the Hilbert Uniqueness Method.

Key-Words: - Exact Control; Distributed Parameter System; Hilbert Uniqueness Method; Klein-

Gordon

1 Introduction

Suppose © be an open and bounded domain in R?,
where d > 2. Next, we let a distributed parameter
system M be

wy — Aw + a(t)w =01in Q x (0,T),
w(:z:,t) = u(xat)XwX(O,T) on J€ x (OaT)a

w(z,0) = wy(z) € L*(Q), and

wy(x,0) = wy(z) € H1(Q),

where w is a relatively open subset of the bound-
ary 0€2. Here, H ! denotes the dual of the space
H{ and « is a smooth function of time ¢. The
function u is called control, and the whole sys-
tem is called Klein-Gordon system. To shorten
the notaion, we denote the left hand side of (1)
by L(w).

Our problem is to find a sufficient condition
for the existence of a control u € L?(w x (0,T))
such that w(.,T) = wy(.,T) = 0. A control satis-
fying this property is called ezact control.

Positive analytical results on the existence of
the exact control u have been stated for several
mathematical models. For example, see [1], [5],

[6], [7], and [8]. The control’s relation with the
damping of the systems is presented in [10].

The most recent study on wave-like equation
is done by Avalos and Lasiecka in [2].

2 Exact Controllability

Before stating the exact controllability of the sys-
tem above, we define the dual system M’ of the
above system as

vy — Av + a(t)v =0 in Q x (0,7), 5

v(z,t) =0 on 9Q x (0,T), 6

v(z,0) = vo(z) € H)(Q), and 7

(5)
(6)
(7)
vi(z,0) = vi(z) € L*(Q). (8)

The dual system above is equipped with an out-
put map

z(z,t) = —0,v(z,t) on w x (0,T). 9)

Here, v denotes the unit normal vector field on
the boundary 90€2, pointing outward, and 0, is the
directional derivative on the direction of v.

Let S = H} x L? and |- | be the L?-norm. We
then define a norm

1w, v)lls = VIV + |vg]?

(10)



for every (v,vy) € S. With this norm, we define
energy E of the state (v(-,t),v:(+, 1)) as
E(t) = £ (10,00 I2 + a(®)lof2) (11)
- 2 sy Ut) IS .
Next, let 7 be a point in R? \ Q. Then we can
define a set

I'(r) ={z € 0Q|(x — r) - v(x) > 0}.

Every element of I'(r) is called an exit point of 2
relative to r.

(12)

Corresponding to the geometry of €2, one can
find a constant Ao > 0, such that |[Ve|? > Aglp|?
for all ¢ € H{. This constant in fact is the first
eigenvalue for the negative Laplacian —A with
Dirichlet boundary condition.

Relating to the dual system M’, we obtain the
following a kind of observability property.

Lemma 1 If r = (r!,72,--- 7% € RY\ Q, and

there is an € € (0,1), such that
(A1) (1 —e)Ag > |a(t)| for all t > 0;
(A2) var(a) < oo
(A3) T(r) C

then there exists a T > 0 and constants kr, K1 >
0 such that

k| (vo, v0)1% < 12122 0.1
< Krll(vo,vn) 5 (13)

for every (vg,v1) € S.

Here, var(a) denotes the total variation of «
on [0,00). It is defined as

—supz|a ),

pGPl 1

var

(14)

where P is the family of all finite partition p =
{lti=1,t:)]i =1,2,---,Np} of [0, 00).

Proof. By (A1), one can prove that the energy
E is always non negative. Moreover, if we differ-
entiate it along the trajectory of M’, we obtain

2 = 2,

: (15)

(16)

for every ¢t > 0. Here, M(T) =
C exp (00 J et |dt) Cy = 1/(eXg), and C is
some positive number.

Next, we define a vector field

q(2) = (¢ (z),--, ¢"(2))
=((z' =r"), o, (@ =) (17)
It is clear that ¢ € (COO(Rd))d.
We now consider the following equation
/ L(v) Q dz dt =0, (18)

Qx(0,T)

d .
where Q = Y ¢" 0z,v. This Q is called the multi-

plier. This ils %he reason why this method is called
multiplier technique [4]. On the left hand side, we
have three terms. Integrating the first term, we
obtain

/ Ut Q dz dt

Qx(0,T)

—om) =)+ [ P ded, ()

Qx(0,T)

where p(t) = [, vi(z, ) Z q" Oyiv(w,t) dr. Inte-

grating the second term we obtain
/ AUQd:Bdt:—/ d,v Q ds dt
001x(0,T)
Qx(0,7)

d
> 0,0 0y (q" ) d dt

ij=1

+
Qx(0,T)

(20)

The boundary condition v|sg = 0 implies that
0,iv = *(0,v). Hence, the right hand side of (20)
becomes

d
- / Z ( |6 v|2> ds dt
80x(0,1) =1

d—2

5 / |Vv|2dx dt. (21)

Qx(0,7)



And, by the boundary condition, the third term
becomes

d

—3 / a(t)(v)? dz dt. (22)
Qx(0,T)
Thus, (18) becomes
0= p(T) — p(0)
T
a-1 2 _ 2 _ 2
P [ (2 190~ att)of)
0
. T
5/(|vt|2+|Vv|2—a(t)|v|2)dt
0
1
—3 / Zq )2ds dt. (23)
aax(0,1) =1
IftwW = maxsup{|q (x)|}, then
e
p(t)] < Wlvg|[Vo| <W D E(t), (24)

where D = 1/e. By this estimate on p, (23) be-
comes

d
% Z ( |3 v|2> ds dt

(loe* = [Vo]* = a(®)]of?) dt

S8
w‘ |
-

we|? + |Vol? = a(t)|v]?) dt

N —

+

I

—2 W D E(t). (25)
If we let § = €2, then there is a positive constant
N, such that
d . .
1 t
5 / Z (qT|3,,v|2> ds dt

aax(0,r) =1

> 2 W D E(T) — N (E(T) + E(0))

T

+6 / E(t) dt.

0

(26)

Then, by the estimate of growth and decrease of
the energy in (16), the inequality (26) becomes

d .o
1 q'v
5 / Z <T|8,,v|2> ds dt

a0x(0,T) =1

> (—z (W D +N)M(T) +5 E(0). (27)

)

By (A3), the left hand side of (27) is dominated
by the integral of the same integrand but over
x (0,T). In other words, we obtain

/ Z( |a v|2> ds dt

wx(0,T") =1
> (=207 D+ W) M)+ 67 ) O 28)

Thus, if F' = 2/(sup{q(x) -

TEW

v(z)}), we obtain

|z|22F<—2(WD + N) M(T)

T
+5W> E(0). (29)

y (A2), we can find T sufficiently large such that

T
—2W D +N)M(T)+ 6——— 0 30
(-2 D+ MMy +og ) 20 G0
because % grows relatively faster than M (7).

In addition, because E(0) can be estimated by
l(vg, v1)]|s, then there exists a kp > 0, such that

|22 2 kr||(vo, v1)ls- (31)

Similarly, if we replace ¢* in (17) by some
q' € CY(Q), such that ¢'(z)v'(z) > k/d > 0 for
some x > 0 and for every i, then

|2* < Krl|(vo, v1) s (32)

for some constant K > 0. This last inequality
also implies that the output z of the dual system
belongs to L?. O

Now, we use the above lemma to prove the
following proposition.



Proposition 1 If (Al) to (A3) in Lemma 1 are
satisfied, then the system M is exact controllable.

Proof. To prove the exact controllability of M,
we apply the Hilbert Uniqueness Method, intro-
duced by Lions in [5]. First, we define a linear map
Ar: HY xL? — L? x H='. Let (vo,v1) € Hi x L?,
then one can compute the output z = 2z(x,t)
from the system M described in (5) - (9). Using
this output z, one can find the initial condition
(w(z,0),w:(z,0)) by solving the following back-
ward value problem

wy — Aw + a(t)w =01in Q x (0,T), (33)
w(:z:,t) = z(xat)XwX(O,T) on 9 x (OaT)a (34)
w(z,T) =0 and w(z,T) = 0. (35)

We define Ap(vg,v1) = (—w(z,0),w(z,0)).
This relation says that the initial condition
(w(z,0),w¢(z,0)) can be driven to the equilib-
rium position in time 7" by the control z computed
from the dual system M’ whose initial condition
is given by (vg,v1). Hence, we can prove the ex-
act controllability of M, if we can show that Ap
is surjective.

After integrating [ L(w)v dz dt by parts,

Qx(0,7)
we obtain
0= / (L(w)y — L(v)w) dz dt
Qx(0,7)

= <<(_wt($7 0)7 w($7 0))7 (U07U1)>>

_ / (. 1) 2ds dt. (36)

wx(0,T")
Here, ((-,-)) is a nondegenerate bilinear form
<<(_wt(x7 0)7 w(:z:, 0))7 (vU,Ul)» = <_wt(x7 0)7 ’l)())

+ (w(z,0),v1) . (37)

The first term on the right hand side denotes the
duality pairing of H ! and H¢. The second term
denotes the L2-inner product. Hence, (36) be-
comes

(A (v, 01), (00, 01))) = / Pds dt. (38

wx(0,T)

By the continuity of the bilinear form and the
map A7, one may use (13) and the Lax-Milgram
Lemma to conclude that Ar is surjective. In other
words, the system M described by (1) to (4) is
exact controllable. 0

If « is zero, the equation becomes a wave equa-
tion. The results on this type of equation have
been quite complete. Some results can be found
in [5] and [11]. Some sharper results are found
through microlocal analysis. See [3] for detailed
results. And, if « is constant, we are able to make
a numerical scheme to compute the exact control
numerically, see [9].
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