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Abstract: - An efficient automatic quadrature procedure is developed for numerically computing the 
integrals 0 , where the function is smooth and nonoscillatory at infinity and  is 
the Bessel functions of order ν =1,0 and 1/4. The procedure involves the use of an automatic integration 
scheme of modified FFT used for evaluating Fourier integrals and product type integration, and the modified 
W-transformation used for computing oscillatory infinite integrals. 
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1 Introduction 
Let the real functions  and  be such 
that 
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where the (in general complex) function is   
infinitely differentiable for all large and is 
nonoscillatory at infinity. In a recent paper by 
Hasegawa and Sidi [9] an automatic procedure for 
the fast and accurate computation of infinite-range 
integrals of the form 
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was developed. Here the function  is real and 
infinitely differentiable for all large t  and is 
nonoscillatory at infinity. This method combines the 
modified FFT of Hasegawa and Torii [8] and the 
(user-friendly) modified W-transformation(mW) of 
Sidi [20] with the approach of Hasegawa and Torii 
[6] for computing Fourier transforms.  
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The problem of evaluation of infinite-range 
oscillatory integrals of various sorts was considered 

earlier in the papers by Longman [11,12], Gabutt [3] 
and Sidi [17,19,20] whose methods can be used to 
compute also integrals of the form (2). Methods for 
computing the Hankel transform specifically have 
been considered by  Piessens and Branders [15], 
Lund [14], Wieder [21]  Piessens [16] and Sidi [17]. 
In addition, an automatic quadrature procedure for 
integrals of the form 0  has been given 
by Hasegawa and Torii [6] which tries to minimize 
the number of function evaluations for a given 
required accuracy level.  
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In the present work we apply the method of 
Hasegawa and Sidi [9] to the computation of Hankel 
transforms  
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that form an important subclass of the class of 
integrals described above. 

In the next sections we describe briefly the method 
[9] and apply it to the cases in which 4110 ,,=ν . 
 
 



2 Description of the method 
We shall restrict ourselves to the evaluation of the 
integral 
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by our assumption that  is a real function. For 
the functions  and  it turns out that a 
polynomial approximation is provided for them in a 
finite interval [0,c] and, in the interval  the 
function  of (1) is approximated by a 
polynomial in 1/x. Normally these approximations 
are obtained by truncating the appropriate Chebyshev 
polynomial expansions. For example, for the Bessel 
functions  and  of order ν , Luke 
[13, p.322, 342] gives the expansions: 
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where and are, respectively, the 
Chebyshev and shifted Chebyshev polynomials of order 

.  
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We now subdivide the interval in (3) in the form 
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2.1 Computation of Q  )(ω1

For the computation of , we only think when )(Q ω1
ωca < . 

 ν For the case of order we use the 
Clenshaw-Curtis (CC) method [1] along with a 
modified FFT due to Hasegawa et al. [7], since the 
integrand is smooth in the interval 
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ω
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[ may become too large for the 
integral 1  to be evaluated at once, we could 
break this interval into several smaller subintervals 
and apply the CC method to each subinterval 
separately.  

 For the case of order 41 =ν , we note that the 
term ν (x 41 =ν ) included in the Chebyshev 
polynomial expansion of  has a bad behavior 

near the origin. Namely, in the interval [  
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 around zero, it will be difficult to 
compute the integral with an ordinary numerical 
method. For this reason we use Hasegawa and Torii’s 
automatic quadrature method to the so-called product 
type integration [8] in the interval , where  
is easily defined with and our numerical 
experiments. Then, because the 
integrand  becomes smooth in the 
interval 
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, we can keep on with our 
computation as that for the order . Thus we 
could compute the  efficiently. 

1,0=ν

,dt)t(

 

f)

)

2

tiω

ω

(ω (7) 
）ωc,amax(=

. 2
0

,...,

lx +
ω
π

sin(

1    l =

1,

=

, ,

  

  , 

l

x

t(

          

1d




+


π

x

f)t(gt ω

)j(
n

                    
0 





=

ω
π

d

)x(F
e) lx

d

i= ∫ ω

W

)

(8)   . 

 (9)    

 (10)

∞
=}

)j(

)j(
p

          
∑
=

)x(
n

i
lψ

                    
1 (F)

)t(gti

−+

ωω

(F

j

W 00 −+

                    

+=W )j(
n

          
 

1

x(F
e)

l

x

x

l

l

=
= ∫

+

β

=

W|

1+n

    

dt

=

=

0
j
x
β

)x
(f

l

−x

|

+≤ nj

, 10 ,...,

0

W
)( 0

+

    
2.2 Computation of Q  )(
From (1) and (6) we have  

          tg  

where d . We now have to evaluate 
this Fourier integral efficiently. The method that we 
use for this purpose is the mW-transformation of Sidi 
[20]. 

We start by letting 

0
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Here 0  is simply the first zero of  that 
is greater than , and l  is the lth zero following 

0 . We next compute numerically the finite range 
integrals , where 

x tω

x
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We finally compute a two-dimensional array of 
approximations to the integral by solving the 
linear system 
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and the i  serve as the additional unknowns. In 
addition, we define 1  in (8). The 
solution of the linear system in (9) can be achieved in 
a very efficient manner by the W-algorithm [18]. 
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As has been shown in [20], the sequences 
0nn for fixed  have very favorable 

convergence properties. Therefore, we choose to 
consider only the sequences 0n{ n . 
Furthermore, nn 1  may provide an error 
estimate for the approximation nW 1 , which is 
probably the best of the approximations pW , 

. For more details the reader is referred 
to the original papers [18,20]. Once the best W  
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has been computed, Q  is approximated by 
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The problem that remains is that of computing the  
 that were defined in (10) to the level of 

accuracy prescribed by the user. 
 

2.3 Computation of the finite oscillatory 
integrals 

As mentioned in the previous section, the 
mW-transformation requires the sequence of the 
finite integrals ψ , , given in (10) 
or, equivalently, the integrals  defined by 
(9). The computation of the ψ can be 
performed accurately by an appropriate quadrature 
rule such as Gaussian formula. If the integrand 
function  is smooth, however, it might be 
more efficient to devise a quadrature method for 
computing several, say , integrals ψ , … , 

, or, the indefinite integral 
where we take  

, at a time for an arbitrary integer .  
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Indeed, for a positive integer and a 

non-negative integer , define and 
subdivide the integration interval 
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have  

m

(11)         0,1,...,  ,

1

1
==≤≤

= ∑ +
−

−=
+

µ

ωω
µ

srl

,dt)t(f)t(ge(F) ls ti

q
ls  

where  is defined by )K(F q

)K(F

.dt)t(f)t(

dt)t(f)t
m

m

x

x

Ktq

∫
∫

+

=

=
∈

ω

ω

            
 

The knowledge of the indefinite 
integrals tω , where  
and , could enable the efficient 
evaluation of each integral in the right-hand side of 
(11).  
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In the following we briefly describe how to 
approximate the integrals tω .  
Here, for example, we set and rs  for 
obtaining the integral on lss + , then to 
approximate the indefinite integral 

ω , for α ≤ , let 
 be a linear function defined by 
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and approximate the non-oscillatory part 
 in the integral α  

by a sum  of the Chebyshev polynomials 
: 
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where the prime denotes the summation whose first 
term is halved. Then, defining 2)(W αβ −= and 

2)(T αβ +=
x tiω

 we have 

(14)                 ),p);x(,W(I)Tiexp(W
dt)t(Pe~dt)t(f)t(ge

N

x

N
ti

φωω
ω

α

ω

α
=

∫∫  

where  is defined by  )p;x,(I ω
x

(15)     11     ,
1

.xdt)t(pe)p;x,(I ti ≤≤−= ∫−
ωω  

To evaluate the indefinite integral in the right of (14) 
or  given by (15) with  replaced 
by N  in (13) efficiently, we used the automatic 
quadrature scheme for indefinite integration of 
oscillatory functions by the Chebyshev series 
expansion incorporated with modified FFT [6,7]. 
One can find details from these papers.   
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It is efficient to choose  mentioned in the head 
of this section to be a larger positive integer so long 
as  is a sufficiently smooth function on the 
interval , whence one can expect that the 
truncated Chebyshev series (13) converges rapidly as 

 increases, since  is a smooth function, 
too. Several numerical experiments suggest that the 
near optimum choice of the integer  depends on 
the tolerance 2ε  for the integral Q2 (6) to 
minimize the total number of function evaluations 
required to satisfy 2 . Let  210 , then 
in view of the observation that the 
mW-transformation converges so rapidly for slowly 
convergent integrals that  finite integrals 

i , might be sufficient to achieve 
the accuracy 2 , we determine empirically for (11) 
that  and r . It remains an open 
problem to determine the optimum values of m  
and  depending on the required accuracy  and 
the class of the given function . 
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3 Chebyshev series expansion and the 

truncation errors 
We here describe how to construct the sequen
the Chebyshev interpolation polynomials { }N  
using a modified FFT [7] that is efficiently used in 
CC method and the automatic quadrature method to 
the so-called product type [8] for evaluating the 
integral  (see section 2.1), and used in 

ce of 
p

)(Q ω1



approximating the indefinite integral of oscillatory 
functions [6] to evaluate (15) for 
computing the integrals 2 (5) (see section 2.3) 
to the required accuracy.  It suffices to consider only, 
for example the indefinite integral (15), 
only on the interval  since an arbitrary finite 
interval can be easily transformed into  by a 
linear function such as (12). 
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Here and henceforth we assume that  is a 
power of 2, , unless otherwise stated. 
Let 
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j  be the zeros of 
the polynomial  defined by 
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where N 1  denotes the Chebyshev polynomial 
of the second kind defined by 
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N 1 , . Then, the 
coefficients  of N  (13) are determined [1] 
so that N  interpolates  at the abscissae 

j , and consequently  is represented in the 
form: 
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We know that the right-hand side of (17) can be 
efficiently computed by means of the FFT for real 
data [4]. 

Actually an automatic quadrature of non-adaptive 
type is generally constructed from the sequence of 
the approximations { N , where 

NN , converging to the integral, 
having an adequate method of error estimation, until 
a stopping criterion is satisfied. It is an usual and 
simple way to double the degree  of N (13) 
for generating the sequence N . In order to make 
an automatic quadrature efficient, however, it is 
advantageous to have more chances of checking the 
stopping criterion than doubling . Hasegawa et al. 
[7] showed an iterative procedure for computing the 
sequence of the truncated Chebyshev series, 
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stopping criterion described in section 4 is satisfied. 
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of the 
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kB  are determined to satisfy 

the condition  
( ) ( ) 2,4,  ,0   , =≤≤= + σσσ

σ
σ Njvpvf N

jNN
N
j  

and the FFT[7] is used for efficiently evaluating the 
coefficients σNBk . Thus we can construct the 
Chebyshev series expansion more moderately as 
follows: 
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on an ellipse in the complex plane. Then we can find 
in [11] that the estimate  of the truncation error 
of integrals such as N (15) and 
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and further kΩ  can be bounded by 
k , independently of , ,  and 

 for | . The constant  may be estimated 
from the asymptotic behavior of  [1]. 
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The relations (19) and (20) indicate that the errors 

are estimated independently of the value of . Thus, 
the errors for the quadrature rules 

ω

|)p;,(I| 10 +mNN 4 , to the non- 
oscillatory integral −1  can also 
be estimated by (19) and (20), respectively. In the 
next section we will make use of the error 
estimations (19) and (20) to derive the stopping 
criterion in the automatic quadrature for . 

),,m( 210=
=10 )f;,(I ∫

1 dt)t(f

(Q )ω
 
 

4  Stopping criterion 
The efficiency of an automatic quadrature scheme 
depends on the adequate stopping criterion based on 
the error estimates as well as on the use of 
appropriate quadrature rules.  

We remember that the integral  (4) is 
divided into the two integrals Q1 on 
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and 2  on )(Q ω ],∞ωc
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[ . We want to approximate 
both integrals to assigned tolerances 1ε  and 2 , 
respectively, so as to attain the overall accuracy 

21  for  by using the CC method 
and its extension described in sections 2.2, 2.3 and 3, 
with as small number of function evaluations as 
possible. Now, we have to determine the adequate 
values of 1  and 2ε  for the integrals 1  and 

2 , respectively. The result of numerical 
experiments suggests to choose 
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2 , see [2] and [10, p.173] for a detailed 
discussion on a more general topic, the software 
interface problem.  

Further, we have seen that the infinite integral 
2  (6) can be efficiently approximated by 

using the approximations to the finite integrals 
i (8) or ls  in (11) along 

with the mW-transformation. The next question is 
how to assign the tolerance to each 

q  in (11) on the interval q . 
It may in general be difficult to know at the outset 
how many integrals q  are 
required in the mW-transformation to attain the 
assigned accuracy 2  for 2 . Numerical 
experiments, however, suggest that since the 
mW-transformation can transform a large class of 
convergent infinite oscillatory integrals into very 
quickly convergent ones, two or (at most) three 
intervals q   are sufficient to 
obtain the tolerance . 
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From the observation above we empirically 
determine the tolerance to each integral  on 

the  as follows. Assume that 
 in  is a smooth function of slow 

convergence at infinity, and that only three intervals 
 are enough. Then we assign the 
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5  Numerical examples 
Here we compute the following integrals [5, pp. 667, 
681 and 707] of 0 , 1  and ) )x(J ω J

ω
41 , 

having a parameter  for a variety of -value to 
illustrate the performance of the present automatic 
quadrature, 

a
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Table 1:  Performances of the present quadrature scheme for the integrals 

∫
∞

0
dt)t(f)t(J ων ),,( 4110=ν  

εa= 10 –6         εa= 10 –12  
Int. 

 
a   ω      Exact integral N   Error  M N   Error    M  

(A) 

1  3.67879441171442×10－1 

1   5  1.34758939981709×10－3 

9  1.37122004540755×10－5 

1  8.82496902584596×10－1 

1/8  5  1.07052285703798×10－1 

9  3.60724963731500×10－2 

37  7×10－8  7 
39  2×10－8  7 
33  1×10－8  7 

83  1×10－9  7 
51  1×10－8  6 
35  2×10－8  6 

87  1×10－13   11 
71  5×10－15   12 
59  2×10－16   13 

 
171  4×10－14   11 
83  5×10－14   10 
83  7×10－14   10 

(B) 

1  3.67879441171442×10－1 

1   5  6.73794699908547×10－3 

9  1.23409804086680×10－4 

1  8.82496902584596×10－1 

1/8  5  5.35261428518990×10－1 

9  3.24652467358350×10－1 

55  3×10－8  6 
39  2×10－8  7 
37  5×10－8  7 

89  2×10－8  6 
57  3×10－8  6 
47  3×10－8  6 

95  2×10－15   11 
71  1×10－14   12 
67  2×10－14   13 

 
215  1×10－15   11 

99  1×10－13   11 
87  4×10－14   11 

(C) 

1  5.09472479361313×10－1 

2   4  1.26039144211853×10－1 

16  3.12644007425545×10－2 

1  2.05862733674139 
1/8  4  1.29926010861454 

16  5.09472479361313×10－1 

50  5×10－9  6 
42  6×10－8  6 
35  3×10－8  6 

82  1×10－8  6 
66  2×10－8  6 
47  5×10－9  6 

96  2×10－14   11 
76  2×10－14   12 
62  2×10－14   14 

 
152  1×10－14   11 
116  1×10－14   11 
95  2×10－14   11 

(D) 

1  3.11726890645208×10－1 

2   4  1.98261365091314×10－1 

16  6.01141513214857×10－2 

1  9.61826421143769×10－1 

1/8  4  2.47933767975759×10－1 

16  6.23761465186444×10－2 

46  8×10－12  4 
46  8×10－10  5 
35  1×10－8  5 

46  5×10－9  6 
42  7×10－9  6 
35  7×10－9  6 

96  5×10－15    6 
80  1×10－15    8 
49  2×10－14    9 

 
68  2×10－14   10 
56  2×10－14   10 
39  1×10－14   10 
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In the Table 1 we show the numbers N of function 
evaluations, required to achieve the requested 
accuracies,  and , and the actual 
errors, for the integrals (A)-(D) of  

610−=aε
1210−

)x(J ων
)4,,( 110=ν . The numbers of the integrals ψ  

(10) on the half periods of the oscillation in the interval 
)x( l

],5[ ∞ω

][ 210 +εlog

, used in the mW-transformation due to Sidi, 
are also listed in the columns headed “ ”. The Table 
1 experimentally verify the note given in section 2.3, 
i.e., the mW-transformation converges so rapidly that 

 integrals  are sufficient to 
obtain the required accuracy 

M

2 )x( lψ
)(aε = 1920 2ε .  

To the best of our knowledge, there is no automatic 
quadrature scheme that treats the integrals as the one 
described in this paper and we also have shown that the 
mW-transformation is a very efficient and user-friendly 
method for coping with oscillatory infinite range 
integrals mentioned here.  
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