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Abstract: – This paper may be considered as a mathematical divertissement as well as a didactical tool for
undergraduate students in a universitary course on algorithms and computation. The well-known problem of
generating the permutations of a multiset of marks is considered. We define a formal model and an abstract
machine (an extended Turing machine). Then we write an algorithm to compute on that machine the successor
of a given permutation in the lexicographically ordered set of permutations of a multiset. Within the model we
analyze the algorithm, prove its correctness, and show that the algorithm solves the above problem. Then we
describe a slight modification of the algorithm and we analyze in which cases it may result in an improvement of
execution times.
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1 Introduction

The problem of generating the permutations of a mul-
tiset of marks is considered. First some mathemati-
cal entities and properties are defined within a formal
model. Then an abstract machine is introduced and an
algorithm is shown which computes those entities on
the abstract machine. Within this framework the algo-
rithm is analyzed and proved to be correct. Finally it
is shown that the algorithm computes the successor of
a given permutation in the ordered set of lexicograph-
ically ordered permutations.
The structure of this work is as follows: the formal
model, the machine and the algorithm are described
in Section 2. Section 3 deals with the link between
the algorithm and the process of generating the per-
mutations of a multiset in lexicographical order. Some
conclusions are drawn in Section 4.

2 A machine and an algorithm

2.1 Prologue—some definitions

Let n be an integer,n > 2, and let An =
{a0, a1, . . . , an−1} be a set of “marks”. LetIn be set

{0, 1, . . . , n − 1}. Let furthermorem be an integer,
0 < m ≤ n.

Definition 1 SetA = {a0, a1, . . . , am−1} be called
“the Alphabet”.

Let Im = {0, 1, . . . ,m− 1}. Let us consider multiset

M = {a0, . . . , a0︸ ︷︷ ︸
c0

, a1, . . . , a1︸ ︷︷ ︸
c1

, · · · , am−1, . . . , am−1︸ ︷︷ ︸
cm−1

}

such that
∑

i∈Im ci = n and∀i ∈ Im : ci > 0.

Definition 2 Any ordered arrangement of the ele-
ments of a multisetM be calledM -permutationand
represented aspM or, whereM is evident from the
context, asp. Let pM [i] (or p[i]) denote the(i + 1)th

element ofp. Let us callPM (or simplyP when un-
ambiguous) the set of theM -permutations.

Let o : An → In be a bijection defined so that
∀i ∈ In : o(ai) = i. Clearlyo induces a total order on
the marks (and,a fortiori, on the elements of the Al-
phabet). Furthermore, througho, anyM -permutation
may be interpreted as ann-digit, base-m number [1].
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Definition 3 Given multisetM as above, arrange-
ment

a0 · · · · · a0︸ ︷︷ ︸
c0

· a1 · · · · · a1︸ ︷︷ ︸
c1

· · · am−1 · · · · · am−1︸ ︷︷ ︸
cm−1

is called thezero permutationofM , or briefly itszero,
and is denoted aspM0 or simply asp0 when this can be
done unambiguously. For the sake of brevity, operator
“ ·”, concatenating any two marks, will be omitted in
the following.

Definition 4 Given multisetM as above, arrange-
ment

am−1 . . . am−1︸ ︷︷ ︸
cm−1

am−2 . . . am−2︸ ︷︷ ︸
cm−2

· · · a0 . . . a0︸ ︷︷ ︸
c0

is called thelast permutationof M and is denoted as
pM∞ .

Definition 5 Given any twoM -permutations,p1 and
p2:

• p1 is said to beequalto p2 iff ∀i ∈ In : p1[i] =
p2[i]. Letp1 = p2 represent this property.

• p1 andp2 are said to bedifferentiff ¬(p1 = p2),
or p1 6= p2 for brevity.

• p1 < p2 iff ∃k ∈ In 3′ (∀j < k : p1[j] =
p2[j]) ∧ (p1[k] < p2[k]).

Definition 6 Let p ∈ PM . An inversion is a cou-
ple of contiguous marks ofp, p[i] and p[i + 1], i ∈
{0, . . . , n − 2}, such thatp[i] < p[i + 1]. If no such
couple can be found inp, thenp is said to beinversion-
free (INF). If at least one such couple does exist, then
p is said to benon-inversion-free(NIF).

Theorem 1 For anyM , pM∞ is the only possible INF-
permutation.

PROOFBy construction,pM∞ is INF. Ab absurdo,let us
suppose there exists a permutationp 6= pM∞ which is
INF. Then eitherp < pM∞ or vice-versa. In both cases
we reach a contradiction by Def. 5. . �

2.2 A machine

Let us considerM, a generalized Turing machine [6]
with two tapes,T1 andT2, and three heads,H1l, H1r,
andH2. HeadsH1l andH1r are “jointed”, i.e., capa-
ble of reading or writing any two consecutive squares
of T1 at a time.H2 operates onT2. Let us callS1 and
S2 resp. the set of squares ofT1 and the set of squares
of T2.

Definition 7 Bes a square; squares′ then represents
the square which immediately followss. For anyt ∈ N

let s

t︷︸︸︷
′′ . . .′ represent square

t︷ ︸︸ ︷
((. . . ( s

t︷ ︸︸ ︷
′)′ . . . )′.

Definition 8 Let z1 ∈ S1. Bijectionπ1 : S1 → Z,
such that

∀s ∈ S1 :



π1(s) = 0 if s = z1,
π1(s) = t if s 6= z1 and∃t ∈ N 3′

(s = z1

t︷︸︸︷
′′ . . .′ ),

π1(s) = −t if s 6= z1 and∃t ∈ N 3′

(z1 = s

t︷︸︸︷
′′ . . .′ ),

is called therelative distance fromz1 in S1. Following
the same procedure, letπ2 : S2 → Z be the relative
distance from a fixedz2 ∈ S2.

From Def. 2, anyM -permutationp can be coded on
TapeT1 of M by writing, ∀i ∈ In, mark p[i] onto

squareπ−1
1 (i), i.e., onto squarez1

i︷︸︸︷
′′ . . .′ .

Machine M can execute read, write and head-
movement actions. These basic actions can be de-
scribed via the following symbolic notation:
Let i be an integer andHx andHy be heads respec-
tively operating on TapeTx and TapeTy (possibly the
same). Letsx be the square under HeadHx andsy the
square underHy. Let us callπx andπy the relative
distances respectively forTx andTy (possibly equal).
Let r be a function converting a square into the mark
currently coded onto that square. Then let:

(Hx) represent the output of a read of squaresx,
available aso(r(sx)) ∈ Im, and let

Hx represent the position of HeadHx,
available asπx(sx) ∈ Z.
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The infix, “overloaded” (in the sense of [5]) operator
“←” be used to represent both writings of squares and
absolute movements of heads as described below:

(Hx)← i writes insx marko−1(imodn),

(Hx)← (Hy) overwritessx with the mark written
in sy,

(Hx) ← Hy overwrites sx with mark
o−1(πy(sy) modn),

Hx ← i moves HeadHx over squareπ−1
x (i),

Hx ← (Hy) moves HeadHx over square
π−1
x (o(r(sy))),

Hx ← Hy moves HeadHx over square
π−1
x (πy(sy)).

Postfix operators “++” and “--”, borrowed from the
grammar of the C programming language [2], are used
to represent incremental / decremental writings and
relative, single-square movements as follows:

(Hx)++ increments, modulon, the number coded
in the square under HeadHx, i.e., ∀i ∈
{0, . . . , n − 2}, mark ai is promoted to mark
ai+1, and markan−1 is demoted to marka0.

(Hx)-- decrements, modulon, the number coded
in the square under HeadHx, i.e., ∀i ∈
{1, . . . , n−1}, markai is demoted to markai−1,
and marka0 is promoted to markan−1.

Hx++ moves HeadHx on the square immediately
following sx, π−1

x (πx(sx) + 1).

Hx-- moves HeadHx on the square immediately
precedingsx, π−1

x (πx(sx)− 1).

The instruction set ofM includesif andwhile state-
ments so to modify the flow of control depending
on arithmetical and logical expressions. The bracket
statementsdo andod can be used for grouping the ar-
gument ofif andwhile statements as well as a whole
instruction table, which is declared via theproc state-
ment. Keywordcall invokes an instruction table. Con-
trol returns to the caller as soon as the callee executes
instructionreturn . Let us furthermore suppose there

exists a symbolic assembler such that it is possible
to define symbolic constants by means of the pseudo-
instructionDEFINE. Comments are also supported—
string “//” denotes the beginning of a comment which
continues up to the end of the line.
Finally, let us suppose that each of the above instruc-
tions, including each evaluation of a Boolean or arith-
metical atom, lasts the same amount of time.

2.3 An algorithm for machineM

By means of the above just sketched agreements it is
possible to compose the following computational pro-
cedure:

proc SUCC

DEFINE NIF := 0 // pM has found to be NIF.
DEFINE INF := 1 // pM has found to be INF.
do

// Phase 1: HeadsH1l andH1r are moved on the
// last couple of squares of the encoding ofpM onto Tape 1.
// H1r is on the last such square,H1l on the last but one.

H1r ← n− 1

while (H1l) ≥ (H1r) ∧ H1l ≥ 0
do

H1r --
H2 ← (H1r)
(H2)++

od

// Phase 3: CasepM = pM∞ .

if H1l < 0
do

H1r ← n // MovesH1r beyond coding ofpM . . .
(H1r)← INF // . . . stores theINF flag. . .
return // . . . and stops.

od

// Phase 4: CasepM 6= pM∞ :
// an inversion,i.e., (H1l) < (H1r) has been found.

H2 ← (H1l)
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(H2)++ // (H1l) is accounted on Tape 2.

// Phase 5: Looks on Tape 2 for the least previously
// recorded digit which is greater than(H1l).

H2++

while (H2) = 0 // While there are empty entries,
do // skip them.

H2++

od

// Phase 6: Swaps(H1l) and(H2).

(H1l)← H2

(H2)--
H1l++

// Phase 7: Piles up the digits as recorded on Tape 2.

H2 ← 0 // Rewinds HeadH2.
while H1l < n
do

if (H2) 6= 0
do

(H1l)← H2

H1l++

(H2)--
od

else
do

H2++

od
od

// Phase 8: Writes the exit status and returns.
// H1l is already ono−1(n).

(H1l)← NIF // Stores theNIF flag. . .
return // . . . and stops.

od.

A number of properties of this computational proce-
dure are now to be unraveled.

Theorem 2 Let us suppose that apM is coded on Tape
1 ofM and ann-digit zero is coded onto Tape 2. Then
procedureSUCCalways terminates, and it does in lin-
ear time at most.

PROOF We need to show that Phases 2, 5, and 7 stop
in linear time. Phase 2 stops either

1. when(H1l) < (H1r), i.e., in the presence of an
inversion, or

2. when HeadH1l goes out of the “left” boundary
of the coding ofp.

Both heads of Tape 1 are shifted leftward of one square
by executing actionH1r --, so Condition 2 is going to
be met after at mostn cycles. No other movement in
Tape 1 is commanded within that cycle. The two other
actions in that cycle count on Tape 2 the occurrences
of visited marks of Tape 1.
Obviously Condition 1 implies thatp is NIF. The heads
of Tape 1 lay onto the inversion when Phase 2 is exited
in this case. Condition 2 implies thatp is INF, i.e.,
p = pM∞ . Phase 3 takes care of this possibility—the
nature ofp is recorded onπ−1

1 (n) and the procedure
stops.
If Phase 4 is being executed then we are in the case
of Condition 1. This Phase accounts(H1l) as well
on Tape 2. When Phase 4 terminates,H2 lays onto
squares = π−1

2 (o( (H1l) )). As p is NIF, and as
((H1l), (H1r)) represents an inversion, there is at least
one square of Tape 2, sayt, such that both the follow-
ing conditions hold:

1. t is a successor ofH2,

2. t holds a markm such thatm > (H1l).

This proves that Phase 5 terminates after at mostn−1
iterations.
At this point HeadH2 lays on the first non-zero square
on the “right” of squares. As such, it represents
the least mark accounted onT2 which is greater than
(H1l). Phase 6 overwrites such mark onto square
(H1l), “de-accounts” it fromT2, and shifts the heads
of T1 one square to the “right”.
Phase 7 first rewinds HeadH2. The loop then moves
H2 through Tape 2 looking for non-zero squares. For
any such square, the corresponding relative distance,
cast to a mark, overwrites the square HeadH1l lays
onto. On each of these overwritingsH1l is shifted and
squareH2 is decremented. This goes on whileH1l

lays on the encoding squares. HeadH2 is only moved
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when(H2) holdsa0 = o−1(0). This Phase then writes
on Tape 1 all and only the marks visited during the
hunt for an inversion,i.e., Tape 1 contains an arrange-
ment, other than the original one, of the same multiset
M : anotherM -permutation. Furthermore the maxi-
mum duration of this Phase isn − 2 iterations, for at
mostn− 2 marks differ froma0. �
After Theorem 2 computational procedureSUCC is
found to be an Algorithm [3]. Note also that when
SUCCstops, Tape 2’s encoding is restored to its origi-
nal value—n-digit number zero.
Theorem 2 allows to show that, ifp 6= pM∞ , then it is
always possible to factorizep as follows:

Theorem 3 (LaR Factorization) If pM 6= pM∞ then
∃L ⊂M,R ⊂M,ai ∈M , such that:

1. pM = pLai p
R
∞.

2. R 6= ∅ ⇒ ai < max{aj | aj ∈ R}.

PROOF Let us representpM on the tape of a Turing
machine and instruct the machine so that it scans the
permutation right-to-left, halting at the first couple of
contiguous symbols which isnot an inversion, or at
the left of its leftmost character—this is possible due
to Theorem 2. The Head at first stands onto the right-
most character ofpM . At the end of processing time
the Head of the machine might

• have moved one position leftward. In this case,
takeR = ∅, ai the rightmost symbol ofpM ,
andL = CM{ai} (i.e., the complementary set
of {ai} with respect toM ).

• be laying somewhere else within the permuta-
tion i.e., the Head’s total number of shifts were
more than 1 and less thann. In this case, letai
be the symbol the Head stands on; then letL and
R be the two substrings respectively on the left
and on the right ofai (L may also be empty).

It will not be possible to find the Head on the left of
the leftmost character of the permutation, because this
would mean that no inversion had been found. In this
casepM would be equalpM∞ , contradicting the hypoth-
esis. �

Definition 9 Let p be a permutation of a multisetM .
Then there are two distinct cases:

p 6= pM∞ : In this case let us considerp’s LaR factor-
ization,pLai pR∞ for someL, ai, andR. Bek =
minR{j | aj < ai}, andR = {ai} ∪ CR{ak};
then

p′ = pLak p
R
0

is defined as thesuccessor permutationfor per-
mutationp.

p = pM∞ : In this case we say thatp′ is undefined, or
thatp′ = Λ.

Note p′ = SUCC(p), i.e., Algorithm SUCC computes
the just defined successor of permutationp: if at the
end of computing time squareπ−1

1 (n) holdsINF, then
p′ = Λ, otherwise the coding ofp′ can be found in the
coding squares of Tape 1.

Theorem 4 Letp ∈ PM , p 6= pM∞ . Then the following
two conditions hold:

1. p < p′.

2. 6 ∃q ∈ PM 3′ p < q < p′.

PROOF Condition1 follows directly from Theorem 3
and Def. 9. Condition2 follows by observing thatp
andp′ share the same left substringpL and start differ-
ing on the mark directly following that substring. Let
us calla andb these characters resp. inp andp′. By
construction,b is the least available character that is
greater thana. �

3 The nature of Algorithm SUCC

Definition 10 Letp andq be any two permutations of
a given multisetM . Thenp is said to precedeq by
AlgorithmSUCC iff:

∃z ∈ N? 3′ p
z︷︸︸︷
′′ . . .′ = q.

Let us denote this property asp ≺ q.

Let us consider the following Algorithm:
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proc ITER

DEFINE NIF := 0, INF := 1
do

H1l ← n
(H1l)← NIF
while (H1l) 6= INF
do

call SUCC // Invokes AlgorithmSUCC.
H1l ← n

od
return

od.

Obviously Algorithm ITER takes as input anM -
permutation and produces all successors of that per-
mutation, until the last permutation is reached.

Definition 11 Letp0 andp∞ be the zero and last per-
mutations of a given multisetM . Via AlgorithmITER it
is possible to consider setP = {p0, p

′
0, p
′′
0, . . . , p∞},

the set of all outputs of that Algorithm. Note thatP is
linearly ordered by the relation “≺”. Let us callP the
output set.

It is now possible to show that the process of deter-
mining a zero permutation and then generating all per-
mutations, successor by successor, by means of Algo-
rithms SUCC and ITER, is equivalent to the process of
generating in lexicographical order all permutations of
a string with multiple occurrences of the same charac-
ters in it [4]:

Theorem 5 Given a multisetM , letP (n) be the num-
ber of different arrangements that can be observed
starting fromp0 and going up top∞ recursively apply-
ing the successor operator (computable via algorithm
SUCC) i.e.,

P (n) = z + 1 ⇔ p0

z︷︸︸︷
′′ . . .′ = p∞.

ThenP (n) =
( n
c0, c1, . . . , cm−1

)
.

PROOF The proof follows by induction overn. It is
left as an exercise to the reader. �

Theorem 5 is the formal proof that algorithmSUCC

does generate each and every permutation of a multi-
set. In other words, the output set coincides with setP
and AlgorithmITER computes the generating process
of P. Recursive relationp′ = SUCC(p) is a concise
representation of such process. Furthermore, relation
“≺” coincides with relation “<”.

4 Conclusions

We formally showed that AlgorithmSUCC computes
the successor of a permutation of a multisetM , and
that the process which develops permutations via suc-
cessive calls ofSUCCgenerates each and every permu-
tation ofM in lexicographical order.
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