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Abstract:- Due to the complexity of solving single and dual queues with multi-class non-pre-emptive prioritised 
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1   Introduction 
Communication systems are under continuing strain in 
the face of increasing demand for more information 
and faster service. There are many various schemes in 
place for the transfer of information in communication 
networks. These schemes are used for a wide variety 
of communications network demands. With 
telecommunications networks becoming larger each 
day, efficient and effective queueing methods are 
needed to analyse new schemes aimed at faster 
communication through networks.  
 There have been a wide variety of methods 
studied that reduce congestion of communication 
systems. Many differentiate customers through 
marking and dropping processes [1],[2]. Others use 
time-marking and derivatives of this to allocate a 
degree of fairness in service, such as self-clocked fair 
queueing (SCFQ) and credit based fair queueing 
(CBFQ) [3],[4]. In recent times, the idea of prioritising 
traffic has received interest. In many cases these 
schemes have proven effective in providing quality of 
service for users of the networks. When we mix a 
priority scheme with a series or network of queues, the 
solution to such systems becomes complex. As far as 
loss of customers is concerned, it has been shown to 
decrease logarithmically as buffer size increases [6]. 
What we analyse here is a fixed buffer si e with 
various queueing disciplines for customers of different 
classes.  

The need for differentiating customers has 

arisen recently due to concerns with loss for real-time 
mediums. In communications systems, this may be a 
mobile phone call, a video transmission, or a 
streaming audio application.  

Whilst this problem was solved for service 
centres with infinite waiting room, only recently has it 
been investigated for finite waiting room in the case of 
a single queue [7]. The analysis has involved looking 
at two classes of customers, one high and one low 
class, where the high class has precedence over the 
lower class whilst waiting in the queue. This scenario 
sets up interesting results for communications service 
centres.  
 We wish to take this analysis further and 
beyond the capabilities of obtaining an analytical 
solution. As the problem has been solved theoretically 
for a single queue (with limited useability due to 
priority and queue type), this research is targeted at 
combining this key result to a new scheme called dual 
queueing [8]. This scheme has two queues of finite 
space where a customer, upon arrival, if finding the 
first queue full, waits in the second queue if there is 
room. When a space becomes vacant in the first queue, 
a customer at the front of the second queue enters the 
back of the first, which is the queue that has the 
service centre at the front of it. Previous work on the 
dual queue included simulations based on actual 
MPEG files [8]. The analysis showed that dual queue 
improved performance characteristics over the FIFO 
discipline. We aim to combine the dual queue idea 



  

with that of a priority scheme, with the anticipation 
that prioritised traffic coupled with the dual queue will 
enhance quality of service for customers. Furthermore, 
there are a variety of queueing disciplines that will be 
investigated, such as First In First Out (FIFO), Last In 
First Out (LIFO), High Class First (HCF), and Low 
Class First (LCF). These queueing disciplines will be 
investigated via computer simulations. 
 
 

2   Complexities of solving analytically 
The problem of solving the dual queueing problem 
analytically is mathematically complex. Consider the 
lowest level of a single and dual queue with prioritised 
traffic of only two classes of customers. If we are to 
investigate the state generation of a single queue with 
finite waiting space with two classes of 
customers NMMM /1//21 + , the dimensions of the 
irreducible infinitesimal generator of the system is 
given by  
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where 1c is the queue length. This matrix forms part of 
the linear system generating all transitional states of 
the queueing model that is given by 
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where 
T

p is  the vector of the steady-state distribution 
of the continuous-time Markov chain containing the 
unique normalised non-negative solution once solved. 
The solution of such a system requires the use of a 
recursive algorithm that is an exhaustive process for 
values of 1c > 3. Furthermore, for a dual queueing 
system with the same number of classes 

21
/1//21 cc NNMMM ++ with waiting space 1c  for 

the primary queue and 2c  for the secondary queue, the 
dimensions of the irreducible generator matrix of the 
system is given by  
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As for a single queue, the stationary state distribution 
is obtained by solving 

0
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The dual queue requires more exhaustive demands on 
computational resources than for a single queue. This 
is due to the rapidly increasing size of

21 ,ccA as 1c  and 

2c increase. Through our investigation, it becomes 
quickly apparent that it is impractical to solve systems 
with a total queueing capacity beyond five. For the 
single queueing model with 1c = 5, the size of 5A is 

31x 31, and for a dual queue with 1c = 2 and 2c =3, it 
is 33 x 33. (Double the size of these respective queues 
and we have generator matrices of size 111 x 111 and 
150 x 150). The Matrix-Analytic method is used to 
solve such systems. For the single queue, this method 
is practical for smaller systems, however the rapidly 
increasing size of the system tends to make large 
queue sizes difficult to solve. 
 To gain some insight into the behaviour of 
single and dual queues with various queueing 
disciplines and priorities, we have undertaken 
computer simulations. Furthermore, we extend the 
application of these schemes to situations with more 
than two priorities. This has not been solved either 
theoretically or through simulation. It is seen to be far 
too complex at this stage to be solved theoretically for 
more than two classes of customers. Furthermore, 
using simulation, comparisons can be undertaken for 
the single and dual queue schemes for more than two 
priorities. The simulation can allow for differing 
queueing disciplines other than the solved priority 
disciplines discussed so far, which assume HCF. 

The paper is organised as follows. In Section 3 
we define the model for the dual queue, the queueing 
disciplines and the simulation design. In Section 4 we 
discuss the results in terms of loss and utilisation. We 
summarise the findings and suggest further research in 
Section 5. We begin with a simple two-class scheme. 
This is extended up to a five-class scheme.  

 
 

3   Model 
The queueing set-up is illustrated below 

Fig. 1 Dual Queue model 
 
Figure 1 illustrates the dual queue. qN = number in 

queue and ic = capacity of queue i. If arriving 

customers meet a full primary queue, then it waits in 
the secondary queue. If the secondary queue is also 
full then the arriving data is lost. The dual queue has 
the ability to have independent queueing disciplines if 

if 
Nq<c1 
else 

Primary Queue 

Service 
centre 

Secondary Queue 

if 
Nq<c2 

else 

Lost 



  

need be.If we are to consider only the primary queue 
in Figure 1, this is the single queue with losses. Upon 
arrival to the system, if the service centre is busy then 
the arriving customer waits in the primary queue given 
there is sufficient space. If there is no space in the 
queue (or buffer) then the customer is lost. 
 
 
3.1 Queueing disciplines 
As there are multiple classes of customers simulated 
here, we have assigned arrivals based on decreasing 
demand as class increases. The first class packet is of 
utmost importance when considering time and loss 
constraints. If the scheme is to be adopted without cost 
but rather importance in terms of applications, then 
this customer may be data that is for a live event, or a 
streaming video/audio type. It typically is chosen to 
represent customers that if not given fast service, will 
have an impact on applications susceptible to loss.  

We use the exponential distribution for both 
the arrival rate and the service times of customers. For 
the arrival of the data, we are assuming that the arrival 
process is independent for the classes. The customers 
here are considered of uniform length, that is, there are 
no differing sizes of customers with respect to their 
occupancy within the queue (ie-uniform batch sizes of 
1). By considering two to five classes, we can compare 
how the introduction of more classes changes the 
behaviour of the queue. 

Now a brief summary of the four queueing 
disciplines analysed here for use in both the single and 
dual queue simulations. First we consider the first in 
first out (FIFO) queueing discipline. This is the 
simplest, and is also known as first come first serve. 
Because of its easy to implement sequential handling 
of customers in waiting, it is analysed first and is 
common to many communications networks. Next is 
the last in first out (LIFO) (or last come first serve) 
queueing discipline. This discipline is not unusual to 
communications networks. Lowest class first (LCF) is 
one of two priority disciplines at the heart of the 
model. In this discipline, lowest class customers jump 
to the head of the queue behind any already present 
customers of the same class. Highest Class First (HCF) 
is the most important model here. In this discipline, 
highest-class customers jump to the head of the queue 
behind any already present customers of the higher or 
the same class.  

The dual queue model is combined here with 
prioritised traffic so as to investigate a splitting of 
what may be viewed as unfairness. By having a dual 
queue in place, the strong bias towards HCF and LCF 
models to their respective prioritised customers allows 
for some traffic of a lower class to move through the 
queues, unlike a FIFO or LIFO single queue model.  

3.2 Simulation set up 
Arena was used for the simulations here[11]. Due to 
need for a diverse range of analysis, Arena was chosen 
because of its flexibility. Figure 1 contains a sample of 
one of the simulation screens in Arena. A total of 10 
simulation runs with simulation time of 15,000 units 
per run for each queueing model was evaluated. The 
multiple runs were used to initialise the models with 
different random number seeds. All arrival, service 
and statistical values are given in the same time scale 
so comparisons between queueing models and model 
types could be made. This is uniform only for each of 
the classes. All maximum values refer to the maximum 
of all simulation runs, not just a single run, for each 
respective model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Arena Model - Overview 

 
For all classes we have allocated the first class 

customer as the rarest arrival and longest in service. 
The rationale behind this is that the ‘rarer’ traffic will 
in many cases be the more demanding on system 
resources and can be seen as either the most or least 
valuable, depending upon the type of queueing 
discipline. Examples of high class high demand traffic 
could include videoconference links, streaming audio 
or streaming video. As more classes are introduced, 
the performance between them may not be as efficient 
as a few classes. For the simulations, the buffer size/s 
(waiting space) for arriving customers was fixed. For a 
single queue, the size was 10, and for a dual queue the 
size was 5 for each queue. Table 1 contains the arrival 
and service rates for the four models used here. Model 
I contains 2 classes, Model II, 3 classes and so on. 

 
Model λ1;µ1 λ 2;µ2 λ 3;µ3 λ 4;µ4 λ 5;µ5 

I 5 ; 1 2 ; 0.2    
II 15 ; 2.5 10 ; 1.5 5 ; 0.5   
III 60 ; 5 30 ; 2.5 15 ; 1.5 5 ; 0.5  
IV 120 ;10 60 ; 5 30 ; 2.5 15 ; 1.5 5 ; 0.5 

Table 1 Arrival and service rates for the models 
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When considering the differing queueing disciplines 
for each system, the FIFO is considered the baseline. 
As it requires no re-organisation, it is the simplest. It 
would be a poor choice to employ a prioritised method 
of a more complicated nature if the enhancements 
were marginal over a FIFO/LIFO discipline.  
 
 

4   Performance Characteristics 
Many criteria could be considered depending upon the 
nature of the communications system. Consequently, 
we present all statistics without any policies such as 
time-out thresholds, loss thresholds and throughput 
constraints. We have chosen a simple loss of 
approximately 5% for the models. A pilot simulation 
was undertaken to determine the loss levels for various 
arrival/service rate combinations. As seen in Table 1, 
the idea was to double the arrival and service rates as 
the number of classes increased. In this way, by the 
time one reaches Model IV, the high-class customer 
was rare and demanding on system resources. 
Next, we define the performance characteristics used 

in the tables: sL = Average loss for all classes; i
sL = 

Average loss for class i; lM = Maximum of all loss; 
iMl = Maximum loss for class i; U = Utilisation. For 

each of the models, we will investigate the 
probabilities on the basis of single versus dual queue, 
then class wise, and finally summarise overall.  
 
 
4.1 Model I - 2 Classes 
From Table 2, we have the performance characteristics 
for the 2-class model. First, we compare the single and 
dual queue designs. When looking at the average loss 
by class probabilities and overall average loss, the 
single queue design is superior for all regimes with the 
exception of LIFO. The maximum loss by class and 
overall maximum loss probabilities again show that 
the single queue design is superior for all regimes. 
When considering utilisation, the probabilities are 
close for both single and dual queue designs. If a low 
utilisation is desirable, the HCF model is the best, 
being marginally superior to the LIFO regime. For this 
Model, the single queue outperforms the dual queue. 

When considering the performance of traffic 
class wise, the results are varied. On average loss by 
class, Class 1 performs best under a LCF regime, for 
both single and dual queues. The loss levels are vastly 
superior under LCF than any other regime, with an 
average loss of only 0.026, half that of the next best 
loss level. The same conclusion can be drawn when 
considering maximum loss. For Class 2, LCF is also 
the best choice.  

 
 
Queue 
regime 

2,1
sL  

2,1
sL  

2,1lM
 

2,1lM  

 single dual single dual 
HCF 0.052 

0.053 
0.062 
0.064 

0.0762 
0.0603 

0.098 
0.137 

FIFO 0.053 
0.057 

0.053 
0.057 

0.0722 
0.0785 

0.072 
0.079 

LCF 0.026 
0.031 

0.039 
0.042 

0.0384 
0.0397 

0.058 
0.089 

LIFO 0.062 
0.065 

0.048 
0.047 

0.0987 
0.111 

0.091 
0.130 

 
sL  

lM  

sL  

lM  

U  U  

 single dual single dual 
HCF 0.056 

0.0637 
0.068 
0.15 

0.937 0.938 

FIFO 0.0589 
0.0831 

0.059 
0.083 

0.941 0.941 

LCF 0.0305 
0.0409 

0.043 
0.086 

0.954 0.952 

LIFO 0.069 
0.122 

0.050 
0.174 

0.938 0.944 

Table 2 Loss probabilities, Overall loss, and 
Utilisation Model I  
 
For this Model, it is clear that the dual queue offers no 
advantages over the single queue designs for the 
arrival and service rates tested. The LCF design offers 
the lowest class wise loss levels and overall loss levels 
under a single queue design. The LCF single queue 
design appears the best choice for this Model. With 
only 2 classes, preliminary analysis suggests the dual 
queue offers no advantages to traffic. 
 
4.2 Model II - 3 Classes 
Now with a third class, the dual queueing designs 
exhibit major improvements over the single queueing 
designs. Table 3 now depicts a reversal of the losses 
seen in the 2-class models. The loss probabilities 
improve dramatically in favour of the dual queueing 
models. The levels of loss are at their lowest for the 
priority schemes in comparison to the single models.  
The dual queueing designs are superior over the single 
scheme for almost all performance characteristics. Of 
the dual queueing designs, the best queueing regime in 
terms of average loss by class probabilities and overall 
average loss is LCF. For maximum loss by class and 
overall maximum loss probabilities, the dual queue is 
clearly superior over the single queue designs for all 
queueing regimes. Noticeably, the priority regimes 
show the largest reduction in loss from single to dual 
queue designs.   
On a class basis, again the LCF is superior, but only 
for the dual queue design. If we were confined to using 
a single queue design, the LCF is one of the poorest 
designs in terms of class wise loss. When considering 
maximum loss by class, the HCF is best for Class 1, 
LIFO for Class 2, and LCF for Class 3. The FIFO 



  

regime is the best for single queue designs, yet poorest 
in the dual queue designs. The overall loss levels are 
poor for the single queue schemes.  
Queue 
regime 

3,2,1
sL  

3,2,1
sL  

3,2,1lM
 

3,2,1lM
 

 single dual single dual 
HCF 0.132 

0.126 
0.145 

0.0503 
0.0618 
0.0618 

0.181 
0.175 
0.207 

0.064 
0.088 
0.081 

FIFO 0.116 
0.135 
0.122 

0.0632 
0.0653 
0.0529 

0.145 
0.16 
0.144 

0.14 
0.214 
0.134 

LCF 0.148 
0.142 
0.156 

0.0388 
0.041 
0.0473 

0.174 
0.16 
0.21 

0.097 
0.08 
0.069 

LIFO 0.165 
0.115 
0.122 

0.0516 
0.0532 
0.059 

0.214 
0.138 
0.156 

0.094 
0.076 
0.070 

Queue 
regime sL  

lM  

sL  

lM  

U  U  

 single dual single dual 
HCF 0.162 

0.227 
0.064 
0.083 

0.984 0.927 

FIFO 0.144 
0.174 

0.063 
0.187 

0.988 0.935 

LCF 0.18 
0.227 

0.047 
0.082 

0.993 0.940 

LIFO 0.15 
0.185 

0.06 
0.077 

0.988 0.937 

Table 3 Loss probabilities, Overall loss / Utilisation 
Model II  
 
Most of the dual queue designs, with the exception of 
maximum loss under FIFO, show considerable 
improvement over single queue designs. Due to the 
decrease in loss levels, utilisation is also lower in the 
dual schemes. This may be an important factor when 
considering the systems ability to run near capacity. 
The average loss of class points to the LCF model as 
the best. However it is the HCF which has the lowest 
maximal loss. It may be difficult to decide which of 
LCF and HCF is best for 3 classes. In overall terms, it 
seems that the HCF is best, with superior maximum 
loss rates and utilisation and comparable overall 
maximum loss. 
 
 
4.3 Model III - 4 Classes 
The introduction of another class strengthened the case 
for the HCF and LCF models. The loss probabilities 
are best for the priority disciplines when considering 
maximum loss. The LCF is particularly good. In both 
the HCF and LCF models, the middle classes suffer 
the highest lost. The nature of arrivals for the other 
schemes does not see such results. 
When considering overall loss of the system, the 
priority schemes are the best. Notice the high levels of 
loss for the single class schemes, which are far above 
acceptable levels especially considering the maximum 
loss levels. 
 

Queue 
regime 

4,3,2,1
sL  

4,3,2,1
sL

 

3,2,1lM
 

4,3,2,1lM
 

 single dual single dual 
HCF 0.092 

0.166 
0.13 
0.144 

0.0203 
0.0431 
0.0361 
0.0283 

0.125 
0.333 
0.227 
0.324 

0.0392 
0.0632 
0.0567 
0.0625 

FIFO 0.111 
0.133 
0.137 
0.137 

0.0456 
0.0814 
0.047 
0.0601 

0.6 
0.5 
0.162 
0.183 

0.0769 
0.152 
0.121 
0.127 

LCF 0.108 
0.087 
0.115 
0.091 

0.0114 
0.0124 
0.0194 
0.0187 

0.2 
0.117 
0.15 
0.122 

0.0307 
0.0271 
0.04 
0.0302 

LIFO 0.085 
0.078 
0.064 
0.083 

0.0669 
0.0428 
0.0239 
0.0342 

0.125 
0.106 
0.0953 
0.107 

0.148 
0.154 
0.0462 
0.0879 

Queue 
regime sL  

lM  

sL  

lM  

U  U  

 single dual single dual 
HCF 0.169 

0.75 
0.033 
0.063 

0.97367 0.90678 

FIFO 0.16 
0.437 

0.064 
0.143 

0.98135 
 

0.91044 

LCF 0.109 
0.142 

0.018 
0.031 

0.98834 0.92806 

LIFO 0.0866 
0.113 

0.037 
0.1 

0.97091 0.91443 

Table 4 Loss probabilities Model III 
 
 
4.4 Model IV - 5 Classes 
The 5-class model was included to further investigate 
a trend appearing for loss. This is that the middle 
classes are suffering high levels of loss with respect to 
the other classes. In the 5-class models, this trend 
continued on from the 4-class model. The dual 
queueing scheme this time improved only for classes 
3, 4, and 5 over the single queue. It may seem that this 
scheme may have the system too full of middle class 
customers to allow high-class customers the chance of 
arrival. The dual scheme may disadvantage the high 
class in its two-time wait. It is becoming a rare event 
and the single queue benefits high class by letting it 
jump to the front immediately. 

All loss probabilities are small, with the LCF 
operating at the lowest loss levels. An interesting 
result is the difference between single and dual queue 
for the HCF. The dual queue shows the improvement 
for the 2nd, 3rd and 4th classes in the dual model. As 
discussed, it would seem the increase in classes sees 
the decrease in quality for the first class of customer. 
The LIFO model is clearly the best. This model is 
beneficial to rare arrivals as a rare arrival will usually 
find waiting customers in front of them. The LIFO 
gives the last customer the advantage of jumping the 
queue, something that benefits the rare arrivals. 
The dual queue model slows down the severity of 
LIFO model, with it showing no loss for all but 4th 
class customers.  



  

 
Queue 
regime 

5,4,3,2,1
sL

 

5,4,3,2,1
sL

 

5,4,3,2,1lM
 

5,4,3,2,1lM
 

 single dual single dual 
HCF 0 

0.00491 
0.00308 
0.00151 
0.00197 

0.00546 
0 
0 
0.00037 
0.00155 

0 
0.0278 
0.0175 
0.00309 
0.00518 

0.0159 
0 
0 
0.00095 
0.00417 

FIFO 0.00128 
0.0071 
0.00995 
0.00852 
0.00449 

0.00128 
0.0071 
0.00995 
0.00852 
0.00449 

0.00441 
0.0149 
0.0588 
0.0128 
0.0112 

0.00441 
0.0149 
0.0588 
0.0128 
0.0112 

LCF 0 
0 
0.00020 
0.00020 
0 

0.00526 
0.00101 
0 
0.00125 
0.00316 

0 
0 
0.0011 
0.00103 
0 

0.0147 
0.00303 
0 
0.00235 
0.00926 

LIFO 0 
0 
0.00035 
0.0032 
0.0137 

0 
0 
0 
0.00098 
0 

0 
0 
0.00128 
0.0147 
0.0426 

0 
0 
0 
0.00073 
0 

Queueing 
Discipline sL  

lM  

sL  

lM  

U  U  

 single dual single dual 
HCF 0.00225 

0.00806 
0.00070 
0.00134 

0.6027 0.60065 

FIFO 0.00772 
0.0182 

0.00772 
0.0182 

0.6064 0.6064 

LCF 0.00017 
0.00075 

0.00143 
0.00305 

0.60082 0.60724 

LIFO 0.00322 
0.0117 

0.00051 
0.00124 

0.60257 0.59982 

Table 5 Loss probabilities by Model IV 
 
The LCF model has the worst overall loss when 
changing from single to dual queue. The others equal 
or better improvement in loss levels. The LIFO 
performs the best. 
 
 

5   Concluding Remarks 
We have presented a new combination of schemes 
called the MPDQ and explored some of its 
probabilistic characteristics under various queueing 
disciplines. The need for using a simulation approach 
was discussed, and evidence given of the difficulty in 
obtaining an exact result analytically. As a scheme 
combining priorities with a dual queue, the HCF 
discipline for 3 and 4 classes performed well, whereas 
the LCF and LIFO showed volatility in certain 
situations. For service providers, the introduction of 
the MPDQ under a HCF or FIFO discipline is worth 
further investigation, with the final decision governed 
by quality of service constraints. Further follow up 
issues worth investigating include 
• Analysing waiting times and the influence on the 

models  
• The arrival of batches of non-uniform length 
• Modifying the arrival distribution to allow for 

‘bursty’ traffic 
• A network analysis involving multiple 

simultaneous simulation, extending the model 
described in Figure 1. 

• Investigating the effect of changing buffer size 
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