Convergence of Weighted Sums of Random Variables *

M. Amini
Department of Mathematics, Faculty of Sciences
Sistan and Baluchestan University, Zahedan, Iran
Amini@hamoon.usb.ac.ir, Fax:05412446565

A. Bozorgnia
Department of Statistics
Faculty of Mathematical Sciences, Ferdowsi University, Mashhad, Iran
Bozorg@math.um.ac.ir, Fax:05118417749

Abstract: In this paper we study convergence almost sure of weighted sums $\sum_{j=1}^{n} a_{n j} X_{j}$, where $\left\{X_{n}, n \geq 1\right\}$ is a sequence of random variables and $a_{n k}$ is an array of real numbers under conditions on $a_{n j}$ and sequence $\left\{X_{n}, n \geq 1\right\}$.

Key Words: Negative Dependent, Strong Law of Large Numbers, Weighted Sums.

1. Introduction.

Convergence theorems for weighted sums have been obtained by Chow [5], Chow and Lai [6],Hanson and Koopman [7],Pruitt [8],Stout [10], Teicher [12] and Choi and Sung [4]. Several authors extended these theorem to sum of negatively dependent random variable,see for example Bozorgnia A., Patterson,R.F. and Taylor, R.L.[3],Taylor R.L.[11] and Amini M.,Azarnoosh H.A.and Bozorgnia A.[2]. In this paper, we present various condition on $\left\{a_{n j}\right\}$ and $\left\{X_{n}\right\}$ for which $\sum_{j=1}^{n} a_{n j} X_{j}$ converges almost sure. It is show that for stochastically bounded random variables the condition $E|X|^{2}<\infty$ and $\sum_{j=1}^{n} a_{n j}^{2}=O\left(n^{-\beta}\right), \quad \beta>1$, imply $\sum_{j=1}^{n} a_{n j} X_{j} \longrightarrow 0$, almost surely and for ND random variables with $E X_{n}=0$, and $\sup \left|X_{n}\right| \leq c$ for some constant c and various condition on $\left\{a_{n j}\right\}$, we have $\sum_{j=1}^{n} a_{n j} X_{j} \longrightarrow 0$, almost surely.

Definition 1.The random variables X_{1}, \cdots, X_{n} are said to be ND if we have

$$
\begin{equation*}
P\left[\bigcap_{j=1}^{n}\left(X_{j} \leq x_{j}\right)\right] \leq \prod_{j=1}^{n} P\left[X_{j} \leq x_{j}\right], \tag{1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
P\left[\bigcap_{j=1}^{n}\left(X_{j}>x_{j}\right)\right] \leq \prod_{j=1}^{n} P\left[X_{j}>x_{j}\right], \tag{2}
\end{equation*}
$$

\]

for all $x_{1}, \cdots, x_{n} \in R$. An infinite sequence $\left\{X_{n}, n \geq 1\right\}$ is said to be ND if every finite subset X_{1}, \cdots, X_{n} is ND. The conditions (1) and (2) are equivalent for $n=2$, but these do not agree for $n \geq 3$ (see Bozorgnia, [2]).

Definition 2. A sequence $\left\{X_{n}, n \geq 1\right\}$ of random variable is said to be stochastically bounded by random variable X if for all n and every real number $t>0$,

$$
P\left(\left|X_{n}\right|>t\right) \leq P(|X|>t) .
$$

Lemma 1 (Serfling [8]) Let X be a r.v. with $E(X)=\mu$. If $P[a \leq X \leq b]=1$. Then for every real number $t>0$,

$$
E e^{t(X-\mu)} \leq e^{\frac{t^{2}(b-a)^{2}}{8}},
$$

and

$$
E e^{t|X-\mu|} \leq 2 e^{\frac{t^{2}(b-a)^{2}}{8}}
$$

Lemma 2 Let X be a r.v. with $E(X)=0$. If $|X| \leq c$, W.P.1. for some constant $c<\infty$. Then for every real number t,

$$
E e^{t X} \leq \exp \left\{\frac{c^{2} t^{2}}{2} \exp [c t]\right\} .
$$

Proof. From the following inequality

$$
e^{x} \leq 1+x+\frac{1}{2} x^{2} e^{|x|}, \quad \forall x \in R
$$

for every $t \geq 0$, we have

$$
\begin{array}{r}
E e^{t X} \leq 1+E\left\{\frac{1}{2} t^{2} X^{2} e^{t|X|}\right\} \leq \\
1+\frac{c^{2} t^{2}}{2} \exp [c t] \leq \exp \left\{\frac{c^{2} t^{2}}{2} \exp [c t]\right\}
\end{array}
$$

The next two lemmas will be needed in the proof of SLLN's, in the next section.

Lemma 3. (Bozorgnia, [2]) Let X_{1}, \cdots, X_{n} be ND random variables and $f_{1} \cdots, f_{n}$ be a sequence of Borel functions which all are monotone increasing (or all are monotone decreasing), then $f_{1}\left(X_{1}\right), \cdots, f_{n}\left(X_{n}\right)$ are ND random variables.

Lemma 4. (Bozorgnia, [2]) Let X_{1}, \cdots, X_{n} be ND nonnegative random variables, then

$$
E\left[\prod_{j=1}^{n} X_{j}\right] \leq \prod_{j=1}^{n} E\left[X_{j}\right]
$$

2. Weighted sums of stochastically bounded r.v.'s

In this section, we prove two theorems for weighted sums of stochastically bounded random variables under the condition on $a_{n j}$.

Theorem 1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of stochastically bounded by random variable X, with $E X^{2}<\infty$ and let $\left\{a_{n j}, 1 \leq j \leq n\right\}$, for each $n \geq 1$ be a triangular array of real numbers with $\sum_{j=1}^{n} a_{n j}^{2}=O\left(n^{-\beta}\right), \quad \beta>1$. Then

$$
\sum_{j=1}^{n} a_{n j} X_{j} \longrightarrow 0 \quad \text { a.s. }
$$

Proof. From Cauchy Schwartz inequality we have
$\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|^{2} \leq\left(\sum_{j=1}^{n} a_{n j}^{2}\right)\left(\sum_{j=1}^{n} X_{j}^{2}\right) \leq c n^{-\beta} \sum_{j=1}^{n} X_{j}^{2}$.
For fixed $n \geq 1$, choose an integer k such that $2^{k-1} \leq n<2^{k}$. Then
$\limsup \left|\sum_{j=1}^{n} a_{n j} X_{j}\right|^{2} \leq c \lim \sup \frac{1}{\left(2^{k-1}\right)^{\beta}} \sum_{j=1}^{2^{k}} X_{j}^{2}$,
we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} P\left(\left(2^{k-1}\right)^{-\beta} \sum_{j=1}^{2^{k}} X_{j}^{2}>\varepsilon\right) \leq \frac{1}{\varepsilon} \sum_{k=1}^{\infty}\left(2^{k-1}\right)^{-\beta} \sum_{j=1}^{2^{k}} E X_{j}^{2} \\
&=\frac{1}{\varepsilon} \sum_{j=1}^{\infty} E X_{j}^{2} \sum_{\left\{k: 2^{k} \geq j\right\}}^{\infty} 2^{-k \beta}=O(1) \sum_{j=1}^{\infty} \frac{E X_{j}^{2}}{j^{\beta}}< \\
& O(1) \sum_{j=1}^{\infty} \frac{E X^{2}}{j^{\beta}}<\infty
\end{aligned}
$$

Thus by Borel Cantelli lemma we have

$$
\limsup _{k} 2^{-\beta(k-1)} \sum_{j=1}^{2^{k}} X_{j}^{2}=0
$$

and by inequality (3)

$$
\limsup _{n}\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|=0
$$

this complete the proof.
Theorem 2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of stochastically bounded independent random variables with $E X_{n}=0$ and $E X^{2}<\infty$. Let $\left\{a_{n j}, 1 \leq j \leq n, n \geq 1\right\}$ be a triangular array of real numbers with

$$
\sum_{j=1}^{n}\left|a_{n j}-a_{n(j+1)}\right|=O\left(n^{-\beta}\right), \quad \beta>1
$$

where $a_{n(n+1)}=0$. Then

$$
\sum_{j=1}^{n} a_{n j} X_{j} \longrightarrow 0, \quad \text { a.s. }
$$

Proof. By the Following inequality

$$
\begin{gather*}
\left|\sum_{j=1}^{n} a_{n j} X_{j}\right| \leq \max _{1 \leq i \leq n}\left|\sum_{j=1}^{i} X_{j}\right|\left(\sum_{j=1}^{n}\left|a_{n j}-a_{n(j+1)}\right|\right) \\
\leq c n^{-\beta} \max _{1 \leq i \leq n}\left|\sum_{j=1}^{i} X_{j}\right| \tag{4}
\end{gather*}
$$

and the Kolmogorov maximal inequality for any $\varepsilon>0$, we obtain

By Markove inequality and for $\varepsilon>0$, we have

$$
\begin{gathered}
\sum_{n=1}^{\infty} P\left(\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|>\varepsilon\right) \leq \\
\sum_{n=1}^{\infty} e^{-t \varepsilon} E \exp \left\{t \sum_{j=1}^{n} a_{n j} X_{j}\right\} \leq \\
\sum_{n=1}^{\infty} \exp \left\{-t \varepsilon+\frac{c^{2} t^{2}}{n} \exp \left[\frac{c t}{n}\right]\right\}
\end{gathered}
$$

Thus by putting $t=\frac{2}{\varepsilon} \ln (n)$, we have

$$
\begin{gathered}
\sum_{n=1}^{\infty} P\left(\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|>\varepsilon\right)= \\
O(1) \sum_{n=1}^{\infty} \exp \{-2 \ln (n)\}<\infty,
\end{gathered}
$$

and Borel Cantelli lemma complete the proof.
Corollary 1. (Choi and Sung, [3]) Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent random variables with $E X_{j}=0$ and $\sup \left|X_{n}\right| \leq c$, for some finite constant c.
Let $\left\{a_{n j}, 1 \leq j \leq n, n \geq 1\right\}$ be a triangular array of real number with $\max \left|a_{n j}\right|=O\left(n^{-1}\right)$. Then

$$
\sum_{j=1}^{n} a_{n j} X_{j} \longrightarrow 0, \quad \text { a.s. }
$$

Theorem 4 Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of ND random variables with $E X_{j}=0$, and $\left|X_{n}\right| \leq c$, W.P.1. for some finite constants. Let $\left\{a_{n j}, 1 \leq j \leq n, n \geq 1\right\}$ be a triangular array of real number with $\max \left|a_{n j}\right|=O\left(n^{-\beta}\right)$ for every $\beta>(1 / 2)$. Then

$$
\sum_{j=1}^{n} a_{n j} X_{j} \longrightarrow 0, \quad \text { a.s. }
$$

Proof. By Markove inequality,and Lemmas 1,3 and 4 for every $\varepsilon>0$ and $t>0$, we have

$$
\begin{gathered}
P\left(\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|>\varepsilon\right) \leq e^{-t \varepsilon} E \exp \left\{t\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|\right\} \\
\leq 2 \exp \left\{-t \varepsilon+\frac{t^{2} c^{2}}{8} \sum_{j=1}^{n} a_{n j}^{2}\right\}
\end{gathered}
$$

By putting $t=\frac{4 \varepsilon}{c^{2} \sum_{j=1}^{n} a_{n j}^{2}}$, for some $0<K<\infty$,

$$
\begin{gathered}
P\left(\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|>\varepsilon\right) \leq 2 \exp \left\{-\frac{2 \varepsilon^{2}}{c^{2} \sum_{j=1}^{n} a_{n j}^{2}}\right\} \leq \\
2 \exp \left\{-K^{2} n^{2 \beta-1}\right\},
\end{gathered}
$$

hence
$\sum_{n=1}^{\infty} P\left(\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|>\varepsilon\right) \leq 2 \sum_{n=1}^{\infty} \exp \left\{-K^{2} n^{2 \beta-1}\right\}<\infty$.
Now Borel Cantelli Lemma complete the proof.

Theorem 5. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of ND random variables with $E X_{j}=0$ and $\sigma_{j}^{2}=E X_{j}^{2}<\infty$. Let $c_{n}=\max \left\{\operatorname{esssup}\left(\frac{\left|X_{j}\right|}{B_{n}}\right), 1 \leq j \leq n\right\}, \quad B_{n}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2}$.

If $\sum_{n=1}^{\infty} \exp \left\{-\frac{2 \varepsilon^{2}}{c_{n}^{2} B_{n}^{2} \sum_{j=1}^{n} a_{n j}^{2}}\right\}<\infty$, for every $\varepsilon>0$, then

$$
\sum_{j=1}^{n} a_{n j} X_{j} \longrightarrow 0, \text { a.s. }
$$

Proof. By Markove inequality,Lemma 1, 3 and 4 for every $\varepsilon>0$, and $t>0$,

$$
\begin{gathered}
P\left(\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|>\varepsilon\right)=P\left(\frac{\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|}{B_{n}}>\frac{\varepsilon}{B_{n}}\right) \\
\leq \exp \left\{\frac{-t \varepsilon}{B_{n}}\right\} E \exp \left\{t \frac{\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|}{B_{n}}\right\} \leq \\
2 \exp \left\{-\frac{t \varepsilon}{B_{n}}+\frac{t^{2} c_{n}^{2}}{8} \sum_{j=1}^{n} a_{n j}^{2}\right\},
\end{gathered}
$$

for $t=\frac{4 \varepsilon}{c_{n}^{2} \sum_{j=1}^{\varepsilon} a_{n j}^{2}}$, we have

$$
\begin{gathered}
\sum_{n=1}^{\infty} P\left(\left|\sum_{j=1}^{n} a_{n j} X_{j}\right|>\varepsilon\right) \leq \\
\sum_{n=1}^{\infty} 2 \exp \left\{-\frac{2 \varepsilon^{2}}{c_{n}^{2} B_{n}^{2} \sum_{j=1}^{n} a_{n j}^{2}}\right\}<\infty,
\end{gathered}
$$

now Borel Cantelli Lemma complete the proof.

Corollary 2.If max $\left|a_{n j}\right|=O\left(n^{-\beta}\left(c_{n} B_{n}\right)^{-1}\right)$
for some $\beta>(1 / 2)$, then

$$
\sum_{j=1}^{n} a_{n j} X_{j} \longrightarrow 0, \text { a.s. }
$$

References

[1] Amini, M and Bozorgnia, A. Negatively dependent bounded random variables probability inequalities and the strong law of large numbers. Journal of Applied Mathematics and Stochastic Analysis, 13:3 (2000), 261-267.
[2] Amini, M. Azarnoosh, H.A. and Bozorgnia, A. The almost sure convergence of weighted sums of negatively dependent random variables.J. of Sciences I.R.I. Vol. 10 No.2, 1999, 112116.
[3] Bozorgnia, A., Patterson, R.F and Taylor, R.L. Limit theorems for dependent r.v.'s.World Congress Nonlinear Analysts'92, 1996, 16391650.
[4] Choi, B.D., and Sung, S.H. Almost sure convergence theorem of weighted sums random variables.
[5] Chow, Y.S. Some convergence theorems for independent r.v.'s.Ann.Mat. Statist. $\underline{37}$, 1966, 14821493.
[6] Chow, Y.S.and Lai, T.L. Limiting behavior of weighted sums of independent random variables. Ann of Probab. 1, 1973, 810-821.
[7] Hanson, D.L. and Koopman, L.H. On the convergence rate of the law of large numbers for linear conluncitions of independent random variables. Ann.Math.Stat. 36, 1965,559-564.
[8] Pruitt, W.E. Summability of independent random variables. J.Math.Mech. 15, 1966, 769-776.
[9] Serfeling,R.J. (1980) Approximation Theorems of Mathematical Statistics John Wiley and Sons;New York.
[10] Stout, W.F. Almost sure convergence. Academic press. 1974.
[11] Taylor, R.L. Complete convergence for weighted sums of array of random elements. J. Math. I\& Math. Science.Vol. 6, 1983, no. 1, P.69-79.
[12] Teicher, H. Almost certain convergence in double array. Z.Wahvch.Vern.Gebiete.69, 1985, 331345.

[^0]: *This research supported by central research of statistics

