A Formal Model and an Algorithm for Generating
the Permutations of a Multiset

VINCENZO DE FLORIO and GEERT DECONINCK
Electrical Engineering Department — ESAT
Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee
BELGIUM

Abstract: — This paper may be considered as a mathematical divertissement as well as a didactical tool for
undergraduate students in a universitary course on algorithms and computation. The well-known problem of
generating the permutations of a multiset of marks is considered. We define a formal model and an abstract
machine (an extended Turing machine). Then we write an algorithm to compute on that machine the successor
of a given permutation in the lexicographically ordered set of permutations of a multiset. Within the model we
analyze the algorithm, prove its correctness, and show that the algorithm solves the above problem. Then we
describe a slight modification of the algorithm and we analyze in which cases it may result in an improvement of
execution times.

Key-Words: —Computational combinatorics, permutations, Turing machines, algorithms, number theory.

1 Introduction {0,1,...,n — 1}. Let furthermorem be an integer,

_ _ 0<m<n.
The problem of generating the permutations of a mul-

tiset of_ marks is consu?lered. F|rs_t some mathemat"Definition 1 SetA = {ag,a1,...,am_1} be called
cal entities and properties are defined within a formal ., »

S the Alphabet”.
model. Then an abstract machine is introduced and an

algorithm is shown which computes those entities on et 7 — {0,1,...,m — 1}. Let us consider multiset
the abstract machine. Within this framework the algo-
rithm is analyzed and proved to be correct. Finally it p; — {ag, ... a0, a1,...,a1, -, Ge1,-- - Gm_1}

is shown that the algorithm computes the successor of
a given permutation in the ordered set of lexicograph-
ically ordered permutations. suchthafy",., ¢ =nand¥i€ I, : ¢; > 0.
The structure of this work is as follows: the formal "
model, the machine and the algorithm are described
in Section 2. Section 3 deals with the link between
the algorithm and the process of generating the per-
mutations of a multiset in lexicographical order. Some
conclusions are drawn in Section 4.

&) C1 Cm—1

Definition 2 Any ordered arrangement of the ele-
ments of a multised/ be calledM -permutationand
represented ap™ or, where M is evident from the
context, ag. Letp[i] (or p[i]) denote the(i + 1)1
element of. Let us callP™ (or simply? when un-

. . ambiguous) the set of the -permutations.
2 A machine and an algorithm guous) P

Leto : A, — I, be a bijection defined so that

2.1 Prologue—some definitions Vi € I, : o(a;) = i. Clearlyo induces a total order on
the marks (anda fortiori, on the elements of the Al-

Let n be an integer,n > 2, and let 4, = phabet). Furthermore, through any M -permutation

{ag,a1,...,a,—1} be a set of “marks”. Lef, be set may be interpreted as andigit, basem number [1].

Definition 3 Given multisetd/ as above, arrange- 2.2 A machine
ment
Let us considerM, a generalized Turing machine [6]

ag - ap-ai - a1 Ay - Qyn—1 with two tapes;I} andT;, and three headg${,;, Hi,,
and H,. HeadsH,; and Hy, are “jointed”,i.e., capa-
ble of reading or writing any two consecutive squares
is called thezero permutationf M, or briefly itszerq of T7 at a time.H> operates ofl,. Let us callS; and
and is denoted ag)! or simply ag, when this can be ~ S> resp. the set of squaresBf and the set of squares
done unambiguously. For the sake of brevity, operator of T5.

“.”, concatenating any two marks, will be omitted in o
the following. Definition 7 Bes a square; square’ then represents

the square which immediately followsFor anyt € N
t t t
Definition 4 Given multisetM as above, arrange- T —= T
ment lets ”.-" represent squaré(...(s")"...)".

Definition 8 Let z; € S;. Bijectionm; : S1 — Z,
Ap—1 +« - Qp—1 Op—2 « + - Qp—2 * = = AQ - . . AQ

— such that
Cm—1 Cm—2 [&4]
mi(s) =0 if s =2,
is called thelast permutatiorof M and is denoted as mi(s) =t if s £ 27 and3t € N 5/
Pac: ~
Vs € Sy : (s=2z"""),
Definition 5 Given any twal/-permutationsp; and mi(s) = —t ifs#z and3t € N3’
2 —~
(21 =3 H...’)’
e pi is said to besqualto py iff Vi € I, : pi[i] = _ o _ _
po[i]. Letp; = po represent this property. is called therelative distance from; in S;. Following
the same procedure, let : So — Z be the relative
e p1 andp, are said to balifferentiff —(p; = ps), distance from a fixed, € S,.

orpy # py for brevity. From Def. 2, anyM-permutationp can be coded on

e pr < poiff Ik € I, 3 (Vj < k : pi[j] = TapeT; of M by writing, Vi € I?, mark p[i] onto

p2li]) A (pr[k] < palk)). NP T
squarer; " (i), i.e,, onto square; -’

Machine M can execute read, write and head-
movement actions. These basic actions can be de-
scribed via the following symbolic notation:

Let i be an integer and/,, and H, be heads respec-
tively operating on Tap&}, and Tapel, (possibly the
same). Let, be the square under He#tl. ands,, the
square under?,. Let us callr, and~, the relative
distances respectively far, and7), (possibly equal).
Theorem 1 For any M, p’! is the only possible INF- | et - be a function converting a square into the mark

Definition 6 Let p € PM. Aninversionis a cou-
ple of contiguous marks of, p[i| andp[i + 1], i €
{0,...,n — 2}, such thatp[i] < p[i + 1]. If no such
couple can be found ip, thenp is said to banversion-
free (INF). If at least one such couple does exist, then
p is said to benon-inversion-freg¢NIF).

permutation. currently coded onto that square. Then let:
PROOFBY constructionp?! is INF. Ab absurdolet us (H,) represent the output of a read of squaye
suppose there exists a permutatjort p which is available a®(r(s;)) € I, and let

INF. Then eithep < pX! or vice-versa. In both cases H, represent the position of Hedd,,

we reach a contradiction by Def. 5. . [| available asr,(s;) € Z.

The infix, “overloaded” (in the sense of [5]) operator
“«" be used to represent both writings of squares and
absolute movements of heads as described below:

(H;) « i writes ins, marko—!(i modn),

(Hy) — (H,)
in sy,

overwritess, with the mark written

(Hy) < with mark

H, overwrites s,
o~ Y(my(sy) modn),

H, «— i moves Head, over squarer; (i),

moves HeadH, over square

Postfix operators++” and “--", borrowed from the
grammar of the C programming language [2], are used
to represent incremental / decremental writings and
relative, single-square movements as follows:

(H;)++ increments, modula, the number coded
in the square under Headl,, i.e, Vi €
{0,...,n — 2}, marka; is promoted to mark
a;+1, and marka,,_1 is demoted to mark.

(H;)-- decrements, modula, the number coded
in the square under Headi,, i.e, Vi €
{1,...,n—1}, marka; is demoted to mark;_1,
and marka is promoted to marki,, 1.

H,+ moves Head{, on the square immediately
following s, m; 1 (mz(sz) + 1).

H,-- moves Headd, on the square immediately

precedings,, 7, ' (7. (sz) — 1).

The instruction set of\ includesif andwhile state-
ments so to modify the flow of control depending
on arithmetical and logical expressions. The bracket
statementslo andod can be used for grouping the ar-

exists a symbolic assembler such that it is possible
to define symbolic constants by means of the pseudo-
instructionDEFINE. Comments are also supported—
string “//” denotes the beginning of a comment which
continues up to the end of the line.

Finally, let us suppose that each of the above instruc-
tions, including each evaluation of a Boolean or arith-
metical atom, lasts the same amount of time.

2.3 An algorithm for machine M

By means of the above just sketched agreements it is
possible to compose the following computational pro-
cedure:

proc succ
DEFINENIF :=0
DEFINE INF :=1
do

I/ p™ has found to be NIF.
/1 pM has found to be INF.

// Phase 1: Head${;; and H,. are moved on the
/1 last couple of squares of the encodingydf onto Tape 1.
/I Hy1, is on the last such squaré];; on the last but one.

H1T<—n—1

while (Hll) > (le) AN Hqyy >0
do

le“

Hy — (Hiy)

(Ha)++
od

I/ Phase 3: Casp™ = p!!.

if H; <0

do
Hy —n /I MovesH, beyond coding of...
(Hy.) < INF /I ...stores theNF flag. ..
return /I...and stops.

od

gument ofif andwhile statements as well as a whole // Phase 4: Casg" # pl/:

instruction table, which is declared via theoc state-
ment. Keywordcall invokes an instruction table. Con-

/I an inversionj.e., (Hy;) < (Hi,) has been found.

trol returns to the caller as soon as the callee executes

instructionreturn. Let us furthermore suppose there

3

Hy «— (Hy;)

(Hy)++ Il (Hy,) is accounted on Tape 2.

/l Phase 5: Looks on Tape 2 for the least previously
/1 recorded digit which is greater thaf¥iy;).

HQH
while (Hz) =0 // While there are empty entries,
do // skip them.
H2++
od

/I Phase 6: Swap&H;;) and (Hs).

(Hy) <« Ho
(Ha)--
Hll"_"

/I Phase 7: Piles up the digits as recorded on Tape 2.

Hy 0 // Rewinds Headds.
while Hy; <n
do
if (Hz) #0
do
(Hy) < Ho
H”H
(Hz)--
od
else
do
Ho++
od
od

// Phase 8: Writes the exit status and returns.
Il Hy; is already ono~!(n).
(Hy;) < NIF /] Stores theNIF flag. ..
return /I ...and stops.
od.

A number of properties of this computational proce-
dure are now to be unraveled.

Theorem 2 Let us suppose thati@” is coded on Tape
1 of M and ann-digit zero is coded onto Tape 2. Then
proceduresuccalways terminates, and it does in lin-
ear time at most.

PrROOFWe need to show that Phases 2, 5, and 7 stop
in linear time. Phase 2 stops either

1. when(Hy;) < (Hy,), i.e, in the presence of an
inversion, or

2. when HeadH; goes out of the “left” boundary
of the coding ofp.

Both heads of Tape 1 are shifted leftward of one square
by executing actiorf{,.--, so Condition 2 is going to

be met after at most cycles. No other movement in
Tape 1 is commanded within that cycle. The two other
actions in that cycle count on Tape 2 the occurrences
of visited marks of Tape 1.

Obviously Condition 1 implies thatis NIF. The heads

of Tape 1 lay onto the inversion when Phase 2 is exited
in this case. Condition 2 implies thatis INF, i.e,,

p = pX. Phase 3 takes care of this possibility—the
nature ofp is recorded onr; !(n) and the procedure
stops.

If Phase 4 is being executed then we are in the case
of Condition 1. This Phase account&;) as well

on Tape 2. When Phase 4 terminatés, lays onto
squares = m, '(o((Hy))). As p is NIF, and as
((Hyp), (Hiy)) represents an inversion, there is at least
one square of Tape 2, saysuch that both the follow-
ing conditions hold:

1. tis a successor aff5,
2. t holds a markn such thatn > (Hy;).

This proves that Phase 5 terminates after at mest
iterations.

At this point HeadH- lays on the first non-zero square
on the “right” of squares. As such, it represents
the least mark accounted @i which is greater than
(Hy). Phase 6 overwrites such mark onto square
(Hy;), “de-accounts” it fromTs, and shifts the heads
of T one square to the “right”.

Phase 7 first rewinds Hedd,. The loop then moves
H, through Tape 2 looking for non-zero squares. For
any such square, the corresponding relative distance,
cast to a mark, overwrites the square He#éd lays
onto. On each of these overwritings; is shifted and
squareH, is decremented. This goes on whitg,
lays on the encoding squares. Hddglis only moved

when(Hz) holdsag = 0~1(0). This Phase then writes p # pX : In this case let us consider's LaR factor-

on Tape 1 all and only the marks visited during the ization,p”a; p& for someL, a;, andR. Bek =
hunt for an inversioni.e., Tape 1 contains an arrange- ming{j|a; < a;}, and R = {a;} U Cr{ax};
ment, other than the original one, of the same multiset then

M: anotherM-permutation. Furthermore the maxi-
mum duration of this Phase is— 2 iterations, for at
mostn — 2 marks differ fromay. u is defined as theuccessor permutatidor per-
After Theorem 2 computational procedus&CcC is mutationp.

found to be an Algorithm [3]. Note also that when

succstops, Tgpe 2's encoding is restored to its origi- ,, pM : In this case we say that is undefined, or
nal value—n-digit number zero. thatp’ = A.

Theorem 2 allows to show that, jif # p, then it is
always possible to factorizeas follows:

P = pLag pl

Note p’ = sucd(p), i.e., Algorithm succ computes
Theorem 3 (LaR Factorization) If p # pM then the just defined successor of permutationif at the

3L C M,R C M,a; € M, such that: end of computing time squarg ' (n) holdsINF, then
Y Lon p' = A, otherwise the coding gf can be found in the
1. p% =praipy. coding squares of Tape 1.

2. R#@éai<max{aj]aj€R}.

M M :
PROOF Let us represenp™ on the tape of a Turing xszgenrgigohitﬁoeld? P 7# Poo- Then the following

machine and instruct the machine so that it scans the
permutation right-to-left, halting at the first couple of
contiguous symbols which isot an inversion, or at
the left of its leftmost character—this is possible due
to Theorem 2. The Head at first stands onto the right-

most character of*. At the end of processing time N _
the Head of the machine might PrRooF Condition 1 follows directly from Theorem 3

N _ and Def. 9. Conditior2 follows by observing thap
e have moved one position leftward. In this case, andp’ share the same left substrip§ and start differ-

1l.p<yp.

2. BgePM 3 p<qg<yp.

take R = 0, a; the rightmost symbol o™, ing on the mark directly following that substring. Let
and L = Cy{a;} (i.e, the complementary set us calla andb these characters resp. jirandp’. By
of {a;} with respect ta\/). construction, is the least available character that is

e be laying somewhere else within the permuta- greater tham. -

tion i.e, the Head’s total number of shifts were]
more than 1 and less than In this case, let; 3 1he nature of Algorithm succ
be the symbol the Head stands on; therdland

R be the two substrings respectively on the left pefinition 10 Letp andq be any two permutations of
and on the right oé,; (L may also be empty). a given multisetV/. Thenp is said to precede by

It will not be possible to find the Head on the left of Algorithmsucciff:

the leftmost character of the permutation, because this
would mean that no inversion had been found. In this e

casep™ would be equap/, contradicting the hypoth- JzeN" ' p"l =g
esis. |

Let us denote this property as< q.
Definition 9 Letp be a permutation of a multisét/.
Then there are two distinct cases: Let us consider the following Algorithm:

proc ITER
DEFINENIF := 0, INF:=1
do
Hy —n
(Hy;) < NIF
while (Hy;) # INF
do
call succ
Hy—n
od
return
od.

/I Invokes Algorithnsucc.

Obviously Algorithm ITER takes as input anV/-

Theorem 5 is the formal proof that algoritheucc
does generate each and every permutation of a multi-
set. In other words, the output set coincides with2et
and AlgorithmITER computes the generating process
of P. Recursive relatiop’ = sucq(p) is a concise
representation of such process. Furthermore, relation
“<" coincides with relation <.

4 Conclusions

We formally showed that Algorithnsucc computes
the successor of a permutation of a multid¢t and
that the process which develops permutations via suc-
cessive calls ofuccgenerates each and every permu-

permutation and produces all successors of that peryation of M in lexicographical order.

mutation, until the last permutation is reached.

Definition 11 Letpg andp., be the zero and last per-
mutations of a given multisat/. Via AlgorithmiTER it

is possible to consider sét = {po, pj), - - -, Poo }»
the set of all outputs of that Algorithm. Note thats
linearly ordered by the relation%”. Let us call P the
output set

It is now possible to show that the process of deter-
mining a zero permutation and then generating all per-
mutations, successor by successor, by means of Algo
rithms succandITER, is equivalent to the process of
generating in lexicographical order all permutations of
a string with multiple occurrences of the same charac-
tersin it [4]:

Theorem 5 Given a multisef\/, let P(n) be the num-
ber of different arrangements that can be observed
starting frompy and going up tg. recursively apply-
ing the successor operator (computable via algorithm
sucgQi.e,

z
~~
P) =241 & po”" = pee.

ThenP(n) = <co,cl, N ,cm_1>)

PROOF The proof follows by induction oven. It is
left as an exercise to the reader. [|

Acknowledgement This project is partly supported
by the IST-2000-25434 Project “DepAuDE". Geert
Deconinck is a Postdoctoral Fellow of the Fund for
Scientific Research - Flanders (Belgium) (FWO).

References

[1] George E. AndrewsNumber TheoryV. B. Saun-
ders Co., Philadelphia, 1971.

[2] Brian W. Kernighan and Dennis M. RitchieThe
C Programming Languag&2nd edition, Prentice-

Hall, Englewood Cliffs, N.J., 1988.

[3] Donald E. Knuth,The Art of Computer Program-
ming,Vol.1 (“Fundamental Algorithms”), 2nd edi-

tion, (Addison-Wesley, Reading, MA, 1973.

[4] E. S. Page and L. B. WilsorAn Introduction to
Computational CombinatoricsCambridge Uni-

versity Press, Cambridge, 1979.
[5]

Bjarne Stroustrup, The ¢+ Programming Lan-
guage, 2nd edition, Addison-Wesley, Reading,

MA, 1995.

[6] Alan M. Turing, “On computable numbers, with
an application to the Entscheidungsproblem,’
Proc. London Math. Soc. Vol.42, 1936, pp. 230—
265.

